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Abstract: The linearized equations of motion for an uncontrolled bicycle are derived. The
bicycle has its usual construction and the contact between the wheels and the road is modelled
by holonomic constraints in the normal direction and non-holonomic constraints of no-slip in
the tangential directions. The bicycle rides on a plane road surface that is inclined without
superelevation. All friction is neglected, apart from the friction needed to enforce the non-

holonomic constraints, but the bicycle may be driven or braked by moments at both wheels.

1. Introduction

In this report, the linearized equations for a bicycle are derived analytically. This is mainly done
as an exercise in dynamics and as a check for previous calculations. The derivation is performed
in a systematic way, so it is possible to extend the analysis and to include higher-order terms.
The first paper that gives the apparently correct equations is by Whipple [1].
The notation and the meaning of the symbols is in many ways the same as that in the
conference paper [2].

2. Description of the bicycle model

A bicycle of the familiar construction is considered. The model for the bicycle consists of four
rigid bodies that are interconnected by revolute joints. The four bodies are the rear frame with
the rider rigidly attached to it, the rear wheel, the front frame including the front fork and
handle bar, and the front wheel. The rear frame and the front frame are joined by the steering
head; the rear wheel is connected to the rear frame by the revolute joint at the axle; and the
front wheel is connected to the front fork by another revolute joint at its axle. The bicycle
rides on a flat road with the rims of the wheels touching the road. The shape of the wheels is
approximated by a thin rotationally symmetric disk with a knife edge at its rim. There is no
slip between the road and the wheels.

In the nominal configuration, the origin O of the global orthogonal right-handed coordinate
system OXY Z is at the contact point between the rear wheel and the road. The Z-axis points



in the downward direction perpendicular to the road surface, the X-axis points in the forward
direction, and the Y-axis points to the right. The planes of symmetry of the frames and the
planes of the wheels are all in the X Z-plane. The rear wheel has a radius R, a mass m,, and
moments of inertia A,,, Ay, and A,, = A,,; its centre of mass is at the centre of the wheel,
which is at the position x,, = (0,0, —R,)?. The centre of mass of the rear frame is at the
position X, = (2, 0, er)T, its mass is m,¢ and its inertia tensor with respect to its centre of
mass is given by

B=| o B, 0 [. (1)

Note that B,. is minus the corresponding product of inertia. In the same way, the centre of
mass of the front frame is located at xg = (zg,0, 2¢)7, its mass is mg and its inertia tensor
with respect to its centre of mass is given by

c=| o ¢, o |. 2)
C.’EZ O CZZ

The wheelbase is w and the radius of the front wheel is Ry, so the centre of the front wheel,
which is also its centre of mass, is at Xg, = (w, 0, — Ry, )T, Its mass is mg, and its moments of
inertia are D,,, Dy, and D,, = D,,. The angle that the steering axis makes with the Z-axis
is A\, while the trail of the front wheel is t. Also the contact points of the wheels with the
road are introduced, c,, = (0,0,0)7 for the rear wheel and cg, = (w,0,0)? for the front wheel.
Furthermore, a point on the steering axis on the road surface, which will be called the steering
point, xg, = (w +¢,0,0)”, and a unit vector along the steering axis, A = (sin A, 0, cos \)”, are
introduced. It is assumed that the bicycle rides on a slope, so the acceleration of gravity has
the components g = (gx, 0, gz)?. Braking moments, M., and My, are applied to the rear and
front wheels respectively.

In the previous paragraph, the coordinates were all given for the reference position. As
the bicycle moves, these coordinates will change. Seven generalized coordinates are needed
to describe the configuration of the system, which are chosen as follows. The position of the
contact point of the rear wheel is described by two Cartesian coordinates in the plane of the
road surface, x and y, with respect to the global coordinate system. The orientation of the rear
frame is described by three angles, the yaw angle 1) about the Z-axis, the roll angle ¢ about
the yawed longitudinal axis, and the pitch angle y about the current lateral axis. The pitch
angle is not independent, but is a function of the roll angle ¢ and the steering angle 3 (to be
discussed below). Owing to the symmetry of the system, the linear terms in this dependence
are zero. The relative rotation angle of the rear wheel with respect to the rear frame is denoted
by 6., the relative rotation angle of the front frame with respect to the rear frame is 3, and
the relative rotation angle of the front wheel with respect to the front frame is 0¢,. The system
has three degrees of freedom; the independent generalized velocities are the rotation rate of the

rear wheel, 6, the roll velocity, gz.5, and the steering velocity, 8.



It is convenient to introduce, besides the global reference frame, two local systems of coordi-
nates: the body-fixed systems for the rear frame and the front frame respectively. Their origins
are located in the centres of mass and, in the reference configuration, their axes are parallel
to the axes of the global system. Vectors or coordinate vectors with respect to the system of
the rear frame are indicated by an overbar, while those with respect to the system of the front

frame are indicated by a hat.

3. Configuration analysis

Four of the seven generalized coordinates are cyclic; these are the two Cartesian coordinates of
the contact point of the rear wheel, x and y, and the two rotation angles of the wheels, 6,,, and
0. All of these can be chosen to be zero at the currect time without loss of generality. The
yaw angle of the rear frame, ¢, is only cyclic if the longitudinal component of the acceleration
of gravity is zero, that is, if the bicycle rides on a level surface, but even then this angle appears
in the kinematic differential equations.

We restrict ourselves to the trivial motion, in which the bicycle is running straight ahead,
and small deviations from this nominal motion. First the trivial motion is analysed. The out-
of-plane variables, y, 1, ¢ and  and their time derivatives are all zero, as is the dependent pitch
angle x. The rotations of the wheels are coupled to the travelled distance x by the relations
Orw = —Riwx and Oy, = — Rgx. With this, the equation of motion becomes

(me Ry, + Ay + Dnyfw/R?w)érw = My + My R/ Riw — me R gx, (3)

where the total mass my,

My = My + Myt + Mg + Mgy (4)

has been introduced. This leads to a solution for the forward speed v that is a function of the
time 7, so & = v(7), 0, = —v(7)/ Ry and O, = —0(7)/ Riw-

For the linearized equations for small perturbations from a trivial solution, because of the
symmetry of the bicycle, the in-plane motion and the out-of-plane motion are decoupled. As
the perturbation of the in-plane motion leads only to a perturbed trivial motion, our interest
will be focused on the out-of-plane motion.

The orientation and the position of the characteristic points on the four bodies of the bicycle
can now be obtained. The orientation is the absolute orientation and is expressed as a rotation
vector for the small rotations of the rear and front frames. Small rotation vectors are the same
in the linear approximation in any of the three coordinate systems. For the rear frame, the

rotation vector is

Gy =bw=1| 0 |. (5)



The contact point of the rear wheel with the road obviously has the coordinates

T 0
cw=1| vy | =10 (6)
0 0

The centre of the rear wheel has the coordinates

Xrw = Cryw T (I + gbrw)()_(rw - éI“W)

0 1 —¢ 0 0 0 )
=lo|+[v 1 —¢ 0 = | Ruo
0 0 ¢ 1 — Ry — Ry

The tilde denotes the antimetric matrix associated with the rotation vector. The position of
the centre of mass of the rear frame is given by

Xif = Cry T (I + &)rw)(irf - EFW)

0 1 _w 0 Trf Lyt (8)
=0 |+] ¥ 1 =9 0 = | —240+ T
O O ¢ 1 Zrf Zrf

Now we proceed with the front frame. The position of the steering point is given by

Xsp = Crw T (I + érw)(iSp - Crw)

=0 |+l v 1 —9¢ 0 = (w+ )y
0 0 6 1 0 0

The front frame rotates over an angle § with respect to the rear frame about the inclined
steering axis, which makes an angle of A with respect to the local z-axis of the rear frame. So
the rotation vector of the front frame is

¢+ [Fsin A
Pg = Pg = Pg = 0 : (10)
Y+ B cos A

In the linear approximation, the contact point between the front wheel and the road has fixed
coordinates in the frame of the front wheel. This follows from the symmetry, but it can also

be verified directly. So this contact point is at the position

Chw = Xop + (T4 @) (€ — Xsp)

w4+t 1 —1 — Fcos A 0 —t
=| (w+t)y |+ | ¥+ BcosA 1 —¢ — Bsin A 0
0 0 ¢+ Bsin A 1 0 (11)
w
= | wy —tBcosA
0
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From this we see that the Z-coordinate of the contact point is zero to first order, so the
constraint in normal direction is satisfied and our statement that the pitch angle is zero is
confirmed. The centre of the front wheel is at the position

Xtw = Xgp + (I + &)ﬂ“)(&fw - fcsp)

w+t 1 —1) — Fcos A 0 —t
=| (w+t)y |+ | ¥+ FcosA 1 —¢ — (Fsin A 0
0 0 ¢+ [Bsin A 1 — Ry (12)
w
= | Rw®+wyY + upf
— Ry

Here, we have introduced
Uy = Rpw SIN A — tCOS A\, (13)

the distance of the centre of the front wheel to the steering axis, positive if this centre is in
front of the steering axis. The centre of mass of the front frame is at the position

Xg = Xsp + (I + &H)(Xff - )A(SP)

w+t 1 —1) — [ cos A 0 rg—w—1t
=| (w+t)y |+ | ¥+ [cosA 1 —¢ — [Bsin A 0
0 0 ¢ + Bsin A 1 2 (14)
T
= | —zr¢+ g + ugf
<ff

Here, we have introduced
ug = —zgsin A + (xg — w — t) cos A, (15)

the distance of the centre of mass of the front fork to the steering axis, positive if this point is
in front of the steering axis.

4. Virtual displacements

The analysis of the virtual displacements is a little more involved than the analysis of the
displacements, velocities and accelerations, because constant as well as linear terms have to
be retained in the coefficients of the virtual variations of the degrees of freedom, so these
cannot simply be obtained from differentiating the linearized expressions for the displacements
or velocities. The inclusion of the small terms yields the so-called geometric stiffness in the
equations of motion. We start from a configuration that is a little displaced from the nominal



configuration as described in the previous section. At first, all coordinates are considered to be
independent; the constraints are imposed in the course of the calculations.
The rear frame and the rear wheel have the virtual rotations, expressed in the system of

the rear frame, of

5o op
0= | ¢0v+ox |, 0@ =| @0 +0x+bn |- (16)
oY oY

It should be noted that dx is dependent and small. It is further convenient to introduce a
virtual rotation that does not involve the variation of the pitch angle as

3¢
Soe = | oov | (17)
R

The virtual displacement of the contact point of the rear wheel with the road, expressed in the

system of the rear frame, is

1 ¢ 0 o oz + iy
0 == )den=| - 1 ¢ oy | =| —woz+dy |. (18)
0 —¢ 1 0 — oy

The virtual displacement of the centre of the rear wheel is

65{rw - 5érw + 56)1& X (XI"W - érw)

=| —pdx+éy |+ | oy | x 0 = | —v¥ér + 0oy + Rudo

The virtual dispalcement of the material point that is in contact with the ground has to be

zero,
0= 5>_(rw + 6¢rw X ((_:I”W - irW)

0x + Yoy — Ry ) o) 0
= | —Yox+dy+ Rwod | + | o0+ dx+ 0 | X 0
— oy oY Ry (20)
0x + Yoy + RO + Riw00ry 0
= —ox + oy =10
— @0y 0

From this, the relations for the virtual displacements are found as

0 = =Ry (0x + 001y), 0y = Yoxr = — Ry 00y, (21)



from which follows that dy is small. The virtual displacement of the centre of the rear wheel
can be simplified to
—Riw (009 + dx + 00,y)
0Xpyy = R.w0¢ : (22)
0
At a later stage, the variation of the yaw angle and pitch angle will be removed. The virtual
displacement of the steering point becomes

6)_(sp = 0Xpw + 6(_brf X (iSP - )_(rw)

— R (009 + dx + 60,y) Y] w+t
- Ru6) | sov+ox | x| o
0 0 R, (23)
—Ry00,
= (w4 t)oe
—(w +1)(¢d) + 0x)

If this is transformed to the system of the front frame, we obtain

1 Bcos \ 0 — Ry 00,y
0%y = (I — BA)0%ep = | —Bcos A 1 Bsin A (w + t)0ep
0 —(sin A 1 —(w 4+ t)(¢d + dx) (24)
(w =+ 1)1 cos A — R0,y
= (w + )01 + Ry 300ry cos A
—(w 4 )[(¢ + Bsin Ao + 5x]
The virtual rotation of the front frame is found to be
Spg = (1= BA)S¢,; + ASf
1 [ cos A 0 o¢p 0 sin A
= | —fFcosA 1 Gsin A oY +ox | + 0
0 —[Fsin A 1 X0 53 cos A\ (25)
0p + 0 sin A
= | (¢+BsinA)dy — Bdpcos A+ dx |,
0 + §F cos A
while the virtual rotation of the front wheel is
d0p + dFsin A
0, = | (@0 + Bsin\)oy — Bdpcos A+ dx + 06y, | - (26)
0 + 03 cos A



The virtual displacement of the centre of the front wheel is

0Rpy = 0Xgp + 00 X (Xpy — Kep)

(w4 1)1 cos A — Ry 00,y

= | (w+1)6Y + Ri 300y, cos A
—(w 4 1)[(¢ + Bsin \)dp + 5x]
56+ 63 sin A » o
+ | (¢+ BsinA)dp — Bopcos A +6x | X 0
01 + 03 cos A —Rp

[(w+t)Bcos A — Rey(¢p + Bsin N)]00) + Riey/3dd coS A — RpyOX — Ryyy00,y
= WY + Reyw0d + U 08 + Ry 3001y cOS A
—w (¢ + Bsin \)oy — tBd¢pcos A — wdx

The virtual displacement of the contact point of the front wheel with the ground has to be zero,

0= 5>A(fw + 5€bfw X (éfW - }A(fw)

[(w+1t)Fcos A — Ry (¢ + B8inA)]0Y + Ry 30¢ cos X — Rep0X — Ryy00,y
= WO + R0 + Upy0 B 4+ Ry 360, cOs A
—w(¢p + fsin \)oy) — tFop cos X — wdx

d0¢p + 03sin A 0 (28)
+ | (¢ +BsinA)dp) — Bdpcos A+ 0x + 00, | X 0
81 4 03 cos A Riw
(w + 1) 301 cos A — RyyO0ry + Riy00sy 0
= WY — 163 oS A + Ry 330,y cos A =| 0
—w (¢ + Bsin \)oy — tBd¢p cos A — wdx 0

From this we deduce that
0 = [0 — Ryy(360ry cos AJw
ox = —fB0¢ — f(¢+ Bsin\)oj3 (29)
00s, = —f(w + t)303 cos A/ Rey + 001y Rrw / Rt

where we have introduced the factor
f =tcos )\ w. (30)

With these expressions, the virtual displacements and rotations of the four bodies are found to
be as follows. The virtual rotation of the rear wheel is

00
[0 — Ry 360, cos AJw



The virtual dispalcement of the centre of the rear wheel is

Ry (fB80 + [BSBSINA — 60,y,)
0%y = R0 : (32)
0

The virtual rotation of the rear frame is

o
5¢p,s = —fB0¢ — fBOFsin A - (33)
fO8 — Ry 300,y cos \Jw

The virtual displacement of the centre of mass of the rear frame is

55{rf - 5irw + 6$rf X (irf - XYW)

R (fB0d + fBIFsin A — 60,y) 0 Tt
= R0 + —fBd¢p — fB6Fsin A X 0
0 fOB — Ryy/300,y cos A Jw Riw + 2ot

_fzrf65¢ - fzrfﬁ(sﬁ sin A — Rrwéerw
= | —2400+ fr; 400 — Tpf Ry 3660,y cOS A Jw

[y 806 + fry305sin A
(34)
The virtual rotation of the front frame is
0P+ 0 sin A
dpg = —(cos A+ f)Bogp : (35)
(cos A+ )0 — Ryyw/300,y cos \Jw
The virtual displacement of the centre of mass of the front frame is
OXg = 0%gp + 0pg X (X — Xep)
flw+1)B60 cos A — Ryy60ry
= f(w + '[;)5/6 - erwﬁ(serw
fw+1)Bo¢
0p 4+ 0Fsin A g —w—t (36)
+ —(cos A+ f)Bd¢ X 0
(cos A+ )3 — Ryyw/00,y cos \Jw 2
—zg(cos A + f)B0d + f(w + 1) 365 cos A — Ryy06ry
= | —zg0¢ + (ug + frg)of — (vg — W) Ry /00,y cos A Jw
[(zg —w —t) cos A + fag|B0p
The virtual rotation of the front wheel is
0 + 63 sin A
5¢fw - _(COS A+ f)6(5¢ - f(w + t)ﬂdﬁ COS /\/wa + 59rerw/wa : (37)

(cos A+ )3 — Ryw/[300,y cos \Jw

9



The virtual displacement of the centre of the front wheel is

Ry (cos A+ f)Bod + f(w + )30 cos A — Ryy00,y,
(5§(fw = RfW5¢ + (Ufw + fw)&ﬁ . (38)
0

The expressions may seem rather complicated; one has to remember that the small terms have
only to be multiplied by the large terms in the equations of motion for the individual parts. In
fact, the small terms in the z, Z, & and Z components of the virtual rotations and the § or g

components of the virtual displacements are not used.

5. Velocity analysis

In this section we discuss the velocity analysis together with the non-holonomic constraints at
the wheels. The velocities and angular velocities are expressed with respect to the system of
the rear frame for the rear wheel and the rear frame and with respect to system of the front
frame for the front frame and the front wheel. Because the system is scleronomic, the relations
for the velocities can immediately be derived from the relations for the virtual displacements,
by changing the virtual variations into time derivatives and dropping higher-order terms. The
kinematic differential equations follow from the equations (21) and (29) as

T = —Rrwérw =,
R
Y = [ — R0y cos \Jw = f3 + v cos \/w, (39)
x =0,

éfw = 9rerw/RfW - _U/wa~

The velocities follow directly from the equations (31-38). The angular velocity of the rear wheel
is .
@
Wiy = Orw . (40)
13+ vBcos\ Jw

The velocity of the centre of the rear wheel is

v
Xw = | Rwd |- (41)
0

The angular velocity of the rear frame is
¢
Wy = 0 . (42)
fB+vfcos \w

10



The velocity of the centre of mass of the rear frame is

v
);(rf = _erq.s + fxrfﬁ. + xrfvﬂ COoS )‘/w : (43)
0
The angular velocity of the front frame is
¢+ Bsin A
wg = 0 : (44)
(cos A+ f) 3 + v cos \Jw

The velocity of the centre of mass of the front frame is

v
Xg = | —2q¢+ (ug + fzg)B + (zg — w)vBeos \w | . (45)
0
The angular velocity of the front wheel is
¢+ Bsin A
‘;)fw = érerw/wa . (46)
(cos A\ + f)f + vBcos \Jw
The velocity of the centre of the front wheel is
v
f(fw = wa¢ + (ufw + fw)ﬁ : (47)
0

6. Acceleration analysis

In this section we discuss the acceleration analysis. In the equations of motion, not the angular
accelerations, but the time derivatives of the components of the angular velocity are needed.
If the angular velocity is decomposed along body-fixed components, as is the case for the rear
and front frame, these derivatives are equal to the components of the angular velocity. This is
no longer true for the rear and front wheels, however.

By taking time derivatives of the kinematic differential equations (39), we obtain the rela-

tions
T =1,
j = v+ 0 =vf3+v2Bcos N w + vih,
U = f3+vBcos \Jw~+ 03 cos \w (48)
X =0,

efw - érerw/wa - _O/wa-

11



The angular acceleration of the rear frame is

0 ¢
ajrf — 0 = 0 , (49)
Y f3 4 vBcos \w + 06 cos A fw

and the time derivative of the angular velocity of the rear wheel is

L ¢
‘brw = Orw = O . (50)
W fB+vBcosA/w+®ﬁcosA/w

The acceleration of the contact point in the rear frame coordinate system is

1 ¢ 0 # 0
Cw=I-¢ )= 0 1 ¢ i | =1 vf8+v*BeosNw |. (51)
0 —¢ 1 0 0

The acceleration of the centre of the wheel is

):(rw = érw + djrf X (er - érw)

0 ¢ 0
= UfB+U2ﬁcosA/w + 0 X 0
0 fB 4 vfcos AJw + 96 cos A Jw —Rrw (52)
v
= | Rwo+uvfB+v28cosAw |,
0

while the acceleration of the centre of mass of the rear frame is

):(rf = ):(rw + ‘;‘Jrf X (irf - irw)

) (b Lrf
= | Ruwd+ofB+v2BeosAw | + 0 X 0
0 f@—i—vﬁ'cos/\/w—i-@ﬂcos)\/w Ry + 2
v
= | =240+ fruf+ (x5 + )vBcos N w + (240 + v?) 3 cos N /w
0

12



Likewise, the acceleration of the steering point is

isp = ):(rw + (brf X ()_(sp - }_(rw)

v ) w+t
= | Rwo+vfB+0v2BcosA/w | + 0 X 0
0 fB3+vBcos\Jw~+ 0B cos N w Ry
v
= | flw+1)F+ (w+2t)vfcos \Jw + [(w + t)0 + v?] 8 cos A Jw
0
(54)
If this is transformed to the system of the front frame, we obtain
X = (I — BA)Xsp
1 B cos A 0
= | —pcosA 1 [sin A
0 —[sin A 1
. o (55)
fw+t)8+ (w+ 2t)vBcos \Jw + [(w + t)0 + v?] 3 cos A w
0
0]
= | fw+1t)8+ (w+2t)vBcos \Jw + (t0 + v?)B cos \Jw
0
The angular acceleration of the front frame is
é + Bsin A
wg = 0 , (56)

(cos A+ f)3 + v cos \w + 03 cos A Jw

and the time derivative of the component vector of the angular velocity of the front wheel is

(ﬁ + 6 sin A
‘j)fw = érerw/wa . (57)
(cos A+ f)3 + v cos \w + 03 cos A Jw

13



With this, the acceleration of the centre of the front wheel becomes

;(fw = isp + djff X ()A(fw - )A(sp)

v
= | flw+1)3+ (w+2t)vfcos \Jw + (Lo + v2) 5 cos A Jw
0
¢+ Bsin A\ —t (58)
+ 0 X 0
(cos A+ f)3 + v cos N\ w + 03 cos AJw —Rgy,
v
= waé—l—(ufw+fw)5~|—(w+t)vﬁcosA/w+v2ﬁcosA/w ,
0

and, similarly, for the centre of mass of the front frame, the accelerations are

A~

Xg = }.A'Csp + (;Jff X (}A{ﬂ‘ — }A{Sp)

v
= | flw+t)5+ (w+ 2t)vBcos \w + (ti + v?) [ cos A w
0
é—i—ﬁsin)\ g —w—t (59)

+ 0 X 0

(cos A+ f)B 4 v cos \Jw + 93 cos AJw 2
U

= | —250 + (ug + fzg)B + (zg + t)vBcos \Jw + [(zg — w)0 + v?]3 cos AJw

0

This ends the acceleration analysis.

7. Equations of motion

First, the equations of motion for the individual bodies are derived, and reaction forces and
moments are retained. Then the differential equations for the system are derived with the
principle of virtual work. First, the vector of the acceleration of gravity is transformed to the

local frames as

i I ¢ 0 gx gx
g=I0-o)g=| —¢v 1 ¢ 0 =1 —gx¥+gz0 |, (60)
0 —¢ 1 9z 9z

14



1 Y+ B cos A 0 gx

g=I—-og)g=| —v—FcosA 1 &+ Bsin A 0
0 —¢ — [Bsin A 1 gz
(61)
9x
= —gx¥ + gz¢ + (—gx cos A+ gz sin \) 3
9z
The equations of motion for the rear wheel are
Aoy, + @y X (A(I)rw) = l\_/[rw, Moy Xpw — Mew& = Frw' (62)

Here, M,,, represents the resultant reaction moment with the inclusion of the breaking moment
and F,, represents the resultant reaction force. Written out, these equations become

Aprd + Ayy(fvﬁ +v2Bcos \/w)/ Ry My
Ayyérw = Mrw,y (63)
Am(fﬁ + UB cos A/w + 03 cos \Jw) — Ayyvq.S/Rrw My .
and -
. .mrw('l‘} - gX) }frw,x
mrw(Rrw¢ + Ufﬂ + UQﬁ COs )‘/w + ngJ - gZ¢) = Frw,y (64)
—Mrwgz I'w,z
The equations of motion for the rear frame are
B‘brf = Mrf; mrf):(rf - mrfg - Frf- (65)
Written out, these equations become
Bzx¢§+sz(fB+UBCOSA/w+i;ﬁcos)\/w) Mrﬁx
0 = Mrﬂy (66)
sz(5+Bzz(fB+vﬁcosA/w+z)ﬁcos)\/w) M .

and

o el )
Mut[— 20t + fee B + (206 + v cos N/w + (260 + v?) B cos N w + gx — gz¢)]
—Mrtgz

Frf,m

= Fiy

Frf,z
The equations of motion for the front frame are

Cé)ff = Mff, mf—f):(ff — mﬁg = Fff. (68)
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Written out, these equations become

Conl(d+ Bsin\) + Cyz[(cos X + ) + vf cos A Jw + 9 cos A Jw] Mg
0 = | Mg, (69)
Coz (¢ + Bsin \) + C..[(cos X + £)3 4 v3 cos M Jw + 03 cos A Jw] Mg .
and
mg{—280¢ + (ug + frg)B + (xg + t)vBcos \w + [(xg — w)v + v?] B cos \Jw}
0
. (70)
meggx }fff,m
— | mal—gx¥ + 920+ (—gxcos A+ gzsin\)f] | = }Tff,y
megz Fff,z
The equations of motion for the front wheel are
Dy + g X (D@py) = My, M Xty — My = Fry. (71)
Written out, these equations become
Doo(¢+ Bsin \) + Dyy[(cos A+ f)vf + v?6 cos \w] /Ry, My
i ) Dyyererw/wa ) ) = Mfw,y
Dy[(cos A+ f)B +vBcos \/w + v cos A\ Jw] — Dyyv(¢p+ Bsin\)/Rey My,
(72)
and
TTLfW?}
Mew|[Riw® + (U + fw)B + (w + t)vS cos \/w + v23 cos A /w]
0
. (73)
Miwgx Efw,x
— | mew[—9x¥ + gz0 + (—gx cos A+ gzsin\)5] | = ]wa,y
Mewgz Ffw,z

The virtual work done by the braking moments is
Mrwéerw + Mfw(sefw = (Mrw + Mwarw/wa>59rw - (Mfw/wa)f(w + t)ﬁéﬁ cos A. (74>

The equations of motion are found by eliminating the reaction forces. This is most easily
done by taking the inner product of each of the eight equations with the corresponding virtual
displacements or rotations. There are 21 independent reaction forces and three equations of
motion, for which we have 24 equations, so in the general case, the system can be solved. If
we take first variations with respect to the rotation of the rear wheel, we recover the equation

of motion for the trivial solution as given in Eq. (4). If we collect all terms corresponding to
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virtual variations of the roll angle, we obtain the equation of motion

[Ape + My R, + Buw + My + Cow + mg2i + Doy + mip RE, @
+f Bez = [ustaezes + CogsSin A + Cpz(cos A + f) — mg(ug + fog)zg + Der sin A
+ Mgy (Ugy + fw)RfW]B
+[fAyy/ Rew + [y Rew + Byz €08 N w — myg (2 + 1) 206 cos N/ w + Cy, cos A/ w
—mg (g + t) 25 cos \/w + (Dyy/ Ree ) (cos A+ f) + Mgy (w + t) Rey cos N w]vf3
H =M R + Mg 2ee + ma2g — M Riw (920 — 9x1) (75)
FH =M Rew + fruezee + fmgze — s Riw|gx 8
+{—fmuszs + mgsin Azg — mg[(zg — w — t) cos A + frg] — My Rew sin A} gz
+[Ayy/Rew + Myw R — mugzee — Mgz + Dy / Ry + My Riw 0?3 cos A Jw
+[tAyy/ Rew + tMyw Ry + By — Myt (2o + ) 206 + Cope — mg (v + €) 24
+(w +t)Dyy/ R + Mgy Ry (w + t)]0F cos A Jw = 0.

For the steering angle 3:

[f By, — [z + Crpsin A + Cpy(cos A + f) — mg(ug + frg)zg + Dap sin A
My (Upw + fw)RfW]g.b.
+[f?Aus + [?B.. + fPmgr? + Cpp sin? X + 2C,.(cos A + f)sin A + C,.(cos X + f)?
+me(ug + frg)? + Dao sin?A + Dy (cos A + f)? + mu (ug + fw)?]3
H S Ay By — (Do i) (cos A + v
+[fApe + [Bo. + frgexg(zg + 1) + Cposin A+ Co(cos A+ f) + mg(ug + fog)(zg + 1)
+Dpu(cos X + f) + Mg (w + ) (ugy + fw)]vBcos AJw
= fmueeres — mg(ug + frg) — M (Usw + fw)](926 — gx¥)
= f Mgy By Sin A + frggzie sin A — fmg(w + t) cos X + mg cos Nug + frg)
— fmgy(w + 1) cos A + My cos AMugy + fw)]gx
+[—=fmxe sin A — mg sin Mug + frg) — mey sin Mugy + fw)]gz8
+ (Mt /Rew) f(w + 1) B cos A
+[fmuz + mg(ug + fog) + (Dyy/ Riw) sin A + miy (ugy + fw)]v? 6 cos M w
+[tsin AAyy/Rew + fAzz + tmpy Rew SIMA + fB,, — tmygziesin A + frgea? + Cop sin A
+C,.(cos A + f) + mg(ug + fog)(xg — w) + tmg(w + t) cos A + Dyz(cos A + f)
+fw(w 4 t) D,/ RE, + tmg, (w + t) cos \Jo S cos \/w = 0.
(76)
These expressions can be simplified by introducing some auxiliary quantities. The moments of
inertia of the complete system with respect to the rear wheel contact point:

T:m: = A:m: + B:vac + sz + D:m: + mrwaw + merer + mﬁzlgf + mwagwy
Ty, = Beo + Coz — Mug 2o — Mgz + My W Ry, (77)
Tzz = Azx + Bzz + sz + Dxac + mrflff + mffl?‘f + mfww2-

Similarly, the skew moments of inertia of the front frame plus front wheel are defined as

Fyy = Cpp sin? X + C., cos? A + 2C,, sin Acos A + Dy, + mgui + meyu?,,
P\, = Cppsin A+ Cy,cos A + Doy Sin A — mgugzg + My Riw Utw (78)
F\,=C,.sin A+ C,,cos A+ D, cos X\ + mgZglg + My Wy
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A number of static moments are introduced as

Sy = Mizy = —Mypw R + Mys2ee + Mgz — Mgy R
Sy = My = MypTor + MgTa + MipyW

Srw = Ayy/RrW7

Stw = Dyy/RfW7

Sw = Siw + Stw

S\ = MEUF + Miw Uty
In this way, the two equations of motion simplify to

Tx:c¢ + (F)\:c + fT:cz)ﬁ + (fSW + wa COSs )‘ - fS:c + Tzz COS )\/W)(Uﬁ + 'Uﬁ)

(S — S0 Bcos A1 + Salgz — gx (o — FB)] — (s +s)gz8 =0, D)

and
(Frg + tT0)é + (Fan + 2f Fas + f2T2.)3 + (= S — Sty cos A
H[(Fa: + fTo2) cos Mw + [2S. + fsaluB + (sx + [S:)(—gz¢ + gxt)
+(—fS.sin A — sysin N)gz0 + [f(Sesin A + s)) + sy cos \|gx 3 (s1)
+[(Dyy/RE, )0 + (M / Rew)| f (w + )3 cos A
+(fS. + 8x + Spy sin \)v? [ cos A Jw
+[(Fy, + fT..) cos \Jw + fSpysin A — fS,sin A\ — (cos A + f)sy]os = 0.

These equations can be written in the standard matrix-vector form

Mg! + Cq + Kq! + K*q* = 0,

82
qk:Aqd+qud+quk_ ( )

Here, q¢ = (¢, 3)7 is the vector of the dynamic degrees of freedom, q* = (1) is the vector of
the kinematic coordinates and M is the mass matrix. The damping matrix C, the stiffness
matrices K¢ and K*, and the kinematic matrices A, BY and B¥ have the structure

C = 'Cu,

Kd — OKd + 1Kd1) + QKdUQ

Kk = KX,

A A (83)
B! = 'Bdy

Bk =0.
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The components of the constituent matrices, which are independent of v and v, are

My =Tk,

My = My = Fy + [T,

My = Foy + 2fFx. + f°T..,

'Ch1 =0,

1Cly = fSy + Sty cos A — fS, + T, cos A w,
1Cy = —fSy — Spy cOS A,

1Ch = (F\. + fT..) cos \Jw + f2S, + fsa,
OK% - S:chv

OK{, = [Segx — (fS: + 5x)9z,

OKgl = —(sx+ fS.)gz,

OKS§, = (—fS.sin XA — sysin A)gz + [f(Szsin A + s5) + sy cos AJgx

+(Mpy/Rew) f(w + 1) cos A,
lKiil = 07
'KY, = fSy + Stwcos A — fS, + Ty, cos A w, (84)
1Kd =0
21 )

Ky = (Dyy/RE,) f(w + 1) cos A
+(F\, + fT..) cos \/w + fSpysin A — fS,sin A — (cos A + f)sy,

2K?1 =0,

K, = (Sy — Sa) cos M w,

2K§1 =0,

2K5, = (fS. + sx + Spe sin \) cos A Jw,
Kﬁ = —5.9x,

K% = (sx+ [S:)gx,

A =0,

A =,

1Biil =0,

1BY, = cos A w.

It is seen that the system, if it is re-written as a first-order system, is of order five and that
there is an eigenvalue zero. It is interesting to see that even for zero velocity and acceleration,

the stiffness matrix does not show any apparent symmetry.
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