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Abstract

Active stabilization of unstable flight vehicles is an important research area at present.
It is rarely possible for graduate students to become involved in these research efforts,
other than on a largely theoretical basis. For this reason we chose to build a land ve-
hicle with interesting unstable dynamics. A unicycle robot has been constructed at a
reasonable cost, which facilitates the evaluation of the control strategies in a laboratory

environment,

This research investigates the stabilization of a one wheeled vehicle by means of
active feedback control. The control methods of a human riding a unicycle are investi-
gated first and a dynamic model which closely emulates the process is derived, A one
wheeled robot with mass and inertia properties similar to those of a young child was

constructed and used as an experimental vehicle for testing various control algorithms.

* The research addresses aspects in the fields of robotics, artificial intelligence and modern

digital control, but rather than specializing in any of these fields, it strives to combine
these disciplines in a unique application where the interaction of these fields can be
studied. An underlying approach of this research was to not only design but also eval-
uate control system performance in a laboratory environment without incurring large
financial expenses. The robot has all its electrical and computational power on board,
with the ability to receive commands from a radio transmitter to change its direction
and forward speed. A linearized model was derived and optimal control systems to

stabilize the vehicle were designed and simulated. .
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An investigation into using accelerometers for detection of the deviation from verti-
cal by measuring the specific force on the robot frame, was conducted. We found that
this resulted in unacceptable closed loop system robustness. Theoretical and physical
explanations for this phenomenon are presented as well as experimental results to con-

firm the extreme sensitivity of the design to these sensors.

We show that accurate sensor information on the unicycle’s orientation with respect
to vertical facilitates the design of closed loop control systems with good stability and
robustness characteristics. Such a control system for the longitudinal dynamics of the

unicycle robot was demonstrated experimentally.

The sensing, actuation and control abilities of a person riding a unicycle are com-
pared with those of a computerized robot performing a similar task. We propose that

this research and the test vehicle form the basis for theoretical and experimental studies

into the application of nonlinear, robust and adaptive control systems techniques for

unstable systems.
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List of Symbols

> B e

yaw angle.

~ roll angle,

pitch angle.
7o + 1 = total angular velocity of the rotary
turntable T relative to the frame F.
constant component of turntable angular velocity.
small perturbation of turntable angular velocity.
total wheel angular velocity about the axle of the wheel.
constant component of wheel angular velocity. -
small perturbation of wheel angular velocity.
angle of longitudinal sensor pendulum relative to the frame F.

angle of lateral sensor pendulum relative to the frame F.

Wheel mechanical parameters:

mw =

w

mass of the wheel W.
radius of the wheel.

¥, ¥ I¥ = moments of inertia of the wheel about 3 mutually

perpendicular axes originating at the center of mass

of the wheel. I}V is the inertia about the axis along
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the wheel axle.

Unicycle frame mechanical parameters:

mrp =

rTF =

™ =

g =

IFF I =

mass of the frame, F, of the unicycle.

distance from the wheel axle to the center of mass, F*,
of the unicycle frame.

distance the center of mass F* is located in front

of the center line of the frame.

distance the center of mass F** is located to the side

of the center line. |

moments of inertia of the frame about 3 mutually
perpendicular axes originating at the center of mass

of the frame. If is the inertia about a verical axis,
and I{ about an axis pointing in the direction of normal

forward motion of the frame.

Turntable mechanical parameters:

mpr =

rp =

IF?E:rEf:

mass of the rotary turntable T on top of the unicycle.
distance from the wheel axle to the center of mass, T,
of the turntable.

moments of inertia of the turntable about 3 mutually
perpendicular axes originating at the center of mass

of the turntable. I3 is the inertia about a nominally

vertical axis along the axle of the turntable.

Sensor pendulum mechanical parameters:

mass of a sensor pendulum.

distance between the hinge point of a sensor pendulum,
and its center of mass.

spring constant of coil spring attached around the
pendulum hinge point.

viscous damping coefficient of the sensor pendulum.




F=IF=

sy =

Ts1 =

TR3 =

TR2 =

moment of inertia of a sensor pendulum about an axis

passing through its center of mass, and perpendicular

to the pendulum’s plane of oscillation.

distance from the wheel axle to the hinge point of the

lateral motion sensor pendulum.

distance from the center of mass of the lateral

pendulum is located in front of the center line of the frame of the unicycle.
distance from the wheel axle to the hinge point of the |
longitu“dinal motion sensor pendulum. |

distance from the center of mass of the longitudinal

pendulum is located to the side of the center line of

the frame of the unicycle.

Other parameters and symbols:

fe =

fw =

fr =

RY =

Q37

Qw =

viscous friction coefficient at contact point of the
rubber tire to the ground.

viscous friction coefficient at the wheel axle where it

is attached to the unicycle frame,

viscous friction coefficient at the rotary turntable axle
where it is attached to the frame.

gravity acceleration constant.

component of the internal reaction force along the iy
unit vector. The W superscript indicates that the reaction
force is between the wheel, W, and the unicycle frame.
The subscript indicates along which unit vector the
reaction force is specified.

component of the internal reaction moment ‘along the fg
unit vector. The meaning of the sub- and superscripts
are similar to the definition given for reaction forces.

control torque applied to the wheel and unicycle frame



Qr

by the wheel drive motor.
control torque applied to the rotary turntable and

unicycle frame by the turntable drive motor.
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2 CHAPTER 1. INTRODUCTION

and apply the latest microprocessor and control systems technology in a laboratory en-

vironment in order to gain insight into the processes involved.

This research investigates the stabilization of a one wheeled vehicle by means of
active feedback control. The control methods of a human riding a unicycle are investi-
gated first and a dynamic model which closely emulates the process is derived. A one
wheeled robot with mass and inertia properties similar to those of a young child was
constructed and used as an experimental vehicle for testing various control algorithms.
The research addresses aspects in the fields of robotics, artificial intelligence and modern
digital control, but rather than specia.].izing in any of these fields, it strives to combine
these disciplines in a unique application where the interaction of these fields can be
studied. An underlying approach of this research was to not only design but also eval-
uate control system performance in a laboratory environment without incurring large

financial expenses.

The unicycle problem that was investigated is similar to that of an inverted pendu-
lum with both longitudinal and lateral unstable open loop dynamics. Previous work on
active stabilization of a bicycle by sideways leaning of a robot body [Van Zytveld] was
undertaken where only lateral instability is present in the open loop dynamic system.
An autopilot for a motorbike was designed and demonstrated using a rate gyro sensor
and a steering actuator [Nashner]. Research was also undertaken on the control of in-
verted pendulums on stable wheeled carts( [Higdon] and [Schaefer]), but applications
did not address the problems associated with stabilizing the pendulum if the cart would
traverse inclined surfaces. A significant amount of research into stabilizing legged robots
has been performed. The work on the hopping pogo stick robots at Carnegie Mellon

University [Raibert] bears some relationship to the stabilization of a one wheeled robot.

The work most closely related to the topic of this thesis was performed by researchers
at the mechanical engineering departement of Waseda University, Tokyo [Iguchi]. In this

case a one Wheeled robot was stabilized by means of a fast spinning control moment gyro
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mounted on the vehicle. If the unicycle leaned sideways, a torque was applied to the
control moment gyro by changing the speed of the wheel that rolls on the ground, These
investigations differ from the approach of this thesis where stabilization by means of a
control moment gyro was ruled out because it bears no relationship with the method

employed by humans in stabilizing a unicycle.

1.2 Organization of the thesis

This research employs techniques found in mechanical engineering, dynamics, control
system design, microprocessor technology as well as analog electronics. In order to make
‘clear the conceptual contributions of the thesis, the details of the application of these
disciplines in solving the problem at hand are documented in appendices. The main
text concentrates on motivating the conceptual principles used in solving the unicycle
stabilization problem and draws conclusions from the theoretical and experimental re-

sults.

Chapter 2 describes the control methods used by a human riding a unicycle and
motivates the choice of a dynamic model that represents a reasonable approximation of
the actual situation. It also addresses the issues considered in the mechanical design of

the one wheeled robot used in the experiments.

Chapter 3 describes the design of a control system for the longitudinal stabilization
of the unicycle robc.)t. The ad vantages and disad vantages of control algorithms designed
by successive loop closure and linear quadratic cost function minimization techniques
are discussed. Experimental results are presented and analysed. It concludes with an
explanation of why vertical stabilization with accelerometers as the primary sensors

cannot be obtained in practice.

Chapter 4 shows that a requirement for stabilization of the pitch instability of the

unicycle is a sensor which provides a good vertical reference to which the frame attitude
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can be compared. It proceeds to discuss the design of candidate longitudinal controllers
assuming that pitch attitude information is known, and shows how robustness is im-
proved. Experimental results which demonstrate how the unicycle robot was stabilized

longitudinally, are presented.

Chapter 5 discusses control systems to provide lateral stability for the umicycle.
After showing that similar robustness problems exist inthe lateral control system if ac-
celerometer sensors are used, stabilization methods using roll attitude information are

developed.

Chapter 6 summarizes the main findings of this research and proposes extensions of

this work.




Chapter 2

Dynamic Model for the Unicycle
Robot

2.1 Dynamics of a human riding a unicycle

The process of a human riding a unicycle is quite complex. Not only does a person use
- a multitude of sensory inputs to monitor the process; but the control actions themselves
are nonlinear. As is the case with most skills learned by a human, many of the control
feedback loops are closed at a subconcious level. When we attempt to emulate the pro-
cess of a human riding a unicycle by a computer stabilized one wheeled robot, we first
have to simplify the human’s actions into mathematical and mechanical models which

can be simulated and implemented in a laboratory.

A person on a unicycle maintains longitudinal stability by pedaling faster or slower,
by leaning his torso forward or backward and by moving his arms forward and back-
ward. Lateral stability is obtained by leaning his torso sideways, pulling an arm in or
stretching it out and by steering the wheel into the direction that he is falling by twisting
motions at the hip joints. Many of these control actions are rather jerky. For example,
when a person wants to change direction on a unicycle, he would use his torso and out-

stretched arms as a reaction inertia to suddenly twist the lower part of his body and the

5
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unicycle into the desired direction. He uses his knowledge (gained by experience) of the
nonlinear friction characteristics of the wheel on the ground to apply the correct torque
profile to end up in the desired direction. Simultaneously, the rider would lean into the
turn to counteract the effect of the ground reaction force and the inertia of his body,
which would tend to let the rider fall towards the direction that he had been travelling.
To emulate just one such a control action on a robot obviously would be prohibitively
complex. The goal is therefore to identify and emulate 6n1y the most important control

actions of a human rider.

The first and probably the most important simplification is that we assume that we
can model the human riding on a unicycle with a linear process. Thereby we choose
to represent the rider and unicycle by a finite number of connected rigid bodies and
assume that the relative angular position and rate motions are small. We also assume
that the control torques and other kinematic variables are continuous functions of time.
The restriction to a linear system analysis can be changed later to include studies of
nonlinear control methods, but it is reasoned that for the initial studies, we should deal
with a linear system model. This not only gives insight into the basic issues involved
in controlling a unicycle, but also gives access to the most powerful mathematical and
control sytems techniques available at present. The assumption of a linear system is also
not so unrealistic, because experienced unicycle riders do not execute large amplitude

motions when traveling in a straight line or while turning slowly.

We believe that the most basic configuration that will represent the major parts
and motions of a human on a unicycle consists of three rigid bodies. As shown in the
schematic diagram of Figure A.l it consists of a wheel, a frame to present the unicycle
frame and lower part of the rider’s body and a rotary turntable which presents the rider’s
twisting torso and arms. The most important way in which a human rider maintains
longitudinal stability is by means of the torques exerted on the pedals of the wheel. The
forward and backward leaning action of the rider is of lesser importance and was not

implemented in the robot in order to simplify the mechanical design.
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Observation of a human riding a unicycle shows that lateral stability is obtained
largely by continuously twisting the wheel in order to steer towards the direction that
heis falling. The ground reaction at the contact point between the wheel and the ground
applies a moment to the unicycle which rolls it back to vertical. A turntable mounted
on top of the robot with its axis of rotation along the centerline of the unicycle is used

to simulate the rider’s torso and arms.

We show in Appendix F that the unicycle can be stabilized by sideways leaning
actions only, but that the yaw angular momentum is uncontrollable from the lean actu-
ator. We decided to exclude the sideways leaning action from the mechanical robot in

order to simplify the contruction.

A person uses several sensory systems to monitor the stabilization process while
riding a unicycle. The four major sensors used to determine orientation with respect
to vertical are the vestibular system, visual system, proprioceptive sensors and tactile
sensors [Borah] and [Ormsby]. The vestibular system is the primary orientation system
of the human and consists of the semicircular canals (which measure angular velocity of
the head) and the otolith organs (which respond to linear accelerations and to changes
in orientation with respect to the gravity vector). Proprioceptive cues are obtained from
limb position signals and muscle length and tension afferents, from which the brain can
infer which dynamic forces are acting on the body, based on the person’s experience
in coordination. A person can also determine his orientation with respect to vertical
from tactile pressure cues on the various parts of his body which are in contact with his
environment. Finally eye sight iz used, which in combination with a person’s experience
in deducing the direction of vertical from clues in his environment, gives an indication
of his lateral and longitudinal orientation. All these sensory inputs are combined in the
human brain to determine the spatial orientation of his body. It is obviously impossible

to use sensors on the robot with all the sophistication mentioned above.
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2.2 Mechanical design of the unicycle robot

The unicycle robot that was designed, consists of three parts: a wheel, a frame on which
the drive motors, sensors and electronics are mounted, and a battery pack on top of the

frame which can rotate about the vertical axis.

The robot was specifically designed with mass and dimensional properties similar to
those of a human riding on a unicycle. This allowed interesting performance compar-
isons, since the open-loop time constants in the two cases are similar, Although these
dimensions and weight make the robot less transportable, it gives the designer more
freedom to select equipment without being too concerned about physical size. Enough
batteries could also be mounted on the robot to supply electrical power for extended

periods of up to two hours of continuous testing without recharging.

Consider a young person of about 50 kg (110 Ib} mass. The mass can be roughly
divided equally between the body above and below the hips. The uppér part of the
body that performs the twisting motions will be approximated by a 25 kg cylinder of

0.2 m radius. The moment of inertia about the vertical axis is therefore approximately
1 2 2
Itor‘go = '2‘MR = 0.5 kg - M

This compares well with the turntable (battery pack) inertia of I3 = 0.5028 kg - m?.

The rider’s legs, which are usually s].ighﬂy bent when resting on the pedals, are
approximated by two 12.5 kg cylinders of r = 8.5 cm in radius (r) and spaced a distance
(d) of 0.1 m apart. The moment of inertia about the vertical centerline between them
is given by

Diegs = 2[%mr2 + md?] = 0.34 kg - m?

This inertia is close to the robot’s frame plus electronics inertia of II = 0.3635 kg -

m2.
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The center of mass for the unicycle robot above the wheel axle is given by

o = MFTF + mrrT
mg -+ mr

=063 m

which would be located at approximately hip height for a rider sitting on a unicycle.

The mechanjcal parameters of the robot and the measurement methods are given
in Appendix M. The calculations above do not include all the inertia properties of the
unicycle plus rider, and only serve as an indication that during the robot construction

an attempt was made to let the mechanical system approximate the real life situation.

The reader may wonder why the heavy battery pack is placed at the top of the
unicycle robot. Placing the center of mass high not only emulates the real case of a
human on a unicycle, but is also advantageous from a control systems point of view. If
we consider the unicycle as a simple inverted pendulum, the higher the center of mass is,
the larger is the fall-down time constant of the open-loop system. This permits a slower
sampling frequency in the control microprocessor, so that it has more time to complete
the calculations of the balance algorithm. Furthermore, during balance recovery actions,
the wheel drive torque has to accelerate the wheel until its axle is below the center of
mass of the unicycle. As we show in section L.2 the effective inertia that the torque has
to accelerate depends on the height of the center of mass of the superstructure (frame
and turntable). When the center of mass of the superstructure is just above the wheel
axle height, the control torque has to accelerate almost all of the superstructure’s as
well as the wheel’s inertia during stabilization actions. If, on the other hand, the super-
structure’s center of mass is high above the wheel axle, only the wheel’s inextia needs

to be accelerated (see equations L.4 and L.5). |

The frame of the robot was made out of aluminum. All of the more complicated
parts were made on a numerically coded milling machine to provide a light but rigid
structure to which the motors, gear systems, servo amplifiers, computer rack, sensor

electronics and the rotary battery pack could be mounted. A drawing of the unicycle
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robot is shown in Figure 2.1 and more detailed drawings are contained in Appendix L.
The microprocessor rack is mounted in the middle of the frame between the two motors

and the two servo amplifiers on either side of it on the outside of the frame.

2.3 Dynamics of the unicyclé robot

The unicycle robot may be modeled as three interconnected rigid bodies as shown in the
schematic diagram of Figure A.1. The various coordinate transformations required to
describe the relative angular motions of the three rigid bodies are defined in Figﬁres A2

and A.3.

In Appendix A the dynamic equations of motion are derived by using Newton-Euler
mechanics, Each part of the unicycle is considered as a free rigid body with gravity
forces, control torques and reaction forces and torques from adjoining bodies acting on
it. It also includes the dynamics of two sensor pendulums R and § mounted to the
frame which can freely swing in the longitudinal and lateral directions respectively. The
derivations make provision for mounting the sensor pendulums anywhere on the unicy-

cle frame.

The equations are generalized to include the situation where the center of mass of
the frame is displaced away from the vertical centerline of the robot. Inclusion of the
products of inertia into the dynamic equations of motion would significantly compli-
cate the mathematics. Therefore the robot was designed with its mass distribution as
symmetrical as possible about the longitudinal and lateral planes which intersect in
the vertical centerline. This would cause the products of inertia to be negligibly small
or zero (section 7-2, [Greenwood)]). It is assumed that the wheel rolls on the ground
without slipping, which places a nonholomic constraint on the dynamic equations. The
dynamic equations are derived for a nonzero nominal turntable speed, which produces

coupling between the longitudinal and lateral plant dynamics.
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The dynamic equations for the three parts of the unicycle with the two sensor pen-
dulums are obtained after eliminating all the internal reaction forces and moments. It
results in an eleventh order system with two forcing functions, the wheel torque and the
turntable torque. The equations are summarized in section A.12 and presented in state

space form in Appendix D.

As a means of checking the equations of motion, the derivation was repeated by
using Lagrange’s equations in Appendix B. This method is based on the physical prin-
ciple that the time rate of change of the scalar generalized momentum p; is equal to the
generalized force @; due to the applied forces plus an inertial generalized force due to
motion in the other generalized coordinates (section 6-6, [Greenwood]). Often the Q.’s
are derivable from a potential function, which is the potential energy of the unicyle in
the gravity field qf earth, in the present case. This method avoids the need to elimi-
nate all the reaction forces as in Appendix A. The no-slip condition on the wheel is a
nonholomic constraint equation and is includéd into Lagrange’s equation as shown in

section B.3.1.

In the Lagrange’s method derivation, we did not include the sensor pendulums and
asymmetry of the frame since we only wanted to check the dynamic equations of motion.
The summary of the dynamic equations of section B.4 indeed confirms that the previous

equations are correct.

A third very useful method for checking the dynamic equations of motion is de-
scribed in Appendix C. It is based on I’Alembert’s principle which states that the
laws of static equilibrium apply to a dynamical system if the inertial forces, as well as
the actual external forces, are considered as applied forces acting on the system (sec-
tion 1-5, [Greenwood]). After determining the D’Alembert forces, D’Alembert torques
and gravitational forces on the three parts of the unicycle, the following procedure

([Bryson 3] provides the dynamic equations of motion:

o set the two horizontal components of the moment about the ground contact point
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etiua.l to zero for the whole unicycle.

e set the vertical component of the moment about the vertical centerline equal to

zero for the whole unicycle and include the applied ground friction torque.

o set the moment about the axle of the wheel equal to zero for the frame plus

turntable and include the applied torque Qw and wheel drive friction torque.

o set the moment about the axle of the turntable equal to zero for the turntable and

include the applied torque 7 and the turntable drive friction torque.

The resulting equations in sections C.2 and C.3 serve as an additional confirmation

that the dynamic model for the system is derived correctly.

2.4 Selection of actuators and the drive system

One of the aims of this research project was to build a robot that can stabilize itself
without any connections to its environment other than the wheel touching the ground.
Therefore both its actuators and power source should be on-board. Direct current mo-

tors and batteries offer a convenient solution to this requirement.

The choice between direct drive or geared drive systems was dictated by cost. While
the former offers advantages of a simpler mechanical design and none of the nonlin-
earities associated with geared drive systems, these motors were too expensive for the
budget of the project. The direct current servo motors { [Infranor]) that were selected
have low inertia armatures which allows high angular acceleration of the rotor and can
run at low speeds with full output torque and no cogging. A 316 watt motor was se-
lected for the wheel drive system because the robot is expected to stabilize itself while
continuously running at a forward speed as high as 3 meters per second (10 km/h).
A smaller 151 watt motor was selected for the turntable drive system. The maximum
speeds for these motors are 7000 and 10 000 revolutions per minute for the large and

small motor respectively.
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A precision cable and polyurethane chain drive system and aluminum gears were
used to reduce the motor speeds and increase the motor torques. This system requires
no lubrication and the gear ratios can easily be adjusted by using different belt and
gear sizes. An effort was made to select optimum gear ratios for the drive systems. For
the wheel drive system it is desireable to select a gear ratio which matches the motor
rotor inertia to the effective inertia of the longitudinal system dynamics, so that max-
imum wheel acceleration can be obtained. This will enable the quickest recovery from
longitudinal balance disturbances. Appendix K shows how the wheel acceleration as a
function of the gear ratio can be derived from the dynamic equations of motion. For
the robot parameters listed in Appendix M, a@ gear reduction is near the optimum

value for the wheel drive system.

Lateral system stability is maintained by continuously steering into the direction
that the unicycle is fa.l]ing.. The optimal gear ratio for the turntable drive system would
therefore be the ratio that gives maximum yaw acceleration. Appendix G uses the lat-
eral system dynamic equations of motion and plant parameters to calculate that the
optimal gear ratio would be approximately 72:1. The practical limitations of the three
stage gear reduction system that was constructed limited the gear ratio to{60:1} but this

results in a maximum yaw acceleration that is 98% of the optimum.

Pulse width modulated amplifiers ([Galil Motion]} were used to drive the servo mo-
tors. The particular models that were used modulate the 48 V d.c. supply from the
batteries to supply a regulated current to the motors. They can continuously supply
10 A to each motor. The servo amplifier receives a reference voltage from the digital-
to-analog interface card in the on-board microprocessor, which commands a torque in
the motor. The digital computer interface electronics is described in more detail in

Appendix I.
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2.5 Selection and construction of sensors

The control system needs information on the angular rates of the wheel and*the turntable
relative to the frame. The turntable speed can be very low and tachometers give poor
results at low angular rates. It was therefore decided to use position encoders on the mo-
tor rotor shafts to obtain angular velocity information. This method, which is described
in detail in Appendix I, uses a high frequency clock to count the number of clock pulses
during each pulse from the position encoder as it rotates. The pulse count can then
be inverted in the microprocessor to obtain angular velocity information. This method
can provide high resolution angular rate information by the appropriate selection of the

counter clock frequency and counter register length.

Several balance sensors were considered. As we will show in a later chapter, the ideal
sensors would measure the pitch and roll angles of the unicycle with respect to vertical.
Instruments which can indicate vertical in the presence of external accelerations other
than gravity on the instrument are quite complex [Wrigley]. Vertical gyros, free gyros
and optical vertical reference systems can provide this information, but all of these were

too expensive for the budget of the project.

Passive sensor pendulums were considered as a means of obtaining vertical refer-
ence. All the modes of the unicycle dynamic system are theoretically available from
the measurement of the passive sensor pendulum angles relative to the unicycle frame.
Unfortunately the commercial instruments of this type do not have the required reso-
lution and some of their parameters (eg. damping factor) are temperature dependent.
Furthermore, it is shown in Appendix E that the inverted pendulum modes can be un-

observable if the passive sensor pendulums are mounted at the wrong heights.

Rate gyros can be used to measure roll and pitch rates. The inverted pendulum
modes are observable from these measurements, but unfortunately these instruments

are also fairly expensive.
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Analyses in section N.3 and Q.3 show that the inverted pendulum modes are observ-
able from measurements éf accelerometers mounted on the unicycle frame. We decided
to use this type of sensor because it would allow the robot to ride or inclined terrain
and accelerometers of adequate sensitivity could be constructed at an affordable cost.
Simulations have shown (see later chapters) that the maximum lateral and longitudinal
accelerations are in the order of 0.1 m/s?. Appendix H describes how servo accelerom-
eters with an accuracy of about 0.0033 m/s? were constructed by careful mechanical,

optical and electronic design.

If we are prepared to do tests on horizontal surfaces only, the unicycle can pull a
light carriage with position sensors to measure the roll and pitch angles directly. We
constructed such a sensor by means of a small magnet and a Hall effect transistor to
measure the unicycle frame’s pitch angle relative to a horizontal floor surface. This
provided an inexpensive way to demonstrate experimentally that the unicycle robot
could be stabilized if the vertical orientation information was available to the control

system.
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Figure 2.1: Unicycle Robot Drawing




Chapter 3

Longitudinal System with

A ccelerometer Sensor

3.1 Introduction

A significant simplification of the control system design can be obtained if the lateral
and Jongitudinal system dynamics can be decoupled. Inspection of the system dynainic
equations presented at the end of Appendix A, shows that it is indeed possible to de-
couple the lateral and longitudinal dynamics if the nominal turntable angular rotation
speed 7 is zero and the unicycle frame has left-right symmetry about a vertical plane,
i.e. 71 = ro = 0. The first requirement implies that the turntable rotation speeds should
always be so slow that the gyroscopic effect of this rotating inertia does not significantly
couple lateral motions into the longitudinal dynamics. Previous research efforts [Iguchi]
have in fact used a fast rotating gyro on the unicycle to slow down the time constants
associated with the falling down of the unicycle. Since the purpose of this thesis is to
emulate the control method of a human riding a unicycle, where this form of gyroscopic
stabilization is absent, the requirement that 75 must be zero is compatible with the goal .

of this research.

The second requirement that the center of mass of the unicycle must be on the line

17
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of geometric symmetry has been met by the mechanical design and construction of the

robot as discussed in the previous chapter.

" The dynamic equations of motion for the decoupled longitudinal system are given in
Appendix N, equations N.3 and N.4. The pitch angle 8, the wheel perturbation speed
{1 and the wheel drive torque Qw are the variables associated with the longitudinal

system dynamics.

3.2 Longitudinal system characteristics

After substituting the measured mechanical parameters into the dynamic equations,
we can determine the longitudinal system characteristics. As shown in section N.3 the
eigenvalues of the openloop system consist of two poles at approximately plus and mi-
nus 7 rad/s in the s-plane. The unstable pole is associated with the inverted pendulum
mode of the unicycle, when it falls forward or backward. The third eigenvalue near
the origin of the s-plane corresponds to the rigid body horizontal velocity mode for the
unicycle as a2 whole. The fourth mode associated with the wheel’s angular position is
not shown because we do not intend to control the unicycle’s position. Inspection of the

modal controllability matrix shows that all modes are controllable from the wheel torque.

A tachometer is mounted on the wheel drive motor shaft. Wé assume that drive
belt elasticity and backlash are negligible so that the tachometer measures the relative
speed between the wheel and the unicycle frame. The transfer function from the motor
torque to the tachometer measurement has two zeroé at approximately plus and minus
2.8 rad/s. The physical meaning of the zero locations can be interpreted after a few

calculations:

Simplify equations N.3 and N.4 to

b+ R = J6-Qw ‘ (3.1)
Lof+ 10 = Qw (3.2)
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The viscous friction constant f,, has been ignored since it has no effect on the zero
locations.
Since the tachometer reading is
gy =~ 0 (3.3)
we can rewrite equations 3.1 and 3.2 to

(fu+I)+ Loty = JO-Qw (3.4)
(ha + In2)8 + D Qw (3.5)

il

Take the Laplace transform of the above two equations, eliminate ©(s) and solve

Yi(s)  (hu+2In+Ipp)s®—J

= 3.6
Qw(s) ~ sl - Bp)s® — Ta] (3.)
The zero locations are at
J
= £+
? \/In + 202 + Iz
- . (mprr + mrr7)g
IV + mwrly + I + mp(rw +r7)? + I + mr(rw + rr)?
(3.7)

If we close a tachometer feedback loop with proportional feedback and command a

tachometer speed y,
Qw = K(y. — 1) (3.8)

the root loci of two of the closed loop poles approach the zero locations and the other
closed loop pole moves to infinity as K becomes large. This implies that with the tight-
est feedback loop closed on the tachometer measurement, the time constant associated
with the instability of the longitudinal system can at best be lengthened to that at the
zero locations. With a tight feedback loop a command of y, = 0 implies no relative
movement between the wheel and the frame. In this locked wheel situation the unicycle
falls over more slowly (longer time constant) than the free wheel condition (shorter time

constant associated with the open loop pole positions). Notice that equation 3.7 gives
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exactly the eigenvalues associated with a uricycle pitching over with a locked wheel.

An accelerometer mounted on the unicycle frame measures the specific force at the

point where it is located. Its output is a signal given by equation N.16:
Ya(t) = 90 ~ rwl — rafl (3.9)

where ry is the wheel radius and rg3 is the height above the wheel axle where the ac-
celerometer is located. The transfer function from the wheel torque to the accelerometer
output has an equal number of poles and zeros (3) due to the direct feedthrough term
from the wheel torque to the accelerometer measurement (see equation N.16). One of
the zeros is at the origin of the s-plane and the locations of the other two zeros vary as a
function of the accelerometer height rg3. The locations of these zeros have a significant
effect on the closed loop system behaviour and we now proceed to determine these zero

locations.

The transfer functions %%T and %—?_;)- can be calculated from the longitudinal

system equations 3.1 and 3.2:

Q(s) _ (Iu + I12)82 -J (3 10)
Qw(s) 8((R1 I3 — Ify)s? — JIp]
6(s) _ —(Ia2 + I12)s (3.11)
Qw(s) s[(h1loz — Ify)s? — J Izg] ‘
Laplace transform 3.9 and substitute 3.10 ard 3.11 into it:
Ya(s) _ s{l(fiz + Ioa)rpa — (T1a + Ii2)rw)s® + rwJ — g(T12 + Ina)} (3.12)

Qw(s) ~ 8[(findae — Ifp)s® — JIno]
For the case with nonzero friction, the pole will not be exactly at s = 0 and thus
will not be canceled by the zero at the origin.

The zeros of the accelerometer transfer function are given by

s = 0

9(Ii2 + In2) — rwJ
(11 + fi2)rw — (12 + I2)rRs

and s = +j (3.13)




3.2, LONGITUDINAL SYSTEM CHARACTERISTICS 21

By substitution of the parameters from Appendix M into the equation above we see
that the pair of zeros are at infinity for the accelerometer mounted at the critical height
of
(I + Liz)rw

(2 + Ixp)
0.6675 m (3.14)

(TR3)oo

Il

If an accelerometer were placed at rrs = (TRa)wo, it would have zero initial response
to an impulse on the wheel torque. With the accelerometer at this height the di-
rect feedthrough term from the control torque Qw to the accelerometer output y, be-
comes zero. It is confirmed by equation N.16 where the coefficient of Qw, namely

TrRaG1 + rw G2, vanishes when 7r3 = (TR3)co-

For rrs < (TR3)e the accelerometer transfer function has a pair of complex zeros
and for rrs > (TR3)eo the zeros are on the positive and negative real axis. The location

of the zeros is thus very sensitive to small deviations in rgs if rpz is in the vicinity of

(T‘Ra)gg .

Another undesireable situation occurs when rga is such that the accelerometer zeros
cancel the inverted pendulum poles of the plant. These modes then become unob-
servable from the accelerometer measurement, which defeats the purpose for which the
accelerometer was used in the first place. We can solve for this critical height from

equation 3.12:

b

_ Jhorw + (Ful — Ih)g
(TRa)unobs = JI39

= 0721 m - (3.13)

The physical explanation for the existence of this point of unobservability is that, if
the unicycle was allowed to fall over in the plane of the wheel, this point would move
straight down, i.e, it would have no horizontal acceleration. If we think of the spring-
mass analogy of the accelerometer, it is clear that such an instrument mounted at this

height, with its sensitive axis pointing along the direction of the unicycle travel, will
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have a zero output. An accelerometer mounted at this point on the unicycle is analagous
to t]{Le case where an,@_ccelerometer is mounted on the bob of a simple pendulum.

A method to identif';r the longitudinal system dynamic model experimentally is de-
scribed in section N.3.2."One of the problems of identifying an unstable plant is that its
variables do not stay within small perturbation ranges for very long (in the order of one
second in this case). The small angles assumption is basic to deriving a valid linearized
model for the unicycle dynamics (Appendices A, B a,m:"l C). A partial identification of
the system transfer functions was obtained by hanging the unicycle upside down by its
wheel. The dynamic model then changes from an inverted to an ordinary pendulum
to which we can apply sinusoidal test signals and measure frequency responses. In sec-
tion N.3.2 the conclusion is drawn that the a.ctué.l plant model is acceptably close to the
theoretical model because their frequency respbnses agree to within 2 dB in gain and 10
degrees in phase over the frequency spectrum of signals present in the dynamic system

during typical manuevers.

-

3.3 Compensator design by successive loop closure

3.3.1 Nominal design

Control systems designed by successive loop closure techﬁiques can produce compen-
sators of low order. This is advantageous when the compensa.t.or is implemented in a
microprocessor, which takes a finite time to calculate the control command. The shorter
this time is, the faster sampling rate can be used-,' which usually improves the quality of
the dynamic response. Several other considerations for the sampling rate selection are

discussed in section O:1.

The longitudinal dynamics are modified to include the delay time between the in-
stant that the measurements are made and the time that the control command is issued

(see section N.3.2).
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Section Q.4 describes the design of the lowest order compensator that stabilizes
the plant. It consists of an inner loop with proportional feedback of the tachometer
measurement and an outer loop with a first order compensator on the accelerometer
feedback signal. Closing a tight tachometer feedback loop first has the advantage of
decreasing the effect of mechanical nonlinearities in the wheel drive system. The major
nonlinearity is Coulomb friction which could be removed by means of an offset torque
which depends on the sign of the wheel speed. Unfortunately the relatively inexpensive
belt and spracket drive system used in the robot’s wheel drive system also ca.ﬁses time
varying friction losses which depend on the angular positions of the gears. The most
effective way of minimizing the effects of these varying torque losses is by cIosiﬁg a tight
(high gain) tachometer feedback loop first.

An integral error feedback compensator on the tachometer feedback signal will in-
crease the low frequency gain in the inner loop and the block diagram of Figure O.6
shows how this can be incorporated in the design. For the purpose of finding the mini-

mum order compensator, however, proportional feedback only will be used.

The nominal compensator design was obtained through an iterative process and in-
spection of the root loci and step responses as the loops were closed and the compensator
ﬁarameters adjusted. The root locus of Figure Q.5 shows that it is theoretically possi-
ble to find a compensator which stabilizes the unstable modes of the unicycle by using
an accelerometer senso1:. The simulation results in Figure 3.1 show that the maximum
pitch angle from which the longitudinal control é'ystem can recover without exceeding

the maximum available motor torque ((@w)mar = 15.12 N - m} is about 5 degrees.

D Ay st Mna x gy = 18R

3.3.2 Robustness of the longitudinal controller

We have shown in section 3.2 that the zeros of the transfer function to the accelerometer
output change as a function of r g3, the height above the wheel axis where it is mounted.
The plot of the zero locations in the z-plane (Figure 3.2) shows large changes of the zero

positions for small variations in the accelerometer height, especially in the vicinity of
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TR3 = (TR3)oo. For example for rra changing from only 3.25 cm lower than (rgr3)e (i.e.
- 5%) to 3.25 cm higher than (rps)e (i.e. 4+ 5%), the zero locations have changed all
the way from z = 1 £ j0.24 through z = o0 to z =14 0.24.

Since these zeros are points to which two of the root locus branches progress, the
closed loop system pole locations are also very sensitive to the choice of rpz. Even if
TRa is known exactly, equation 3.9 shows that the accelerometer signal is a function of
rRafl, so that differences between the real plant and the theoretical model which cause
the actual pitch acceleration (§) to differ more than +5% from the theoretical pitch

acceleration, will cause the same dramatic shift in the accelerometer zero locations.

Figure 3.3 illustrates what happens to the root loci if the accelerometer is mounted
too low on the frame. In this case where rgy = 0.5 m the root loci from the unstable
region of the z-plane converge toward the two complex zeros outside the unit circle in-
- stead of toward the zero at z = 1 and the compensation zero as in the nominal design
shown in Figure O0.5. The accelerometer height, 7gs, should therefore not be too low
because it creates a ’barrier’ of zeros which makes it difficult for the root loci from the

unstable region of the z-plane to slip through into the unit circle.

If the accelerometer is placed at the nominal design position, rgz =
0.653 m the system can be stabilized. Inspection of the root locus of Figure 0.5 shows
that although we may stabilize the system, we will not necessarily obtain satisfactory
system performance. The damping on the low frequency branches of the root loci be-
comes better than { = 0.7 at fairly high loop gains(K, > 20), at which point the
damping on the high frequency branches of the rootloci is rapidly decreasing to unac-

ceptably low values.

Placing the accelerometer near (rp3s)ee = 0.6675 m would not be sensible because of
the great sensitivity of the accelerometer zero and closed loop pole pbsitions described

earlier. Equation 3.13 shows that for ras > (rra)e the accelerometer zeros are on the
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real axis. The unstable pole will therefore always be destabilized as it is attracted to

the zero on the positive real axis for increasing loop gain.

A schematic diagram which summarizes the findings of the longitudinal successive
loop closure compensator studies is shown in Figure 3.4. Figure 3.5 shows a plot of -
how the closed loop pole positions change as the accelerometer height deviates from the

nominal value of 0.653 m. It shows that the requirement for stability is
0.54 < TR3 < 0.6707 m

If the system is expected to be well damped (closed loop poles within the £ = 0.5 curve

in the z-plane) the range of acceptable rr3 values is actually still more restricted.

3.3.3 Experimental Results

The successive loop closure compensator of section 0.4 was coded in the FORTH com-
puter language and implemented in the on board microprocessor of the unicycle. The
computer code is given in section P.1. After executing an algorithm for § seconds to
bring the unicycle up to a nominal speed of Qg = 3.0 rad/sec while hand holding the
robot vertical, the accelerometer feedback loop was closed. Figure 3.6 shows tj:te two
measurements during a typical experimental run. The system went unstable when the
accelerometer feedback loop was closed and the unicycle released at t = 5 seconds. At-
tempts to adjust the compensator parameters and accelerometer height experimentally
to obtain stability were unsuccessful. .,

Figure 3.7 shows a plot of the accelerometer signal measured during the period be-
tween 2.5 and 5.0 seconds of the previous experiment. Noise in the signal can be as high
as 0.25 m/s? peak to peak from one sample to the next. This noise is caused by high
frequency vibrations of the frame due to uneveness in the wheel drive system and the

ground surface,

Figure 3.8 shows the theoretical time response of the accelerometer measurement if
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the unicycle is initially pitched forward at an angle of 5 degrees. The maximum mag-
nitude of the accelerometer signal is just 0.15 m/s?. Plots of the components of the
accelerometer signal, as expressed in equation 3.9 are also shown. It shows that while
some of the components may be reasonably large, they add up in such a way that the
measured output of the accelerometer sensor is always small. This causes the pitch
attitude information that is essential for the control system to maintain balance to be

lost in the noise present in the practical situation.

It seems logical to attempt to low pass filter the accelerometer signal before it is
read into the microprocessor. Suppose we add a first order filter on the accelerometer
output. This places an additional pole on the positive real z-axis in upper righthand
diagram of Figure 3.4. The root locus of the closed loop system now has a branch which
moves to —oo on the real axis. Without repeating the whole design process here, it can
be stated that the sensitivity problems discussed in the previous section are aggravated
by addition of low pass filtering. Physically it means that the phase lag:of a low pass -
ﬁltef causes the attitude information required by the control system, to arrive later in
time. In an unstable system it is obviously advantageous to have attitude information

available to the controller as soon as possible.

We conclude that, even though accelerometers can in theory be used as attitude sen-
sors, practical applications are unlikely to succeed. The accelerometers measure both
the pitch attitude and the frame acceleration at the position where they are mounted.

The transfer function to the accelerometer output contains zeros whose locations are
not only highly sensitive to parameter variations, but also make it difficult to design

low order compensators which will stabilize the unstable eigenvalues of the plant.

Furthermore, the component of the accelerometer signal which contains the attitude
information is small (maximum £ 0.15m/s% = 1.5% of the earth’s gravity acceleration).
It is therefore required that the accelerometers have high sensitivity, but the sensors then

become susceptible to vibrations of the robot frame as it moves along uneven terrain.
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3.4 Longitudinal system LQG design

3.4.1 Motivation for using an LQG compensator

Compensators consisting of an optimal regulator and estimator have several attractive
properties which we hoped would address some of the problems encountered with stabi-
lizing the longitudinal system. First of all, the design process is highly automated and it
usually results in a closed loop system with a good transient response. For the successive
loop closure compensator design described in the previous section, an iterative process
was required to obtain a closed loop sirstem in which all the modes were reasonably
well damped ({ < 0.5). Even with this simple longitudinal plant model, the choice of
which loops to close first, the positions of compensator poles, zeros and loop gains is
a bit of an art. Compensators designed by mirimizing linear quadratic cost functions
will make coordinated use of the measurements and can design state feedback gains for
closed loop systems that meet reasonable performance requirements. The designer can
specify the closed loop performance in terms of a cost function which weights the relative

importance of keeping state errors small and using reasonable amounts of control energy.

The state estimator design can be optimized if the statistical nature of the process
and measurement noise is known. Even if these characteristics are known only by ap-
proximation, the compensators designed by linear quadratic gaussian (LQG) techniques
provide good noise filtering as well as phase recovery. This is an important improvement
over the successive loop closure design where we would like to filter the nojsy accelerom-

eter signal, but have difficulty in compensating for the phase loss associated with it.

Another advantage is that it is easy to solve the problem of long calculation delays
in the microprocessor by designing a prediction estimator. It calculates the control
command at the end of the current sampling period, based on the measurements at the
beginning of the sample period, allowing a full sample period for the microprocessor to

perform the calculations.
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3.4.2 LQG design method

An optimal continuous time regulator was designed first, as described in section N.4.
We have included integral error feedback of the wheel speed so that we will be able
to accurately control the unicycle speed by means of an external command. The cost
function that was minimized to obtain the optimal state feedback gains, contained a
single factor for the relative weight between the integral error on the wheel speed and
the amount of control energy used. This weighting factor was varied to obtain a ratio
which provided good damping on the regﬁlator eigenvalues (Figure N.6) and a step re-

sponse which reached the commanded speed in approximately 5 seconds (Figure N.7).

Since we did not have an apriori knowledge of the process and measurement noise
characteristics, we assumed values for the accelerometer and tachometer measurement
noise spectral densities, based on a visual inspection of the relative amount of noise
present in these two signals during experiments. The process noise spectral density was
then varied until the eigenvalues of the estimator were in the same s-plane region as the
regulator eigenvalues. The optimal continuous time estimator gains that were obtained
are shown in section N.6 and the theoretical step response of the closed loop system

with noise inputs, is shown in Figure N.11.

Using the same sampling period as for the successive loop closure compensator, a dis-
crete equivalent of the continuous time LQG compensator was designed in section 0.2,
The algorithm by Van Loan [Van Loan] was used to calculate the weighting matrices in
the discrete time performance index, which will produce the same performance as the

original continuous time system.

The discrete time estimator design was performed by first converting the process
noise spectral density to an equivalent process noise covariance matrix for the dis-
crete case, by the duality of the regulator performance index conversion (Appendix

D of [Bryson 1]). It is shown in the same reference that a measurement noise spectral
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density (R) can be converted to a measurement noise covariance matrix (V) by the
relationship
" R=2VT,

as long as the measurement noise correlation time 7}, is short compared to the shortest
time constant of the plant. The shortest time constant for the longitudinal system is
about 0.125 sec { from eigenvalue at s 2 8 1/s) so that a noise correlation time of T, =

0.01 sec was assumed.

The discrete LQG compensator was designed and the closed loop system simulated.
Figure 0.3 shows the theoretical time responses of the control torque, wheel speed and

pitch angle during a balance recovery manuever,

3.4.3 Experimental results and conclusions

The LQG control system designed in section O.2 was coded in FORTH after performing
a transformation of the compensator matrices to modal form as described in section O.3.
Implementing the compensator in modal form reduces the computational load on the

on-board microprocessor. The FORTH code is shown in section P.2.

The closed loop system was unstable when tested experimentally. Experimental
adjustment of LQG compensator gains in order to stabilize the system is unlikely to

succeed because it has four regulator and six estimator gains which can be adjusted.

Studies have shown that LQG controllers have serious defects concerning closed-loop
robustness with respect to plant deviations [Doyle 1]. Many techniques are currently
suggested to improve system robustness [Doyle 2] and could be applied to the unicycle
stabilization problem. However, as we have shown before, the current problems with
stabilizing the unicycle reside more with the physical problems present when using an

accelerometer, than with the control system design method.
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Investigations into control methods which can circumvent the problems associated
with accelerometer sensors, would be instructional. The approach of this thesis is,
however, to first find sensors which will provide the system information that will result

in simple, robust compensators.
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Chapter 4

Longitudinal System with

Vertical Sensor

4.1 Introduction

We have shown in the previous cﬂapter that an accelerometer measures not only the
pitch attitude, but alsc accelerations proportional to the frame pitch acceleration and
wheel angular acceleration. These additional terms create zeros in the transfer function
to the accelerometer output, which makes the control system difficult to design and very
sensitive to plant parameter changes. In this chapter we will show that a sensor which

measures the pitch attitude only, will not have these undesireable zeros.

4.2 Control system design with pitch sensor

The compensator designed by successive loop closure is shown in section 0.5. The
tachometer feedback loop was closed first with a first order integral error compensator.
This provides a high low-frequency loop gain to decrease the nonlinear effects of the

drive system. The root locus of this inner loop is shown in Figure 0.9.

The transfer function to the pitch sensor output has a zero at 2 = 1 and another

at z = —1.78, as shown in the listing of section 0.5.1. The outer loop compensation is

39
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much easier to design due to the absence of the pair of complex zeros just outside the

unit circle, associated with the accelerometer transfer function.

In the accelerometer case, the root locus (Figure 0.5) from the unstable region of
the z-plane had to pass through the ’barrier’ of three zeros to enter the unit circle. In
the present case only one zero at z = 1 is present with a pitch sensor. With a simple
first order compensator consisting of a pole at z = 1.03 and a zero at # = 0.95 the
longitudinal system can be stabilized. The root locus of Figure Q.11 shows that the

loop gain was adjusted until the dominant closed loop poles were well damped.

The second problem which existed with the accelerometer sensor transfer function,
was that the pair of complex zeros just outside the unit circle strongly attracted the
high frequency branch of the root locus. It made it difficult to obtain well damped low
frequency closed loop poles before the high fequency poles became too lightly damped
(Figure 0.5). It was also possible that the branches from the unstable openloop poles
went directly to these complex zeros outside the unit circle instead of into the stable
region of the z-plane (Figure 3.3). In the case of the pitch sensor, the transfer function
zeros (apart from the one at z = 1) are at z = —1.78 and z = —o0. They therefore have
much less influence on the behaviour of the low frequency root loci. The high frequency
closed loop poles remain well damped (Figure 0.10) and become unstable only at high
loop gains of |Kp| > 150. -

Figure 0.12 shows a simulation of the time response of the closed loop sysfem to
a 1 rad/sec step command. It is well damped and settles to the commanded speed in

approximately 5 seconds.

4.3 Experimental tests of the control system

A vertical gyro would be able to measure the frame pitch angle with respect to earth’s

gravity vector irrespective of the inclination of the terrain over which the unicycle robot
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travels. A vertical gyro [Kayton] consists of a two degree-of-freedom gyro whose spin
axis is nominally vertical, with two nominally horizontal specific force sensors mounted
on the jnner gimbal. Signals from these specific force sensors are filtered with a fairly
long time constant ( in the order of minutes) and used to torque the gyro gimbals to
correct for gyro drift effects. This technique of complimentary filtering combines a gyro
sensor with good short time résponse with the time average of the specific force sensor

to obtain a good measure of the vertical

Inertial sensors of this type with good accuracy (say 5% of the maximum expected
unicycle pitch angle of 2 degrees) are quite expensive. If, however, we perform the ex-
periments on a reasonably horizontal floor, we can construct a simple device as shown
in Figure 4.1 to prove in principle that a compensator using a vertical reference input,
can stabilize the unicycle robot. It measures the frame angle relative to the floor surface
by means of a Hall-effect transducer and a small magnet. This sensor is linear for small
pitch angles between X 5 degrees. Details on the electronic interface and calibration of

these tranducers are shown in Figures H.15 and H.16 in Appendix H.

The control algorithm was coded in FORTH for the on board microprocessor (sec-

tion P.3). It uses a sampling period of 25 ms ( faample = 40 Hz) as before.

The closed loop system pérformed excellently during experimental tests. Figure 4.2
shows a plot of the actual pitch angle and wheel speed measurements during a stabi-
lization test at zero commanded wheel speed. Although only twenty seconds of data
are shown, the robot can balance until the batteries are run down. The maximum pitch
angle is about 0.5 degree and the robot slowly oscillates at a period of approximately
3 seconds while the wheel traverses a distance of 5 cm to keep the wheel axle below

the unicycle’s center of mass.

The closed loop system has a dominant pole pair at z = 0.983 +70.0249 (see
PITCHLOOPP in section 0.5.1) which corresponds to s-plane pales at s = 1.2¢%7215 for
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the 25 ms sample period. The dominant pole pair therefore has an undamped natural
frequency of w,, = 1.2 rad/sec and a damping ratio of £ = 0.54, for which the closed
loop bandwidth is approximately 1.5w, = 1.8 rad/sec = 0.29 hz. We notice that the
frequency of the oscillations in Figure 4.2 are approximately 0.3 hz which corresponds

to the closed loop system’s bandwidth.

The controlled system has good disturbance rejection. An impulse applied to the
system by means of a fist blow at the turntable height, merely causes the robot to move
, forward a few centimeters, after which it re-establishes balancing on the spot. The stiff-
ness of the system is illustrated by the fact that a person grabbing hold of the top of
the robot and shaking it longitudinally, cannot destabilize the control system as long as
the maximum control torgue on the motor and the linear range of the pitch sensor (£

5 degrees) ate not exceeded.

The performance of the closed loop system when the unicycle robot moves along
at a constant commanded wheel speed of 3 rad/sec (0.585 m/s), is illustrated by the
measurements shown in Figure 4.3. In this test the robot still stabilized well, although
the maximum pitch angle reached approximately 1 degree from vertical occasionally.
This greater error can be attributed to the fact that the linoleum tiled floor surface in

the hallway where the tests were performed, had a noticeable degree of uneveness.

4.4 Conclusion

These experimental results illustrate that the model for the unicycle longitudinal dy-
namics is accurate and that, given accurate pitch information, a digital control system

can perform the balancing function with good stiffness and robustness characteristics.
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Chapter 5
Lateral Control System

5.1 Imtroduction

In this chapter the lateral system transfer functions for different sensors at different
wheel speeds, will be evaluated. A continuous time LQG compensator is designed and

the dependence of the compensator gains on the wheel speed is discussed.

5.2 Lateral System Characteristics

The dynamic equations of motion of the decoupled lateral system are given in Ap-
pendix Q, equation Q.6. The yaw angle ¢, the roll angle ¢, the turntable speed 5
relative to the frame and the turntable torque @7, are the variables associated with the

lateral system dynamics.

After substitution of the mechanical parameters from appendix M into the dynamic
equations, we can evaluate the plant eigenvalues. As shown in the listing of section Q.3.1,
the openloop system consists of two eigenvalues at approximately plus and minus 3.29
rad/sec in the s-plane. The unstable eigenvalue is associated with the lateral inverted
pendulum. mode of the unicycle robot. Two other modes near s = 0 are shown in the
print-out. One is associated with the yaw rate of the unicycle and the other with the

turntable angular speed relative to the frame. The modes at s = 0 associated with the

46
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frame yaw angle and turntable angular position are not shown, since we do not presently

intend to control these variables.

At nonzero wheel speeds, the gyroscopic effect of the wheel changes the eigenvalues
of the inverted pendulum modes. Figure 5.1 shows that, as the wheel speed increases,
the time constants of these modes become longer. The particular wheel drive motor used
in the robot can reach a maximum rotor speed of 7000 revolutions per minute. With |
the 24:1 reduction gear system, this entails a maximum wheel speed of approximately
30 rad/sec. Figure 5.1 shows that at this speed the inverted pendulum modes have
changed from real eigenvalues to a pair of stable complex eigenvalues in the s-plane. It
is evident that the lateral control system will have to adjust its compensator gains as

the wheel speed changes.

The system characteristics listed in section Q.3.1 are for a nominal wheel speed of
Qp = 3 rad/sec. The controllability vector CTR shows that all modes are controllable

from the turntable torque.

The output distribution matzix is shown for three possible sensors:

o a tachometer measuring the turntable speed relative to the frame

¢ an accelerometer mounted on the frame with its sensitive axis in the lateral direc-

tion

e a roll angle sensor, which could consist of a vertical gyro or a device for measuring
the frame angle relative to a horizontal surface, as described for the longitudinal

system in the previous chapter.

+ The transfer function from the turntable torque to the tachometer output shows
that three of the four eigenvalues are nearly cancelled by zeros and that conse-
quently only the residue of the mode at s = 0.238 rad/sec is not small. This makes

physical sense since we cannot expect to see much of the inverted pendulum and
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unicycle yaw modes in the measurement of the turntable speed relative to the

frame.

The transfer function to the accelerometer measurement has three zeros: one at
8 = 0 and two at 4 1.0284 rad/sec on the imaginary axis of the s-plane. The
position of the two zeros which are not at the origin, is a function of the. height
rs3 of the accelerometer above the wheel axle, but not a function of the wheel

speed, as we will show later.

- If an accelerometer is used as a balance sensor the control system designer is con-

fronted with the same problems encountered in the longitudinal control system
design. First of all, the three zeros on the imaginary axis cause a ’barrier’ of zeros
which makes it difficult to design a compensator which will bring the root loci

from the unstable poles in the right half of the s-plane to the left half plane.

We will now proceed to calculate the accelerometer zero positions analytically and
show that their locations are very sensitive to changes in rs3 and plant parameter

changes:

The lateral plant dynamics from equation Q.6 are:

Lo+ hay = Jud— fe—Qr (5.1)
Iné = Jud+ Jus (5.2)
Inp+Inh = Qr (5.3)

where the coefficients of the state variables are defined in equations Q.7 through Q.14.

The viscous friction constant fr has been ignored in the equations above since it

has no effect on the zero locations.
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Taking the Laplace transform of the equations above and eliminating 7, we obtain

the transfer functions to the roll angle and yaw rate:

@(8) _ —JzzB
Qr(s) = (I18® — Jaa)(4s + fg) — JaaJulsss
sU(s) _ ~B(Ins? — Jag)

Qr(s) = (Ins? — Jaa)(As + fg) — JazJ11]aas

where
A = Izl — izl

B = Ip+hs

From equation Q.18 the accelerometer measurement is
Ya(t) = —(rw + r53)6 + rw ot + g¢
Taking the Laplace transform, 5.7 becomes:
Ya(8)=[9— (rw + r,ga)sz]@(s') + rwfles¥(s)

Substitute equations 5.4 and 5.5 into 5.8 to obtain the transfer function:

" Ya(9) _ JuB[(ru + rs3)s? — g] — rwQoB(Ins? — J24)
Qr(s) (182 — J24)(As + fo) — JaaJ11 1338

if we define
Jaa = IY + mwrly + mprw(rw + 7F) + mrrw(rw + r7)
we notice from equai;ion Q.13 that
Jag = I

and the accelerometer transfer function can be rewritten as

Ya(s) _ BQo{Jnal(rw +753)s” — g] — rw (I s® — J24)}
Qz(s) (F218% — J24)(As + fg) — Ja2J111338

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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Two of the accelerometer transfer function zeros are at

/ 9J22 — rwas
s=+% 5.13
(J22 — In)rw + JaaTsa (5.13)

The third accelerometer zero at s = 0 does not appear in equation 5.12 because

it is cancelled by the pole at s = 0 due to the zero turntable friction assumption.
Equation 5.13 shows that the locations of the accelerometer zeros are independent

of the wheel speed Q.

By substitution of the parameters from appendix M into equation 5.13 we see that
the pair of zeros are at infinity for the accelerometer mounted at the critical height

of

(Iny — Ja2)rw
Jaz '
= 0695 m | (5.14)

("'53)00

For r53 < (rs3)e0 the accelerometer transfer function has a pair of complex ze--
ros on the imaginary axis. An impulse torque on the turntable motor will cause
the frame acceleration to increase initially and then recede back to zero. For
rsa > (rs3)ee the accelerometer zeros are on the positive and negative real axis.
The frame acceleration at this height will therefore have a nonminimum phase
behaviour to an impulsive turntable torque. The physical meaning of the zeros at
+joo when rgz = (T§3)co is therefore that the frame will have no initial accelera-
tion at this height, for an impulsive control torque. The point on the frame acts
as a virtual pivot point during motions, with points above and below (rs53)c0 0D

the frame accelerating in opposite directions.

Theoretically the best place to locate the accelerometer would be at (rs3)eo. From
the print-out in section Q.3.1 we notice that, for a nominal wheel speed of Qp = 3
rad/sec, the lateral plant eigenvalues are at approximately 3.29 rad/sec. We can

use equation 5.13 to solve for the height (r53)unoss When the accelerometer zeros
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coincide with the plant poles at 3.29 rad/sec, at which point the inverted pendulum

moaodes would become unobservable through the accelerometer measurement.

(TSS)unobs =0.699 m

The point of unobservability is just 4 mm removed from the ’ideal’ accelerometer
height, which shows that the closed loop design will be very sensitive to i)la,nt pa-
rameter changes if an accelerometer is used as a balance sensor. Futhermore, the
point of unobservability will also change as a function of the wheel speed because

the inverted pendulum time constants change as shown in Figure 3.1.

It is concluded that it would not be advisable to use an accelerometer as the
lateral balance sensor. A roll angle sensor has only one zero at s = 0 in its transfer
function from the control torque. The unobservability matrix shows that the two
inverted pendulum modes are observable from a roll angle sensor (see the third
row of the OBS matrix in the print-out of section Q.3.1). A lateral compensator

using a roll angle sensor will be used to design a balance control system.

5.3 Lateral system LQG design

A: linear quadratic gaussian (LQG) compensator is designed by minimizing the
expected value of a quadratic cost function whigh weighs the relative importance
of keeping state errors small and using reasonable amounts of control torque. We
will use the same performance index in designing optimal compensators for the

range of wheel speeds at which the unicycle robot is likely to travel,

An optima] continuous time regulator was designed as described in section Q.4.
We included integral error feedback of yaw rate so that the unicycle robot may
be steered by an external command. The cost function that was minimized to

obtain the optimal feedback gains weighed the integral of yaw rate error against
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the amount of control torque used. The ratio of these two weighting factors was
varied to obtain a closed loop response which would let the yaw rate reach the

commanded value in approximately 5 seconds (Figure Q.2).

A full order state estimator was designed by assuming the same noise spectral
densities as for the longitudinal system design. Section Q.4 shows the optimal

regulator and estimator gains as well as the regulator and estimator poles.

The design above was for a nbmina.l wheel speed of g = 3 radfsec. All the
closed loop poles are well damped (£ > 0.7) and the real parts of the estimator
eigenvalues are comparable to those of the regulator eigenvalues. If we use the
compensator gains for the nominal wheel speed of-3 rad/sec, but vary the wheel
speed, the closed loop eigenvalues of the system change as shown in Figure 5.2.
Since the lateral plant eigenvalues change as a function of wheel speed, the closed

loop system will remain stable for

2.7 < 19 < 3.6 rad/sec

The range for acceptable closed loop response is probably even smaller ( in the
order of Q% 5%) so that gain scheduling will be required for the lateral control
system. If we use the same cost function, but the different lateral plant models
for the range of possible wheel speeds, the optimal regulator feedback gains as a
function of the wheel speed, can be calculated. The regulator gain on the integral
error of the yaw rate (e) and the feedback gain on the turntable speed (%) remain
constant for all wheel speed values. Figure 5.3 shows how the other regulator gains
should be varied to minimize the cost function at different wheel speeds. The yaw
rate feedback gain remains relatively constant, but the feedback gains on the roll

angle and rate changes significantly, especially at lower wheel speeds.

It is evident that if some form of a compensator gain scheduling technique is used,

the regulator gains will have to be changed rapidly with wheel speed at low wheel
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speeds. At zero wheel speed, the roll gains become infinitely large, since it is ob-
viously impossible to stabilize the unicycle robot by twisting the frame about the
vertical axis. However, a scheme where the wheel is turned towards the direction
that the robot is falling and then using the longitudinal control system to erect

the unicycle, can work at low wheel speeds.

Plots of the estimator gains on the tachometer and roll angle measurements are
shown in Figures 5.4 and 5.5 respectively. It is evident that gain scheduling on the
estimator gains will also be required as the wheel speed changes. It is interesting
to note that none of the estimator gains become excessively large at any speed as
the regulator gains did. Also notice that at zero wheel speed, measurement of the
turntable tachometer speed % is used to improve the estimate of the yaw rate and
turntable speed only (Llat(1,1) = Llat(1,4) = 0 ) while the measurement of the
roll angle sensor is used to improve the roll angle and roll rate estimate (Llat(2,2)

= L1at(2,3) = 0).

From the investigations in this chapter it is concluded that the lateral system
can be stabilized at nonzero wheel speeds by twisting the turntable. Appropriate
sensors would be a tachometer to measure the turntable speed and a roll angle
sensor. If the unicycle is to operate 6ver a wide range of forward speeds, some

form of scheduling of the éompensator gains with wheel speed will be required.
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Figure 5.1: Dependence of the Lateral Plant Eigenvalues on the Wheel Speed, {2o
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LQG compensator designed for 3 rad/sec
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Chapter 6

Summary of Contributions

and Recommendations

In this chapter we summarize the main contributions of this research and propose

recommendations for future research into active stabilization of unstable vehicles.

6.1 Contributions

— Research topic

The automatic stabilization of a unicycle was made possible by means of
a unique combination of state of the art computer hardware and modern
control systems analysis and design tools. Since this research commenced,
several sources mentioned that the idea of a computer stabilized unicycle
has appeared elsewhere. Only one reference of a practical application could
be found in the literature [Iguchi], but the control method there does not
bear any relationship to the way a human controls a unicycle. Using new,
compact, and powerful microprocessors, the research in this thesis resulted
in a one wheeled robot with all its computational and electrical power on

board, to emulate the longitudinal stabilization used by a human riding a
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unicycle. The result is a robot with interesting unstable open loop dynamics,

which can serve as a test bed for modern control system techniques.

— Emulation of a human riding a unicycle

The actuation methods anrd sensor information used by a human riding a uni-
cycle were evaluated in Chapter 2. Observations of a human’s control actions
and calculations of a person’s mass and inertia properties were combined to
propose a mechanical robot configuration which could emulate the impor-
tant features. We constructed such a one wheeled robot with an on-board
power supply, actuators, sensors and microprocessors to perform the active

stabilization task.

— Dynamic model for a uﬁicycle robot

The linearized dynamic equations of motion that describe the lateral and
longitudinal model of a one wheeled robot were derived. It was shown that
the lateral and longitudinal dynamics decouple under certain reasonable con- -
ditions and that the lateral dynamics vary with the unicycle speed due to
the gyroscopic effect of the rotating wheel. Physical explanations for the dy-
namic system modes and the zeros of transfer functions from the actuators

to the various sensors, were presented.

— Evaluation of balance sensors

We tried first to use accelerometers on the unicycle robot to determine the
deviation of the frame from vertical. This choice was motivated by the desire
to emulate the balance sensing capability of the human ear, and on consid-
erations of cost. Furthermore, theoretical analysis showed that we should
be a,bl'e to determine the vertical directly by placing the accelerometer at a

particular vertical location.

However, in practice, we were unable to stabilize the longitudinal motions
of the unicycle using an accelerometer. We believe the reason for this is as

follows. The longitudinal accelerometer signal in response to an impulse in
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wheel torque has three components:

1., The forward acceleration of the center of the wheel.

2. The backward acceleration of the point on the frame where the ac-

celerometer is mounted.

3. g#, where g = gravitational force per unit mass, and & is the deviation

of the frame from vertical.

The first two signals are large and of opposite sign. The third signal, the
one of interest to us, never becomes very large for a successful stabilization
scheme (the maximum value of # observed using the trailer sensor was about
.5 degrees). Thus we were looking for a very small signal in the presense of
the difference of two other large signals. A little additive random noise in
the accelerometer signal obscures the difference between the two large signals

and makes estimation of the small signal g8 almost impossible.

Theoretically, there is a point on the frame where the first two signals exactly
cancel each other. However a change in vertical location of only a millimeter
or two causes the difference in these two signals to be larger than g# with
f# = 0.5 degrees, i.e. the total signal is very sensitive to the location to the
10ca.tion of the transfer function zeros (from wheel torque to accelerometer

signal) to vertical location of the accelerometer.

Optical or inertial sensors which could be mounted on the unicycle to pro-
vide vertical information of the required accuracy were too expensive for the
financial resources available for this research. Instead we built a simple me-
chanical device which measured the robot frame’s angle with respect to the
ground. This allowed experimental testing of balance control algorithms on

smooth horizontal floor surfaces.

— Longitudinal control system design and tests
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Candidate longitudinal control sytems were designed using an accelerometer
as the balance sensor. Since these sensors do not measure the attitude alone,
(see section above), the pitch attitude information required by the control
system, depends heavily on the accuracy of the plant dynamic model. We
have shown that the transfer function to the accelerometer output has zeros
which make it difficult to design a robust control system. These zeros can be
relocated to more convenient positions in the s-plane by changing the location
of the accelerometer on the robot frame, but the resulting zero positions are
extremely sensitive to small changes in the sensor location. The maximum
acceleration of the unicycle frame is on the order of only 3% of gravity ac-
celeration during typical manuevers. The accelerometers were designed with
adequate resolution to measure signals in this range, but during experimen-
tal tests it was found that frame vibration noise due to the roughness of the
terrain over which the robot traveled was of the same order of magnitude as

the desired signal.

For these reasons above, none of the candidate control systems described in
Chapter 3 could stabilize the unicycle robot by means of a single accelerom-
eter as the main balance sensor. An important contribution of this research,
however, is the investigation of the theoretical and experimental reasons why

accelerometers have limited capabilities as attitude sensors.

Chapter 4 shows that if a vertical sensor is available, a robust longitudinal
control system can be designed. The control system is based on a direct
measurement of the kinematic variable which indicates the attitude, instead
of relying on an indirect measurement and the accuracy of the plant model.
By performing experiments on a horizontal surface and measuring the robot
frame angle with respect to the ground, we experimentally demonstrated
the performance of a robust control system with good stiffness to stabilize a

unicycle longitudinally.
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— Lateral control system design
Chapter 5 points out that if an accelerometer is used as the lateral attitude
sensor, similar problems exist in designing a robust control system as in the
longitudinal case. An LQG controller using a measurement of the turntable
angular velocity and the frame roll angle, was proposed. We showed that this
controller would provide acceptable performance for wheel speeds in the range
of approximately +5 % of the nominal design speed and that compensator
gain scheduling should be used if the unicycle is to be operated over a wide
speed range. The design was not tested experimentally, but we expect it to
perform satisfactorily if good roll attitude information is available and an

effective gain scheduling scheme is implemented.

6.2 Recommendations for future research

— Test lateral control system
A roll angle sensor using a trailer wheel which extends sideways from the
frame should be constructed. It can be used to test a lateral stabilization
algorithm using linear control at a constant wheel speed and on a horizontal
floor. A gain scheduling algorithm can be developed to control the robot
over a range of wheel speeds for which the lateral plant dynamics change
significantly. '

— Inertial vertical sensor or additional sensors
A vertical gyro should be mounted on the unicycle robot, so that frame roll
and pitch angles relative to vertical can be measured. This would permit the

vehicle to travel on surfaces which are inclined and rough.

It is possible that another non ground contact sensor in addition to the single
accelerometer, might relieve the sensitivity of the closed loop system design.
If we have a measurement of the pitch rate or pitch acceleration, we can per-

form a single or double integration on these measurements respectively, to
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obtain the pitch angle. The measurement of the original accelerometer signal

can then be filtered with a long time constant to correct for drift errors.

This so called complimentary filtering technique is essentially the same as that
used in a vertical gyro. A rate gyro which measures the pitch rate, combined
with the current accelerometer, will probably be a cheaper solution to the

sensor problem than using a vertical gyro.

— Stabilize near zero speed

- The lateral motions are uncontrollable at zero speed by twisting the wheel
through small angles. Preliminary simulations have shown that the unicy-
cle can be stabilized near zero speed if it is commanded to perform small
forward-backward oscillations about a fixed point. This conjecture should be
investigated because it can produce interesting results on controlling a dy-
namic system which oscillates between a controllable and an uncontrollable
state. An alternative way of controlling the unicycie at low speeds, would be
by turning the wheel into the roll direction and then using the longitudinal

control system to erect the unicycle.

— Nonlinear lateral control system

“The twisting motions performed by a unicycle rider’s body at very low speeds
are large amplitude ( + 30 degrees), which leads us to expect that a nonlinear

on-off type controller on the turntable torque might provide stabilization.

6.3 Conclusion

The investigation into computer stabilization of a unicycle robot has yielded valu-

able insights into the dynamics, control and sensing aspects involved in the process.

A major part of our time resources had to be devoted to selecting the equipment,
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performing the mechanical and electrical designs and constructing the robot. How-

‘ever, during this research a few interesting and satisfying control systems aspects

could be tested experimentally with the vehicle. As the partial list of recommen-
dations indicate, future researchers are in a good position to concentrate their

efforts on investigating and testing several more interesting control aspects.

This research casts one of the human’s fascinating control capabilities into the
terms of the control system engineer’s language. The process illustrates both the

inadequacies and the power of modern control theory.

The shortcomings are evident when we recognize the multitude of sensory inputs
that a person uses as well as the effortless application of nonlinear and multiple
control actions. Adaptive control and model reference control is part of a person’s
everyday living. All of these topics are intensive research areas in modern contral

theory.

The strength of modern control is illustrated by this research which shows that we
have the mathematical, theoretical and computational power in hand to start em-
ulating some of the human’s more advanced control abilities in a machine. It also
illustrates the importance of obtaining sufficient physical insight into the process
and identifying the principal configurational, sensory and control aspects, before

we can effectively apply control system theory in practice.

This research is an illustration of how control system techniques can be applied to
assist normal persons in tasks which require unusual skills or to help disabled per-
sons perform normal tasks. Apart from these, the research has a wider application

in providing artificial stability for inherently unstable physical systems.



Appendix A

EOMs by Newton-Euler

Mechanics

A.1 Definition of variables

In this appendix we will derive the dynamic equations of motion (a.bbrevia.téd
EOMs) [for the unicycle robot] by using Newton-Euler mechanics. A schematic
diagram of the unicycie model is shown in Figure A.l and the coordinate frames
for the various parts are given in Figures A.2 and A.8. The symbals uséd in the

thesis are given in the table at the beginning of this document.

66




A.2. TRANSLATIONAL EQUATIONS OF MOTION OF WHEEL 67
A.2 Translational equations of motion of wheel

A.2.1 Linear acceleration of point O

Refering to Figure A.2 the absolute angular velocity of the wheel is
& = by + iy + Qiby
= P(sgiig + cpds) + i + iy
Linearization assumptions made throughout the analysis are:

1. Angles and perturbation angular rates are small compared to 1 radian and

Qg respectfully.

2. singdp ¢ and cosgp =1
3. Products of small angles and angular rates are negligible.
4. D=0+9
where:
{20 = constant component of wheel angular velocity; it can be large.

? = small perturbation of wheel angular velocity.
with these assumptions, & can be approximated by:
& 2 iy + (o + Q)ibg + b : (A1)

Assuming no slip at the ground contact point, P, the velocity of the center of mass

of the wheel, O, is :

¥ = @'Xrwibs
= 1w (R + Q)@ — i, (A.2)
acceleration of O is :
do = (D)e+Bx7T (A.3)

where = absolute angular velocity of % — frame

w
-
wr

= obbs + ¢y 2 diby + ghibs (A.4)
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Wy g 3
WXT = ¢ 0 ¢
rw (o + ) ~rwé 0
= rwQoiy
dg = ‘rwﬂth + rw (Qu‘l/) - ¢) g (A5)

A.2.2 Forces acting on W

Refer to Figure A.4 for the wheel freebody diagram:

1. Reaction forces at O :

RY by + Ry by + RY g (A.6)
2. Reaction forces at P :
RY @, + RY i + RE w3 (A7)
3. Gravity :
— mwgbs = —mw g, — mw gz (A.8)

A.2.3 Translational equations of motion of wheel

By application of Newton’s laws of motion, the three components of the forces
acting on the wheel are equated to the wheel mass multiplied by the appropriate

acceleration component:

RE+ RV 40 = murw@ (A.9)
R +RY ~mugd = murw(Qop — ) (A.10)
Ry +RY —myg = 0 (A.11)
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A.3 Rotational equations of motion of wheel:

A.3.1 Applied moments about O

Refering to Figure A.4:

1. The applied moments at the center of mass are:
QY in + [Q@w — fw(Q— )iz + (QF - fo)ds  (A12)

where:

Qw : wheel drive torque
fw : viscous wheel axle friction

fe : assumed viscous friction at ground

2. Moments due to reaction forces at ground contact P:

M = PP xFEF

= —ryis x (BRf B + Rf @, + RE ©3)

+rwRE @, — rw RE @, (A.13)

A.3.2 Absolute angular velocity of the @-frame

AW = in + Pbs
diy + 11’(5"@5@‘2 + cgriz)
Gy + by (A.14)

il

R
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A.3.3 Angular momentum of the wheel

the angular momentum of the wheel is:
A = Hyiy+ Hyiy + Hyiy
= IV dity + IV (o + Q) iy + I¥ iy (A.15)

Since the components of the angular velocity are taken along the principal axes of

the wheel, the angular momentum is given by:

H; = I!V 11}{
w; = component of wheel speed

Q = (Q+ Q)= wheel rotational speed

Using Euler’s Law for rotational motion of rigid bodies, equate the total applied

moment about the center of mass of the wheel to the change of angular momentum:

.
-

M=H=H +Ad" x & (A.16)
A, = I $in + I} Qiy + I s (A17)
i Ay i3
AgW xB=| 4 0 B | =~I Qi + IV Qodibs  (A.18)

e IF(Q+Q) IV



A.3. ROTATIONAL EQUATIONS OF MOTION OF WHEEL:

A.3.4 Rotational equations of motion of the wheel

QY +rwhf = IV$-IYQudp
Qw — fw(Qo+ Q-0 —rwR = VO _
QY —feb = I¥y+ I Qo

(A.19)
(A.20)

(A.21)

71




72 APPENDIX A. EOMS BY NEWTON-EULER MECHANICS

A.4 Translational equations of motion of frame

A.4.1 Forces acting on F

Refer to Figure A.6

1. Reaction 'fo;:ces from wheel, W:
— RY¥idy— RY iy — RY oy
= ~RYV(fi+0fs)—RY fa— RY (—6F1 + fa)
= (R§6-RVA-RY fa—(RY 6+ RY)f5

2. Reaction forces from turntable,T:
~R{fi-R ;- R3fs
3. Gravity:

—mpgis = -—mpg(¢d; + ds3)
= —mpglpfs — 0fi + fl

= mrpgbfi ~ mrgdfa — mrgfs
A.4.2 Absolute translational acceleration of 7
Refering to Figure A.2, the absolute angular velocity of the F frame is:
AGF 2 fi +0f+9fs
The acceleration of the center of mass of the unicycle frame, F, is:

™ — LF b - .
" =gy +4 a0 x 7OF +AwF><(Awa7"OF‘)

where &dp is known from equation A.5

(A.22)

(A.ZS)

(A.24)

(A.25)

(A.26)
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A.5 Rotational equations of motion of frame F

A.5.1 Applied moments about F*

Refer to Figure A.6

1. From wheel:
- Q¥ — (Qw — fwQ)de — QY 3
= —QW(A+6f)-1Qw - fw(@-8)f - QY (—6/ + f3)
= (Q¥6-QM)Vfi+ fwQo+ fwS — fwb ~ Qw)fa ~ (@Y 6+ Q) fs
(A.35)

2. From turntable:
—QT i -QT fo—(Qr—frn) fs = —QT i—QF fat (frmo+ Ffrn—Qr)fa (A.36)

3. Due to reaction forces at O:

M = fFOx gV .
i fa I3
= -m —Trg —-TF

RY9—-RY -—RY —(RI9+ RY)
[TzRIVG + TzRgV - T_FRZV] fi

l

+ [reRY —rrRY 0 -1 RY0 - RY)fo
+ [nRY —rRY + o RY 85 (A.37)
4. Due to reaction forces at T:
M = 7 TxRT
i A s
= | -mn -rp (r7—=rF)
B R -H




A.5. ROTATIONAL EQUATIONS OF MOTION OF FRAME F

= [reRY + (rr — rr)RTIA
+ [(rr—rr)RT — RIS
+ [rBRI —rRTfs

A.5.2 Rotational equations of motion for F

from equation A.25 :
45" = $fi+6f+ bS5
Using Euler’s equations of motion:
My = Ly + (- L)waws
My, = DLn+ (I — B)wiws
Mz = I+ (L — L)wiw,

where:

M; = applied moments
wy = ¢ and i = §,
w2=éand1b2=§,

w3 = 9 and =1

Note that all products w;w; 22 0 in Euler’s Equation.

A.5.3 Rotational equations of motion of frame F

75

(A.38)

(A.39)

¥o-QF -of

+7oRY 8 + roRY — rpRY + rRE + (rr — TF)R;

Il

fwQo+ fwQ - fwé— Qw — Q7 + rrR]’

—rpRY 8 — 1 RYO - RY + (rp—r7)RY —1RY =

(A.40)
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(A.41)
Q¥ 60— QY + frno+ frn - Qr
+r1RY —raRY + mRY 0+ nRT —mRT = If¢
(A.42)
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A.6 Translational equations of motion of turntable

A.6.1 Forces acting on T

Refer to Figure A.5

1. Reaction forces from frame, F:
R{ A+ RTf2+ RIfs (A.43)

2. gravity :
+ mrgis = ~mrgbfy — mrgdfo — mrgfs (A.44)

A.6.2 Absolute acceleration of T*

The acceleration of 7* can be obtained from equation A.31 by letting rrp — rr,
"Mm=rm= 0

@l = (rwQ+ r7d)fi + [rw Qo — (rw + r1)dlfa (A.45)

A.6.3 Translational equations of motion of T

R:f +mpgd = mT(er + rTﬁ) (A.46)
BRI ~mrgp = mrlrwQe¥ — (rw + r1)d] (A.47)
RI-mgrg = 0 (A.48)
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A.7 Rotational equations of motion of turntable

A.7.1 Angular momentum of turntable T

Refer to Figure A.5
Absolute angular velocity of the f-frame from equation A.25:

Ao = gfi+ 02+ 95 (A.49)
- Angular momentum of T:
B =Hf+ Hfa+ Hafa (A.50)
where:
H = IFY
H, = If§
Hy = E@W+n=L%+m+n)

Note : 7 is measured in relation to frame F

M=8=(f),+4 3" x i (A.51)

(B)y = IFéfy + IT6F + IE@ + i) fo (A52)

A A fa
AeFxB=| ¢ 4§ P = Lnobf— Bnodfa  (A53)
T IT6 IZGh+nm0+7)

A.7.2 Applied moments to T

QTA+QT o +(Qr - fr)fs (A.54)
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A.7.3 Rotational equations of motion of T

Qf = If¢+IFneb (A.55)
QF = IT§- Ifned (A.56)

Qr— frio—frn = IFGh+ %) (A5T)

]




80

APPENDIX A. EOMS BY NEWTON-EULER MECHANICS

A.8 Translational EOMs of longit. sensor pendulum

The dynamic equations of motion of two small passive sensor pendulums are in-
cluded in the unicycle model. The purpose is to investigate the possibility of
determining the unicycle attitude information from measurements of the angles
that the lateral and longitudinal sensor pendulums make with respect to the uni-

cycle frame.

A.8.1 Absolute angular velocity of the #-frame

Refer to Figure A.7 and Figure A.3.

It is assumed that the sensor pendulums have negligible mass and inertia com-
pared to the rest of the unicycle. In deriving the equations of motion, only forces
exerted by the unicycle frame on the pendulums are taken into account. Forces
and moments exerted by the sensor pendulums on the rest of the unicycle are

small and are therefore neglected in the analysis.
AGR 2 ) + (6 + p)Fa + 93 (A.58)

A.8.2 Absolute translational acceleration of RB*

AER. _ ER +A 'E?:R % FRR" +A 'I.ER X (A’EJ'R % T—,‘RR‘) (A.59)

@® can be obtained from equation A31 by appropriate substitution.

gt (Twﬂ + rpaf — TRgib-)fj
[rR1 — (rw + TR3)d + rw Qa7
(rpad — rmb)ts (A.60)

AGR x TR = [$Fy + (6 + p)fs + ] X (—7pfa)

= —rp(0 + B + iy (A.61)
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Agh x (Ao x AR = 0 (A.62)
AgR — [‘rwfl + (ras — 1'1,)9. - 7‘32'{5 — rpﬁ]f‘l
+rmd + rwQo¥ + (rp — rw — TR3)G]F2
+(rRed — TR18)7a (A.63)

A.8.3 Forces acting on R

1. Gravity force;

—mpgls = —myg(sdde + Ws).
= —muglofs — 8f1 + fal
= —mygl¢fe — OF — pfy + Fa]

= mpg(8 + p)fs — mpgdfs — mpgfa (A.64)

2. Reaction forces at R.:

RE# + RE#y + RERS (A.65)

A.8.4 Translational equations of motion of R

mp[rwfl + (rR3 — rp)é —~ Tpp— rm{l}] (A.66)
RE —mugp = mylrwQoth + (rp — rw — TR3)S + TR1Y]

Rfl + mpg(f + p)

(A.67)
RE - Mpg = mp['rm$ - 'rRlé] (A.68)
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A.9 Rotational EOMs of longit. sensor pendulum

A.9.1 Applied moments about R*

Refer to Figure A.7

1. Reaction, spring and damping moments :

QT — (Fop+ kpp)2 + Q3 (A.69)
2. Moment due to reaction forces at hinge point R:
B o= Ry ER
= ryfa x (REF + BE#y + RE#)
= —rpREH + rpRER (A.70)
A.9.2 Rotational equations of motion of R
Qf —rpRY = I'$ (A71)
~fob—kpp+1,RE = L6+ 5) (A.72)
Qf = Y (A.73)
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A.10 Translational EOMs of lateral sensor pendulum

A.10.1 Absolute angular velocity of the s-frame
Refer to Figure A.8 and Figure A.3

A = (b4 6)8; + 032 + Pia (A.74)

A.10.2 Absolute translational acceleration of 5*

455 =g A DS x 5 AT x (AT x 5 (AT5)

@5 can be obtained from equation A.31 by appropriate substitution:

a° (rwl + rsaf — r5290)3;
[rs1% — (rw + T53)d + rwQod]d2
(rs2d —rs16)3s : (A.76)

+ +

AGS x 5" = [(¢+ &)31 + 032+ P3s] X (~rp3s)

= —T'pé'g]_ + 'rp(éf'u + &)32 (A??)

@5 x (@° x 75"y =0 : (A.78)

AgS* [rws + (rsa — rp)d — 752951

]

+ [rwQod + (rp —rw — rsa)é + rpd + rs19]8s
+ [rs2é—rs1f]3s (A.79)
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A.10.3 Forces acting on S

1. Gravity force:

—mpgds = —mpgldfr—6f + fi]

= mpgh8 — mygd(32 — 083) — mypg(e sz — 33)

= mpgh3; — myg(d + )33 — mpgda (A.80)
2. Reaction forces at S:
R{3 + R53.+ RS 33 (A.81)
A.10.4 Translational equations of motion of S
R} +mpgh = my[rwQ+ (rss — 15)6 — r529f] (A.82)
B3 —myg(¢+0a) = milrwQoy + (rp — rw — rsa)d
+ 18+ rs19] (A.83)

Il

RS — myg mp[?‘szé — r510]

(A.84)
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A.11 Rotational EOMs of lateral sensor pendulum

A.11.1 Applied moments about S*

Refer to Figure A.8

1. Reaction, spring and damping moments:
M = —(fp0 + kpo)d1 + Q3 52 + Q3 33 (A.85)
2. Moment due to reaction forces at hinge point S:

M = #SxR*
= 1583 X (B{3; + R3 3, + RS 33)

—rpR5 81 + T, RS 3, (A.86)

il

A.11.2 Rotational equations of motion of S

—fp& — kpo —1,R3 ($+%8) (A.87)
Q3+ = I (A.88)

§ = B¢ - (A89)
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A.12 Summary of the system dynamic equations

The 30 equations of motion for the 5 rigid bodies contain internal reaction forces
and moments, which can be eliminated to obtain the dynamic equations of motion

for the un.icjrcle.

The algebra for eliminating the internal reaction forces and moments will not be

shown here.

The equations of motion for the unicycle lateral and longitudinal dynamics are:

A.12.1 Lateral system

‘Wheel and Frame Yaw Dynamics:

~ [me(rw +re)rld+ (B + I + mp(ed + o))

- mFTFf'gé - mF‘I‘WTgﬂ

= —Ig‘_”ﬂu(i’ ~ [fo + mprwriQold + frn

— mprig — mpregd + froo — Qr _ (A.90)

Gyroscopic Coupling Dynamics:

- W+ F I+ (mw+mp+me)rly + mprr2rw + 77)
+ mprp(2rw +17) + merdld + mpri(rw + 1) + mprired
= —[B + (mw + mp + mr)rl + (mpre + mrre)rw|Qod

— [(mw + mp + mo)rw + mpre + mrrlgd + I3 nof + mprag

(A.91)

Turntable Rotational Dynamics :




A12. SUMMARY OF THE SYSTEM DYNAMIC EQUATIONS 87

LY+ 139=~frm— fre+Qr (A.92)

Lateral Sensor Pendulum Dynamics:

+ [+ mprp(Tp — 753~ “"w)]éS +15 + mprg]& + "'T'o;p”‘_z:"‘.5‘1";Z

= —myrptw Qo) — [0 — mprpgd — (kp + mprpg)o (A.93)

A.12.2 Longitudinal system

Frame Pitch Dynamics:

-

~ mprired — mprpra + (B + IF + mpry + mord + mpr}lé
+ (mprp+ mrrr)rwd

= IImd+ fwQ - fwb + (mprp + mrrr)gh

+ mrprig+ fwlo — Qw (A.94)

Wheel Rotational Dynamics:

—~  mprwra + (mrrr + mpre)rwld
+ [T+ (mw + mp + mp)riylQ
~fwl+ fwb - fwQo+ Qw (A.95)

Longitudinal Sensor Pendulum Dynamics:

+ 7"""’13”'1:9’"1’12@B + [+ MpTp(Tp — rR3)16 — 7""‘37"'1:"'1%Q +[IF+ mpfﬁ]ﬁ

= —fpp—mprpgl — [kp + mypToglp (A.96)

b
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Lateral State Vector :

Longitudinal State Vector:

Lateral Control Variable:

Longitudinal Control Variable:

The 7 degrees of freedom are:

9, $,m,5,8,0]
(6,9, 2,6,0]"
@r

Qw

¢ 9.0,%n,9,p

‘_)Z/:ch L,w
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turntable
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pendulum
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A

A

4 | 82| @3
El cosy | siny 0
f)z ~siny) cosvy 0
b3 0 0 1
W, W, W,
A 0
b 1 1 0
52 0 cos |-sin
f)3 0 sinQ | cos®
£, | £2 | £3
{'}1 cos g 0 sin g
W2 0 1 0
W3 -sing 0 cos @

Figure A.2: Coordinate Frame Translation Definitions 1
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g1
A f’_\ ~
fl 2 f3
il cos P 0 —sinp
” 0 1 0
r2
r3 sin P 0 cos P
fl f2 f3
A 1 0 0
Sl
%2 0 cosO | sinO
§3 0 -5inQ0 | cos O

Figure A.3: Coordinate Frame Translation Definitions 2
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WHEFT :

Figure A.4: Wheel Free Body Diagram
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TURNTABLE :

Fal
3 TN T A T A
+
(lel+R2f2 R3f3)

T T A
Q1f1+Qz sz
+(Q, - fMf,

B >

inertia matrix about rn veloci
center of mass = r v r F
W W W -
i I =N.+
dlag[ llszISJ n no Tl

Figure A.5: Turntable Free Body Diagram
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TA T A T N
- +
(lel R2f2+R3f3)

-l Qri%f’Q; J%2A
~+(Q, - £ f ]

r
R3
rRL”
rRZ
R
b
F
rl -
h F* \. 2
r
S3
r T .
S2

- [Qf{&l+ Q.- £,1Q-0)) W

inertia matrix
about center of

mass at F* =

. F F F
diag[I7, T, I
9[1 5 3]

2

+(Q§ - fGl.p){\\r?)]

Figure A.6: Unicycle Frame Free Body Diagram
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LONGITUDINAL PENDUILUM :

>
s
B

1-1 272 3 3 .|_Q r
33

fl‘d:

‘]; g

1

inertia matrix
about center of

mass at R* =

P

P P
i 1 P

Figure A.7: Longitudinal Sensor Pendulum Frame Free Body Diagram
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LATERAT, PENDULUM:

S a

R}$,+R;3,7R) 5,

inertia matrix
about center of
mass at S* =

P P
i , 10, I
diag [ Il 2

Figure A.8: Lateral Sensor Pendulum Frame Free Body Diagram




Appendix B

EOMs by using Lagrange’s
Method

Refer to Figures in Appendix A.
Let (x,y) be the coordinates of the ground contact point P of the wheel, in the

inertial reference frame &;, &, éa.
Let % be the rotational speed of the wheel about its axle.

The velocity of the ground contact point P is then:
v =rww (B.1)
The no slip condition of the rolling of the wheel implies
I = weyh = ryiocy
¥ = vsth = ry sy (B.2)
or rewritten in the differential form: |

ldz —rwepdd = 0 (B.3)
ldy—~rwsypdo = 0 (B.4)

97
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These are the two nonholonomic constraint equations for the unicycle motion.
Choose the generalized coordinates to describe the position of the unicycle in in-

ertial space to be:

o=z 5 @ =2
2 =Y ; @ =%
s =W ; §3 =W

=0
G =¢ ; @ =9
s =9 ; &5 =79
g6 =6 ; dg =4
@7 =V ; Gt =¥

=7

Because the unicycle is usually close to vertical the coordinates
¢,8 and their derivatives are small (B.5)

%, Y, 0,9, ¥ are not necessarily small (B.6)

Calculate the kinetic and potential energy of the unicycle:

B.1 | Wheel

1. Translational kinetic energy of the wheel:
The position vector from the origin of the inertial reference frame to the

center of mass of the wheel is:

Fo = g + yég + rw s
= (z+ rwsésp)a + (y — rwsdcy)as + riwedas (B.7)
fo = (&+rwdedsy + rwsde)i
+ (4 — rwdcer + rwsdisy)
~ Twdsdas (B.8)
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The translational kinetic energy of the wheel is:

Ty = smwh o
1 . . : y
= Smwldt 4§+l + sl

+ 2rwa(dedsy + Pspet) — 2rw F(hsds — dederp)]

2. Rotational kinetic energy of the wheel:

absolute angular velocity of the wheel is:

AW = s+ ¢by + by

= $in + (1 + Psg)ids + Yecdis (B.9)
The rotational kinetic energy of the wheel is:
Tyt = SV B+ s (b4 dsgf + 3 FP6 (BA0)
3. Potential energy of the wheel:

Ww = mwgz

= mwgrwce (B.11)

B.2 Frame

1. Translational kinetic energy of the frame:
The position vector from the origin of the inertial reference frame to the

center of mass of the frame is:

1l

7 Fo+rrfa

[z + (rw + rpcf)sgsy + rpsfcp]ay

[y — (rw + rrcf)sgetd + rrsfsipli

[(rw + rrc8)cdlas (B.12)

Epl1 + §raz + 2pés (B.13)

+ A+

S
I
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where: .
ip = &+ rw(dedsp + dagey)
+ rrlf(chcyp — sBsgsth) + Y(cBsgetp — shsh) + deficgsy]
(B.14)
gr = §+rw(dsesy — pedey))
+ rrf(sBsgeyy + csip) + Y(sheyp + chsgsyp) — defeger]

(B.15)
ip = —rwésd — rr(dsbcd + quchqb) ' (B.16)
The translational kinetic energy of the frame is
1 . . .
T = EmF(:c%- + i+ 25) (B.17)
2. Rotational kinetic energy of the frame:
the absolute angular velocity of the frame is:
AgT = das+ by + 605,
= (e — fpcgst) fo + (6 + Psd)f + (f3 + eded) fa
(B.18)
The rotational kinetic energy of the frame is:
1 5 . 1 pos
TF' = I ($ch — egsb)’ + 515 (6 + sg)?
1 . .
+ 51{ (88 + thcped)? (B.19)
3. Potential energy of the frame:
Ve = mwgzp
= mpg(rw + rrcb)cd (B.20)

B.3 Turntable

1. Translational kinetic energy of the turntable:
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The translational kinetic energy of the turntable can be found by simply sub-
stituting rz for rx in equations B.13 through B.17:

¢ = &+ rw(gedsy + sdey)
+ rrlf(cOeyp — shsgsyy) + P(chspe — sbsp) + debedey)]
' (B.21)
Ir = i+ rw(Psgsy — dedey)
+ rrlf(sBspep + chsp) + (sbetp + chsgsip) — debeder]

(B.22)
i = —rwosg — rr(fsbed + pehsd) (B.23)
The translational kinetic energy of the turntable is

1 9

Tir = EmT(m"g’n + 2+ ) (B.24)
2. Rotational kinetic energy of the turntable:
the absolute angular velocity of the turntable is:

A‘EJ'T — A,&,—F + i’f.’-}
= (e — Pegs®)fy + (6 + o) fo + (456 + deded + ) fa

(B.25)

The rotational kinetic energy of the turntable is:
Tyt = LI (beh — Jegsd)? + ZIF (D + og)?
+ %Ig(g&se + fheded + 5)? (B.26)

3. Potential energy of the turntable:
The potential kinetic energy of the turntable can be found by substituting

rr for 7 in equation B.20:

Vr = mrg(rw + rocd)cd (B.27)
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B.3.1 The Lagrangian and Lagrange’s equation

The Lagrangian is
L =Tt — Vior (B.28)

and Lagrange's equation for a system with n generalized coordinates, ¢;, and m

nonholonomic constraint equations, ¢;, is:

F=1

d /6L 0L i
o (-5;) " - > e+ Qi (B.29)
(for i=1,2,...,n)

where (J; are the generalized forces which are not derivable from a potentional

function (the applied torques from the motors and friction in this case)

o= 9%
eji = B (B.30)

where ¢; are the constraint equations of the system.
See [Greenwood] chapter 6, [Pars] chapters 6 through 8, [Rosenberg] chapter 15
and [Whitta.ker] chapter 2 for details. '

Note:
It would be tempting to substitute # and § from the constraint equations B.2 into
the kinetic energy terms, in order to eliminate two of the generalized coordinates

(x and y) and simplify the system of equations.

As pointed out in [Rosenberg], chapteri4, this will lead to the wrong answer since
the con';qtra.int equations are nonholonomic (not integrable). Embedding of con-
straint equations are only possible with holonomic constraint equations. Trying to
embed nonholonomic constraint equations to eliminate the use of Lagrange mul-
tipliers violates the dynamical principles on which the derivation of Lagrange’s

equations are based (the principle of work done during virtual displacements).
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Simplify the expressions for the total translational kinetic energy by defining:
: = &+rw(degsy + dsge) (B.31)
B, = é(cﬂcz/; — sfsgsy))
+ %(cﬂsécw — sfs9) + Pebegst (B.32)
Ay = 44 rw(tsdsy + dederp) (B.33)
B, = é(sﬂsqﬁcxb — cfsh)
+ 1,5(58(:1,& + cOsgsyp) — Pebedery (B.34)
A, = rwésé (B.35)
B, = —(0s0cd+ pcbsg (B.36)
The total translational kinetic energy then becomes:
T = TH+TF+TF
1
= -2—(mw + mp + mr)(A2 + A2 + A2)
+ (mrrr+ mrrr)(AzBz + AyBy + A.B,)
1
+ E(mprfp + mgr3)(B2 + BZ + BY) (B.37)
The total rotational kinetic energy is:
1owie 1w . 1 o
Tor = I 6"+ 317 (0 + dsg) + SE 9
1 . . 1 .
+ S+ D) (deb — egut)? + Z(IF + (6 + dse)’
1 . .
+ U+ I)(gsf + vcped)’
1 s . ;
+ 51’3‘ [20(de8 + dceh) + 2] (B.38)

The negative of the total potential energy is

— Viot = —(mw + my + mq)rwgcd — (mprr + mryrr)gefed (B.39)
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Mt = mWmw+mrp+mr
my = mprF+mrrr
_ 2 2
My = mMprE+ morr

The Lagrangian then becomes:

l

+ + + +

ir rot
Lioi + Lot — Viot

1
Emtat(Ai- + AZ + AE) + ml(A:r:B:u + AyBy + Asz)

1
5ma(Bz + By + BY)

R 1w
g (8 + I (B + deg)? + S IV P79

SUF + I)(§c0 ~ Jegsd)? + 5(IF + IFE + vsd)?

SUE + 13)(398 + eset)? + SIT120(9s0 + deges) + 7]

Mot g — mygeded

(B.40)
(B.41)
(B.42)

(B.43)

Substitute the Lagrangian into Lagrange’s equation for each of the generalized

coordinates.

Under stabilized conditions, the angles # and ¢ and their derivatives are small.

The small angle approximations sin¢ = ¢, cos¢ = 1, f¢p = 0 etc. are used to

simplify the equations.

1.qp=x:

L

ik

mtot(Aa:) + my B,

Mot + T (959 + Pocy)] + my{ferd + Y(dep — Is1) + durh]

(B.44)
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2 (%) & mg(d + rwdsw) + m(Bep+ dsp)  (B.45)

where the assumption 9, < 1 has been used to simplify the equation.

oL
3 0 (B.46)
from equations B.3 and B.4
aj;n = 1 (B47)
aigg = 0 (B48)
substitute into Lagrange’s equation:
Miot(E + rw dspp) + mu(fcp + dsyp) = Ay (B.49)
2.2 =y
dL -
E'y‘ = mtot(Ay) + mlBy
2 el + rw (st + dew)] + ma[fs9 + P8y — dsv) — dey]
{B.50)
i(?}i) o i — rwdep) + my (fsp — der) (B.51)
i \5;) = Miot(§ — Twe) + my(fsyp — & ‘ .
oL
-35 =0 (B.52)
a1y = 0 (B.53)
Qg2 = 1 (B54)

substitute into Lagrange’s equation:

Meot(§ — T dep) + my (fs — dep) = Ag (B.55)
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g_f%, = Iy (1 + vs¢) (B.56)

5 (52) = o +dss+ddop

w
& Wi (B.57)
L
a_m=0 (B.58)
@13 = —rwey (B.59)
dag = —TWS'l,b (B.GO)
Qs = Qw (B.61)

substitute into Lagrange’s equation:

L' w=—rwcpdy — rwshpdg + Qw (B.62)
4. q4=¢
% = m_tot(A,,rwsxb - Ayrwey)
= (motrw + M) (Aasth — Ayc) + (marw + ma)(Basth — Byct)
+ e+ (I + )¢ —98) + (I + I )6 + I is6 (B.63)
d {JL . . oo, .
T (%) = (Muostw + m1)[Es9 — Je + rwd + P(Ecd + gs9)]
+ IP'ymyrw 4+ mo)d+ ITib (B.64)
aL

53 & (maarrw + ma)b(ae + jsy) + Y o + (Meotrw +m1)gé  (B.65)
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dig = 0 (Bﬁﬁ)
azg = 0 (B.67)
Qs = 0 (B.BS)

substitute into Lagrange’s equation:

(mtath + mq )(Zsy — ferp) + Ifﬂ + Mty + 2myrw + m2)¢5 + I_-‘{I'fé

= IV inp + (mgrw + my)gd - (B.69)
5. q5 =1
% 2 (muoirw + my)§(oct + i) + I b6+ I+ Fo (B.70)

{_% (BL) = (muperw + m1){¢'(zc'¢ + i59) + BEcy — sy}

Py
+ IV (¢ + Bd+ I + ITD (B.71)
oL " . . i
55 = (Mmuorrw + ma)[@(Ect + §s9) + $(Ecy + §s9)] (B.72)
a5 = 0 (B.73)
agy = 0 (B.74)
@ = 0 (B.75)

Notice that @5 # —Q 7 because the torque @ does not act around the axis
about which the coordinate under consideration (1) rotates.

Substitute into Lagrange’s equation:

I + I3 0 + I it — (musrw + ma)d(Ecep + §599) = 0 (B.76)
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6. gg=48:

3L, . , ;
%% & my(Zcy + i8¢ + rwipd)

+ (I + I +m2)(8 + 99)

d /9L N . . 5
5 (5—5) & my[Ecp+ §sb] + (I + IF +mg)d
L iy
YT =] Iquﬁ + my g8
aig = 0
azg = 0
Qe = —Qw

Substitute into Lagrange’s equation:

(I + I +m2)d + my(Gcp+ §sv) = B v+ migf — Qw

7. qr=uwv:
8L Tes ; ]
35 = I3 [¢s8 + peded) + 7]
y .
d /6L .,
‘ E(a_u) =I(p+7)
oL
F i 0
a7 = (0
ag7 = 0
@Qr = @t

(B.77)

(B.78)

. (B.79)

(B.80)
(B.81)
(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

(B.87)
(B.88)
(B.89)
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Substitute into Lagrange’s equation:
W+ =Qr (B.90)

Eliminate x and y coordinates from the dynamic equations:

from B.2:
& = rwicy (B.91)
¥ = rwiwsy (B.92)
= rw(icy — Bsy) (B.93)
¥ = rw(ibsyp+ dpey) (B.94)
Eliminate # from B.49:
Muorrw (Hicy — Gipsyp + dsip) + ma(feip + dsgp) = Ay (B.95)
Eliminate # from B.55:
Mot (B8 + Dy — dep) + mu(fsy — dey) = Ao (B.96)

Eliminate A; and A, from B.62:

(I + muordy Yo + (mprr + morr)rwd = Qw (B.97)

Eliminate #, %, £ and ¢ from B.69:

(B + muoerly + 2marw + m2)¢ + T
= (I + murdy + marw) B0 + (Meirw + ma)gd

(B.98)

Eliminate # and § from B.76:

P+ o+ IV dd =0
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but from B.90:

W+9)=Qr
(I + 15+ I ¢ = —Qr (B.99)

Eliminate # and § from B.83:

(FF + I + mo)f + myrw o = IT 0+ magh — Qw (B.100)

B.4 Summary of unicycle dynamic equations

Note that:

g
1]

Qo+ Q (B.101)

P o= notn (B.102)

B.4.1 Lateral system dynamic equations

Wheel and Frame Yaw Dynamics:
@& + )b+ ¥ wd=-Qr (B.103)
Gyroscopic Coupling Dynamics:
Y + If + I + (mw + mg + mp)rly + 2rw(merr + myrr)
+ (mpry + mrrh)l + I nod
= [I¥ + (mw + mp +mp)rly + (mpre + mTTT)TW]QO'iJ
+ [(mw + mp+mr)rw + (mprF + merr)lgd
(B.104)

Turntable Rotational Dynamics:

B@+9)=@qr (B.105)
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B.4.2 Longitudinal system dynamic equations
Frame Pitch Dynamics:

U + I + mprd + mar)d + (mpre + mopr)rw
= Ifnoé+ (mprp+ merr)gl — Qw
' (B.106)

‘Wheel Rotational Dynamics:
[BY + (mw + mp + mT)rv?V]ﬂ + (mrre+ m:p‘rr)rwﬁ = Qw (B.107)

These are the same dynamic equations as those obtained in Appendix A where
Newtonian mechanics were used to derive the equation of motion.
The cross coupling terms are absent in the results of the Lagrangian derivation

because they were not taken into account.



Appendix C

EOMs by using D’Alembert’s

Principle

C.1 Procedui'e

The following procedure aviods finding internal forces and torques in deriving the
equations of motion. It is based on D’Alembert’s principle which states that the
laws of static equilibrium apply to a dynamical system if the inertial forces, as well

as the actual external forces, are considered as applied forces acting on the system.

— Determine the following torques and forces:

(1) D’Alembert torques acting on wheel, frame and turntable.
(2) D’Alembert forces acting on wheel, frame and turntable.

(8) Gravitational forces acting on wheel, frame and turntable.

— Determine five equations of motion:

112
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(1) - (2) Set the two quasi-horizontal components of moment about P (wheel
contact point with ground) equal to zero for whole unicycle.

(3) Set the vertical components of moment about P (wheel contact point with
ground) equal to zero for whole unicycle, and include the external friction
torque — fmlv.

(4) Set moment about axle of wheel equal to zero for frame plus turntable
and include applied and friction torques —Qw — fiw (§ — 8).

(5) Set moment about axle of turntable to zero for turntable, and include

applied and friction torques Q7 — frf.

D’Alembert Torque:

— Wheel:
— (I ¢ - IV Qo) — I Qg — (I + I Qod)ibs (C.1)
- Fra.me:
—Ifofi - I 6f — I fs (C.2)
— Turntable:

~ I+ I nb)fr — (56— ITned) o — Z (¥ + ) fa (C.3)

D’Alembert Forces:

— Wheel:
— mwrw[Qdr + Qo — 6)is] (C.4)
— Frame:
— mp(rwQ + re) fi — mp[~(rw + r7)d + rw Qo] 2 (C.5)
— Turntable:

— mr(rw + red) fp — malrw Qo — (rw + r1)é) /2 (C.6)

Gravitational Forces:
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— Wheel:

~ mwg(— iy — B3) (cn
—~ Frame:

mrg(8fi — 52— fa) (C.8)
— Turntable: |

mrg(6f — ¢f2 - fa) (C.9)

i, Component of Moment about P for Whole Cycle

0

(I ¢ - IV Qo) + mwrwled + rw (et — §)]

— IFé+mp(rw +rr)gd — (rw + rF)d + rwet)

— (I ¢+ ITnob) + mr(rw +r17)[gd — (rw + 1) + rw o]

| (C.10)

i, Component of Moment about P for Whole Cycle

0 = —IFQ— myrd
- I2F€ + mr(rw + rp)[—rwfl - 'rFG] + mprpgb

— (IzTG - Ig‘noqg) + mr(rw + 'rT)[—rWQ - 'rré'] + myrrgd  (C.11)
b3 Component of Moment about P for Whole Cycle
0= (P4 B0 - G- BG4 1) -fob (C1)
fa Compqnent of Moment about 0 for Frame and Turntable

0 = —Ifé + mprr{gd — rw ) — TF§]
— (76— I od) + marr(g — rw — ro] + fw(2 - 6) — Qw
(C.13)

f3 Component of Moment about Q for Turntable

0=-I(¢+ %) +Qr - fri (C.14)




C.2. LATERAL EQUATIONS OF MOTION

Subtract equation C.14 from C.12:
0= —~(I'$+ I} W) - 5é + fri— Qr — fob

Subtract equation C.13 from C.11:

0 = —[Iy + (mw +mp+ mT)T%V]S:Z —~ (mprp — mT'rT)rwg

- w(@-6+Qw

C.2 Lateral equations of motion

from C.15:
(I + ) = -1 Q¢ — foib + frii— Qr

from C.10:

(I + IF + IT + mwrly + mp(rw + r5)? + ma(rw + r7)*]d

= [ + mwrly + mprw(rw + rF) + mrrw (rw + r7))0%

3 [mwrw + mp(rw + rF) + mr(rw + r7)led — I3 nob

from C.14:
I+ ) = —fri+Qr

C.3 Longitudinal equations of motion

from C.13:

[IF + IT + mpry + mpr2l + (mere + morr)rw

= Ignoé + (mpry + mrrr)gd + fr(Q — 9) - Qw
from C.16:

(mprr+ mprr)rwé + (I} + (mw + mp + mz)rf |0

= —fw(-6)+Qw

115

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)
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These last 5 equations, derived by using generalized D’Alembert forces and sum-
ming moments about fixed points, are the same as the dynamic equations of
motion derived in Appendix A and B. In Appendix A Newton’s equations were
used to derive the equations of motion and in Appendix B an energy approach

and Lagrange’s equation was used.




Appendix D

State Space Form of the EOMS

The system dynamic equations from Appendix A can be written in matrix form
as:

It =Fz+Gu+ Kw (D.1)

The matrix equation can be converted to the standard state space form:

¢ = 1 Fz+ I 'Gut+I'Rw
Fr+Gu+ Kuw (D.2)

Il

The dynamic equations in matrix form are shown on the next page:
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APPENDIX D. STATE SPACE FORM OF THE EOMS

o)
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)
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o o o o o Q = © O © o

o O O O QO = O o o o O

o

F25

=

=

0

o O o o o o

Lig

1

Irg
Isa
Ios
0
0

0 0

0 0

0 0

0 0

0 0

0 0

0 o

Ly 0

0 1

0 0

0 0

By 0

0 0

0 0
0 .0 -
-fw  fw |
fw  —fw

0 9

1 0

0 0

e o @ O

- o o O oo o 0 0 o o

oo o o o o o

0

T W ™ D B QG O S O

o o o o

Frao

0

0
0
0
0
0
0
0
0

;fp Forg Foun

0
1

0
0

0

T @ v O o/a e g =3 €. e
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(_1 0 | [0 s 0 ]
0 0 Ky 0 0
1 0 0 —fr 0
0 o 0 0 0
¢ 0 0 0 0 g
Lo o9+l 0 o o -
o T|LY BT R e
0 1 0 0 —~fw
a @ 0 0 0
0 0 0 0 0
L 0 0 | 0 0 0 |
where the coefficients of the matrices are :
jl,l = —Imp(rw + rF)m)
Ly = (L' +1I§ +mp(r} + 13)]
hy = —mprers J
jl,s = —mprwfra
Ry = -9
F1,2 = —{fe+ mrrwri)
1?'1.5 = -—mprpTg
FI,IO = —MfrT2g
Ly = -[f' + If + I{ + (mw + mp + mz)rly + merr(2rw + r7)

+ mpre(2rw + rF) + mpri
Iy = mpri(rw +rF)

Ly = mprre
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Fyo

L

Fy5

¥

For

1?2.1

APPENDIX D. STATE SPACE FORM OF THE EOMS

“‘[I;V + (mw +mr+ mT)T%V + (mprr+ morr)rw o
—[(mw + mF + mr)rw + mpre + merrlg
o

mpgry

(7 + mpTp(Tp — 753 — TW)]
MpTpTS1

[Iig + mpi"?a]

—mprprwlo

—MpTpd

—(kp + mpTpg)




Fy10

—mpEr1r2

—mMpTRT)

[+ IF + mprEk + mprd + mprd)
(mpry + moerr)rw

I::alw o

(mprF + mTrT)g

mpTi

—mMprwTe
(mrrT + mpre)rw

[ + (mw + mp + mr)ry]

MpTaTR2
[13 + mprp(rp — TRa)]
T oW

[I2R + mp?‘§]

—MipTpg

—[kp + mprpg]
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Appendix E

Attitude by Means of a Sensor

Pendulum

The purpose of this investigation is to determine whether the modes of an inverted
pendulum in a gravity field are observable from a measurement of the deflection
angle of a small sensor pendulum mounted on the inverted pendulum. The modal
observability as a function on the sensor pendulum location is calculated. A phys-
ical explanation for the unobservablility of the inverted pendulum modes in the
sensor pendulum measurement when the sensors are mounted at a certain height

on the unicycle frame, is presented.

E.1 Dynamic equations of motion

1. Inverted pendulum dynamics:
Refer to Figure E.1:
Description of parameters:
my = mass of inverted pendulum.
J = moment of inertia of inverted pendulum about an axis passing through

the center of mass, I*, of the inverted pendulum, and parallel to the 22 unit
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vector.

m, = mass of sensor pendulum.

J§ = moment of inertia of sensor pendulum about an axis passing through
the center of mass, P*, of the sensor pendulum, and parallel to the 73 unit
vector,

r; = distance from the inverted pendulum support point to it’s center of
mass, I*.

rfr = distance from the inverted pendulum support point to the sensor pen-
dulum’s hinge point.

rp = distance from the sensor pendulum’s hinge point to it’s center of mass,

P*.

Acceleration of c.m. I* of inverted pendulum : » 1631
moment balance about O:

7‘[%3 X [m;gﬂi'l - m,—gi’s - mIT[ﬁl] = J{GEZ

where the last term in the brackets above is the D’Alembert force.

Equation of Motion of Inverted Pendulum:

(J + mprdd = myrigh (E.1)

Laplace transform:

_ 56(0) + (o)
alr e (E.2)

g _ mrig

where wj= —qp———
Ji + mpr?

0(s)

so that the time response is an unstable exponentially growing function:

»

68(t) = 6(o) coshwrt + %E’i) sinh wri (E.3)
I
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2. Sensor pendulum dynamies:
Refer to Figure E.2:

angular velocity of p frame:
43P = (6 +9)» (E4)
acceleration of hinge point H:

a’ = rgbi

& rplp (E.5)
acceleration of P* of the sensor pendulum:
@ = ag+4aP x P 44 5P x (AT x 7P
= rufp + (8 + $)p2 X (—phs) + 0
= [(rg~- f'p)é — pilB (E.6)

moment balance about hinge point H:
(~rphs) X {mpg(0 + 7)pr — mpgps — mpl(rer — )8 — rpilin} = I3 (8§ + )2

Equation of Motion of Sensor Pendulum:

[J'f + mprp(rp — ""H)]é + [JZP + mp"?:]"? = —myprpg(f +7) (E.7)

define:

C = JE + mpry(rp — rr)
D=Jf+ my,r2

E = —mprpg

rewrite E.7 as :

Cé+Di¥=E@+7) (E.8)
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Transfer function from inverted pendulum angle to angle measured by sensor pen-
dulum:

Laplace transform for equation E.7

Als) Cs*—E
O(s) (D.sa2 - E) (E9)
Notes:
1,
. A
g =l

= 'Tlt:oo = _B|t=oo

so the measured angle is the negative of the attitude angle in steady state,

ag it should be.

2. For this case with no .damping on the pendulum, there are two poles at ¢

where: J, = J§

3. The zeros for the transfer function are at :

C

= + —MpTpd
Jp + mpry(rp — rH)
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J,

(a) I Jp + mprp(ry — rH) > 0; i.e. when rg < rp+ s
= 2 complex zeros at
. . MpTpl
8= :!:J\[jp_'_—w?;ﬁ.p:a
See Figure E.3.
(b) I Jp + mprp(ry — 7ir) < 0y 1.e. when rg > rp + ;‘LLP:

= 2 real zeros at

—_ MpTpd
8= i\/m*""p"p(fp* 73]

See Figure E.4.
A non minimum phase behaviour of the sensor pendulum will occur due

to the right half plane zero.

4. It is evident from Figure E.4 that the sensor pendulum could be mounted at
a critical height, (7 )crit, Where the zeros will cancel the inverted pendulum
poles. This is the situation where unobervability of the inverted pendulum
modes occur, Several methods for calculating the condition for unobservabil-

ity will now be presentéd.

E.2 Observability matrix

g mrrg
J2I +m1'r§
. mpr
¥ = I )

7 g Mpr2
[Jip + mprp(Tp — TH)|MpTpg
(JF + mpr2)(J§ + mrr})
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define: .

mrrrg
P = 19
Jﬁz + mrrf
g mirilJE + mprp(rp — 1))
H = —
TE+ myr? {m”r” ¥ T+ mr?
= —epeitl E.10
°C THEmg .
The state space representation of the system is:
(] [oo P o][é]
0 0 H A
= QI (E.11)
§ 100 0|6
4] [o01 0 0][7]
or:
t=Fz
if 4 only is measured = output matrix:
M=[0001]
Observability matrix is
[ M
MF
O =
MF?
-3 MF3 -
[0 0 0 1]
0 1 0 0
= (E.12)
0 0 H Q
| H Q 0 0
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0 10 0 00
det O = -0 0 H|-Ql0 1 0
H Q0 H Q 0

= —H? (E.13)

system will become unobservable when:

det O=0=-H?
i.e. when:

H =0

g fo o mmlI (= )]
J2P+mprg PP J{+m1r%

(E.14)

The critical height for the location of the sensor pendulum when unobservability

of the inverted pendulum modes occurs, is:

1 |
IF + 222051 4 myrd)]

MpTyp mrrr
4 mprt I+ mprl

mIry mMypTp

(TH)crit = Tp+

E.3 Physical explanation for modal unobservability

rewrite the dynamic equations for the sensor pendulum Equation E.7 as:

[V + mur2ly + mprpgy = —{[J5 + mprp(ry — TH)l6 + mprpgf}  (E.16)
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define:
Terml : [sz + myrp(rp — 15}

Term 2: mprpgf

The terms on the right hand side can be considered to be the forcing functions
on the motion of the sensor pendulum. If the right hand side becomes zero, the
behavior of B(t) does not influence the motion of (¢), and this is when the unstable
modes associated with #(¢) cannot be sensed by the measurement of ().

Term 1 is depeﬁdent on the location of the sensor pendulum hinge point, and is the
moment on the sensor pendulﬁm due to the acceleration of the inverted pendulum
L

Term 2 is the moment on the sensor pendulum due ot the effect of gravity vector
change as # changes.

From the dynamic equations of motion of the inverted pendulum I, we have:

2 mirrg
= ———< .
@+ mir (B41)
Substitute in equation above and set right hand side = 0:
JE 4+ myrp(r, —Th —E!I’T—g—-ﬂ-l-m r,gf =0
[J2 pTo(Tp )](J-f-i-m.ﬂ'%) »Tpd
solve for the critical rm where unobservability occurs:
JI 2 JP +m .’.2
(TH)crit = =2 RO U 2 2r (E.ls)

myry MypTp

which is the same result as obtained in equation E.2.

E.4 TUnobservability by pole-zero cancellation

The modal unobservability condition can be predicted by calculating the rz where

the zeros of %} cancel the poles of the inverted pendulum: from equation E.9 the
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zeros of %}";} are where:

E MpTpg
== Lt 2 E.19
$ET JE + myrp(rp — 1) (E.19)

the poles of the inverted pendulum are at :

2_ MmMmrIg

8=
Ji+myri

(E.20)

pole-zero cancellation occurs when above two equations are set equal. Solve for

(re)crit:
_ MpTpg _ mirrg
JE + mgrp(rp—rE)  Ji+mri

Ji+mgr? | If +myrl
mrry MpTp

(T)erit = (E.21)

E.5 TUnobservability by inspection of the F matrix

The point of unobservability can be found by inspection of the dynamics matrix
in the state space representation of the inverted and sensor pendulum: From the

F matrix in equation E.11

5 = 9 mri[Jf + mpry(rp — r&)]
T = JF¥ + mpT2 {mprp-}- Ji+mpr? 9
_ Tl (E.22)

JE + mprg7
Note that if the coefficient of # above becomes zero, the dynamics of ¥ is not af-
fected by the motions of 8, which indicates unobservability of the unstable modes
associated with & by sensing - only.

Solve for the value of ryywhere the coefficient of # becomes = 0.
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JI+ myrs JE + mpr,f
mrry MpTyp

(TH)erit = (E.23)

Conclusion:

Several approaches to solve for the critical location of the sensor pendulum in this
simple two body system, were presented. When the critical location for a sensor
pendulum in more complex dynamic systems is sought, it will be evident that

some approaches may provide the critical sensor position easier than others.
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Appendix F

Unicycle Robot Steered by

Sideways Leaning

The unicycle robot can be stabilized and steered by means of a sideways leaning
of the rider’s body. Figure F.1 shows a schematic diagram of a wheel and a body
of which the upper part can lean out of the plane of the wheel. The lower part
(L) simulates the rider’s legs and the upper part (B) the sideways leaning part
of a person’s torso. The dynamic equations of motion for this configuration are

derived and the lateral system characteristics are evaluated in this appendix.

F.1 Dynamic Equations

The following procédure avoids finding internal forces and torques in deriving the

equations of motion.

— Determine the following torques and forces:

(1) D’Alembert torques acting on wheel, legs and body.
(2) D’Alembert forces acting on wheel, legs and body.

134
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(3) Gravitational forces acting on wheel, legs and body.

— Determine five equations of motion:

(1) - (2) Set the two horizontal components of the moment about P (wheel
contact point with ground) equal to zero for the whole unicycle.

(3) Set the vertical component of the moment about P equal to zero for the
whole unicycle, and include the external friction torque — fgip.

(4) Set the moment about the axle of the wheel equal to zero for the legs and
body and include the applied torque Qw. _

(5) Set the moment about the sideways lean axle of the body equal to zero

and include the applied lean torque @ g.

D?*Alembert Torque:

— Wheel:
~ (I § ~ I Qoiyin — I Qi — (34 + I Qo)ds (F.1)
— Legs: .
—~If$h - IF6fa - I fa (F.2)
— Body:
~ IP($+ B — 170 — I is (F.3)
D’Alembert Forces:
— Wheel: |
— myrw[Qin 4 (R0t — )] - (F.4)
— Legs: .
~mp(rwQ + r8) i — mi[~(rw + r1)d + rw 0l f (F.5)
— Body:

—mp[rwQ+(ra+r8)0l5 —mel—(rw+r+r8)d—rBB+rw Q]2 (F.6)
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Gravitational Forces:

. — Wheel:
mw g(— gz — b3) (F .7)
— Legs:
mrg(8f — 62 — fs) (F.8)
— Body:
mpg(8gr — (¢ + B)g2 — §a) (F.9)

iy Component of Moment about P for Whole Unicycle
0 = —(If'$— L' Qd) + mwrwled + rw(Qod — )]
= Lt myp(rw +r1)leg — (rw + L)@+ rwQot] - IP($ + B)

+ mp(rw +r+18)9d — (rw + ra + rB)¢ — r8B + rwQe¥] + meragd
(F.10)

i, Component of Moment about P for Whole Unicycle

0 _[Igv + mWT%V]Q

Il

I§‘§+ mi(rw + rL)[gf — ("'Lg + Twﬂ)]
- 1'255 + mp(rw + g +rB)[g8 ~ rwQ = (v + rB)H] (¥.11)

g Component'of Momenf about P for Whole Unicyéle
0= —(i' P+ 5 Q) ~ B — B - foi (F.12)
fg Component about O for Legs and Body
0 = —IF6+mprr[g8 —rif — rw)]
- IzBé- + mp(rg +r8)gl — rw§d — (reg+ rB)é] - Qw (F.13)
g1 Component about H for Body

0 = —IZ(¢+F)+ mpralrwQed — (rw +ry + rp)d— 80
+ 9(¢+8)]-Us | (F.14)
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F.2 Lateral equations of motion

from F.12:
(I + I + DY) = — 1} Qod — foib (F.15)

from F.10:

(Y + mwrly + IE + mp(rw + )2 + I2 + ma(rw + rg + r5)*1é
+ [P 4+ mpra(rw +ra+15))3
= [V 4+ mwrly + merw(rw + r1) + mprw(rw + rir + 78) Q0%

+ [mwrw + mr{rw + r) + ma(rw + rg + rB)l9p + mpregh

(F.16)
from F.14:
[ + marp(rw + v+ 8)ld + [IP + mpry)s
= msrwrgﬂmﬁ + mBng(¢ + ﬂ) - QB (F'IT)
F.3 Longitudinal equations of motion
from F.11:
[If‘ +mprr(rw + 7)) + IZB +mp(rg + re){rw +rg + u:,v_)]fliE
+ [ + mwrdy + mprw(rw + r1) + mprw (rw + i + 78)10
= [mzrr+ mp(ry + ra)]gd ' (F.18)

from F.13:

(I + mpr} + IZ + mp(ryg +r5)2W + [mrrr, + mp(ry + r8)rws

= [mzre +me(ru +re)lef — Qw (F.19)
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F.4 Lateral system characteristics

For the purposes of the present study, let the turntable be solidly fixed to the
frame. Assume that there is a rotational joint and motor somewhere along the
frame at a distance rgy from the wheel axle. The mass and inertia of the original
frame is therefore divided in two, with the lower part of the frame simulating
the rider’s legs (L) and the upper part of the frame together with the turntable
simulating the leaning part of the rider’s body (B).

In order to divide the frame’s mass and inertia, consider the original frame as a
rectangular body of width w and height 2r#. Its mass is my and the inertia about

the f; unit vector passing through its center of mass is

IF = %(w2 + 4r2) (F.20)

.,
w=yf e~ YE (F.21)

With the hinge point H a distance ry from the bottom of the frame where it

so that

connects to the wheel axle, the mass of the lower part of the frame is

.. TH,
my, = QTFmF (F.22)
The center of mass is at
rp = %H (F.23)

The inertia of the lower part of the frame is
m
Ik = 1—2"-(w2 + 4r2) (F.24)

Likewise, the upper part of the frame has mass properties:

Dpr —
my SIFTH mg (F.25)

2rp
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o = QWT—TH (F.26)
I = %(wz-{-é’,r%r) (F.27)

Now we can combine the mass properties of the upper part of the frame with that

of the turntable to find the mass properties of the leaning part of the body (B):

mp = my+mr (F.28)
_ myry + mr(rr —rg)

rg = pe———— (F.29)

IlB = I{‘r + my(rg — TU)2 + Iir + my(re —rg — TB)2 (¥.30)

By calculating the inertia properties in this manner the eigenvalues associated
with the sideways falling of the leaning configuration unicycle as a whole, will be

the same as the corresponding eigenvalues of the twisting configuration unicycle.

The lateral system dynamic equations of motion F.15,F.16 and F.17 can be written

in state space form if we define the state vector

x=[6 % § ¢ AF (F31)
[ Ly 0 L3 00 [N ¢ -' ( 0 Jiz 0 Jia Jis - -. é 11 -1 -
Im 0 Lsz 00 B 0 Jag 0 Jog Jos | | ¥ 0
0 Ly 0 00 |[B|=|Ja —fc 0 0 0 Bl+| 0 |QB
0 0 0 10 é 1 0 0 0 0 @ 0
_0000'1__}5_ | 0 0 1 0 0|8 0
(F.32)
where
hi = I+ mpre(rw+rg +18) (F.33)
L3 = IB + mprh (F.34)

Iy = IV + mwrly + IF + mp(rw + r)* + IZ + mp(rw + rg + r5)F.35)
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Ly = In (F.36)
Iy = IV+Irf4 18 (F.37)
Jiz = mprerwilo (F.38)
Jia = Jis=mprpyg : (F.39)
Jiz = (B +mwrly + morw(rw +71) + mprw(rw + rg + rp)]Qo (F.40)
Jos = [mwrw +mp(rw +7L) + mpe(rw + ra +7r8)g (F.41)
Jos = Jua (Fa)
Jn = —IFQ . (F.43)
Jo = —fa (F.44)

Multiplication of equation F.32 by the inverse of the first matrix cbnta.ining the
inertia terms, yields the standard state space form of the lateral system dynamic
equations;

x=Fx+ Gu (F.45)

An analysis of the lateral system characteristics is shown in the listing of sec-
tion F.4.1. There is one eigenvalue near s = ( which is the yaw rate mode of
the robot. The other eigenvalue at 8 = 0 for the yaw angular position mode is
not shown. Two pairs of eigenvalues reside on the real axis on either side of the
imaginary axis. The eigenvalues at s = +3.29 rad/sec are for the sideways un-
stable pendulum modes of the unicycle as a whole. These modes are at the same
frequency as those in thé twisting configuration ( section Q.3.1), because we have
chosen to use the same robot parameters of Appendix M. Two other inverted
pendulum modes are at s = + 9.89 rad/sec due to the leaning part of the body.

The location of these eigenvalues change as a function of the hinge height, rg.

The modal controllability matrix CTR. in the print-out shows that the yaw rate
mode is uncontrollable from the lean motor torque. Physically it means that if

yaw angular momentum is present in the system, it cannot be controlled with the
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lean actuator., Fortunately this yaw mode is stable due to the friction losses at

the ground contact point of the wheel.

The CTR matrix also indicates limited controllability of the main inverted pendu-
lum modes { at 3 = + 3.29 rad/sec) from the lean motor torque. It is possible to
stabilize the unicycle by leaning the body, but accurate control of the yaw motions

(i.e. steering) cannot be achieved by this control method.

F.4.1 Lateral system analysis

UCYC12/LEANCHAR.CTR

LATERAL SYSTEM CONTROLLED BY LEANING

3he 3 e o e e Shcale e e s ofe o e sheole sl ol ale ae ik ol e e s e e e o 26 a0 2 2 o o e sl ol i e e 3B ok e ol e ol sl o ofe ke i ok e oee ok 3
LATERAL STATES : PHI.DOT; PSI.DOT; BETA.DOT; PHI; BETA
CONTROL INPUT : LEAN MDTOR TORQUE (QB)

UNITS : METERS, Rmnué, SECONDS

St s ok e o oo o ok Ak ek Aok ek

LEAN HINGE HEIGHT ABOVE WHEEL AXLE ( METERS ) :
RH =

0.7000
KOMINAL WHEEL SPEED (RAD/SEC) :

OMEGAQ =
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3.0

OPENLOOP SYSTEM MATRICES:

* XK

FLAT

0.9000
-0.1259
0.0000
1.0000
0.0000

GLAT

0.3308
0.0000
-3.7467
0.0000
0.000¢

EIGVAL

~0.0279
-3.2935
3.2937
-9,8330
9.89%30

EIGVEC

0.0017
1.6000
=0.0000
=0.0600

0.7783
-0.0277
-1.3688

0.0000

0.0000

1.0000
0.0386
0.2606
-0.3036

e ek ol ok ok

0.0000
¢.0000
0.0000
0.0000
1.0000

1.0000
-0.0379
0.2607
0.3036

12,9442
0.0000
~22.3357
0.0000
0.0000

-0.0902
-0.0012
1.00900
0.0091
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-7.66656
0.0000
95.8731
0,0000
0.0000

=0.0902
0.0011
1.0000
-0.0091
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0.0003 -0.0791 0.0792 -0.1011 0.1011
CTR =

-0.0¢00
-0.0034
-0.0034
-1.8725
-1.8725
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Figure F.1: Steering by Leaning



App endix G

Gear Ratio for Maximum Yaw

Acceleration

G.1 Motivation for the optimal gear ratio

The turntable is used as a null momentum reaction wheel to steer the body of
thg unicycle. A direct current motor mounted on the unicycle frame drives the
turntable through a gear train.

The unicycle control system will compensate for lateral disturbances by steering
the vehicle towards the direction that it is falling over. It would therefore be
advantageous to calculate the optimal gear ratio of the turntable drive train, that
would give maximum yaw acceleration of the frame of the unicycle. The relevant

parameters are shown in Figure G.1

145
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G.2 Yaw dynamics with a geared drive system

Obtaining the dynamic equations from Lagrange’s method:

Let the generalized coordinates of the lateral system be:

g1 =1% = yaw angle of the frame

g2 = & = angle of motor rotor relative to the frame

Il

g3 7 = angle of turntable relative to the frame

the derivatives of the generalized coordinates are

h =9
o =w
gs =1

The total kinetic energy of the system is:

T = %[JF?I}2 + Jr(% +w) + J7(¥ + 7)’]
= SR8 +JaE + &) + 2 + b)) (G1)
The constraint equation of the system is
w=ng or dg=7f (G2)

where n is the gear ratio of the turntable drive system.

The nonholonomic constraint equation is augmented to the Lagrange’s equation

to give
d (8T T
P2 (B_q,) - 3—q¢ = Aa; + Q; (G.3)
where ¢); is a generalized force.
_ 9¢
a; = “a"'q_l (G4)

where ¢ is the constraint equation of the system

p=w—nnp=0 (G5)
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rewritten in differential form:
l-do—n-dfi=0 (G.6)

We can readily identify the a; coefficients:

a1 = 0
ay = 1
i3 = -7 , (G7)

apply Lagrange’s equation for each generalized coordinate:

q1= P:
(Jr+Jr+Jr)it + TR + Jrga = —Tr (G.8)

where Tg is the torque developed between the rotor and it’s stator which is fixed

to the unicycle frame.

qa:
JrlGi+@)=A+Tg (G.9)

7&H
Jr(Gd1 + §3) = —nA , (G.10)

Eliminate the Lagrange multipliers by subétituting G.9 into G.10:
(JF+ ndR)g1 + ndris + Jrds = nTr (G.11)

use the constraint equation to eliminate §; from equations G.8 and G.11 to yield

the two dynamic equations of motion:

(Jr+Jr+ J7)dt + (Jr + nJr)fa = -Tr

or in items of the system coordinates:

(Jr+Jr+ I+ (Jo+ nJr)i = ~Tr (G.12)
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and

(J7 + ndR)i + (n*Jr + J7)is = nTr
or in terms of the system coordinates:
(Jr 4 nJR)d + (n®Jp + Jr)7 = nTR (G.13)
we ca.ﬁ use equation G.13 to eliminate J7 from equation G.12; which then becomes
[T+ (1 - 0) TR} + n(l = n)Jri = —(n + 1)TR (G.14)

Equations G.13 and G.14 are now in a form which can be compared with equations
of the lateral system derived in Appendices A, B and C where the motor rotor

inertias were assumed to be zero.

As we will see later, n is a fairly large number (approximately 70) for the acual
unicycle parameters. We can therefore approximate the right hand side of equa-

tion G.14 by ~nTg.

Eliminate % between equations G.13 and G.14:

—(nJR + JT)nTR

h = G.15
¥ Jr(Jr + Jr)n? — 2J7dpn + Jr(Jr+ JR) ( )
To get maximum acceleration as a function of z let %—' =0
o JrtJR \/( Jr+ Jr )2 JUE+IR) (g 1g)
P Jr+Jp+2JR Jr+Jr+2Jr) " JR(Jr+Jr+2JR)

Notice that if Jp — oo i.e. load is held fixed

nr s fIEXIR o IR
opi JR = JR
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Also notice that equation G.16 can be approximated as follows:

e Jr | ( JF )2 JrJF
opt = Jr + I Jr +JF Jr(JT + JF)
e, s N — N, —

small compared to , \ small compared to ~

if Jr < Jr,JFr the optimal gear ratio is by good approximation:

o ——

G.3 Yaw acceleration as a function of gear ratio

Since the standard gear sizes allow a discrete number of gear ratios only, it is useful
to plot equation G.15 as a function of the gear ratio, #. The CTRL-C program
latnopt.ctr is used to calculate this function and the resulting plot is shown in

Figure G.2.
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&G — TURNTABLE

J&?= moment of inertia of
the turntable about
its rotation axis

lg_ GEAR TRAIN: total
gear ratio = n:l

W= motor rotor angular rate
relative to the frame

E MOTOR STATOR fixed to frame

: MOTOR ROTOR: ,
! % Jr = moment of inertia of motor
L, about its rotation axis

FRAME
J = moment of inertia of

frame and wheel about
its vertical axis

WHEEL

\:}4____ l'll = frame yaw rate

Figure G.1: Turntable Gear Drive Schematic
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YAW ACCELERATION VS. GEAR RATIU
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Figure G.2: Normalized Yaw Acceleration as a Function of the Turntable Drive System
Gear Ratio




Appendix H

Servo Accelerometer Design

H.1 Introduction

Simulations of the unicycle and control system have shown that the attitude of
the vehicle will deviate less than 1 degree from vertical during normal maneuvers.
Peak linear acceleration of the frame is expected to be on the order of 0.1m/s2. To
obtain good attitude and acceleration information, the accelerometer sensor should
have an accuracy of approximately one twentieth of the maximum expected value,
ie. 0.005m/s?. (55 of the earth’s gravity acceleration). Commercial servo ac-
celerometers which measure to these accuracies are proh.iBitively expensive and a

custom made accelerometer was designed for the unicycle robot.

H.2 Mechanical design of servo accelerometer

A drawing of the mechanical part of the accelerometer is shown in Figure H.1. It
consists of a pendulum suspended by means of a beryllium-copper flexure. Op-
tical pick-off of the position of the pendulum is accomplished by an infra-red
light-emitting diode on the pendulum which illuminates a set of photodiodes fixed

152
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to the accelerometer housing.

Electromagnetic actuation of the pendulum is provided by a set of coils on the
pendulum and a pair of permanent magnets pressed into the walls of the hous-
ing. The physical size and weight of the pendulum was minimized to keep the
undamped natural frequency of the pendulum much higher than the bandwidth
of the unicycle robot (unicycle bandwidth is less than 1 Hz).

H.3 Feedback control system design

Figure H.2 shows the block diagram of the feedback control system. The pur-
pose of the control system is to generate a current in the actuator coils which
will reposition the light beam to the null position on the photo detectors during -
accelerations. If integral error feedback control is used as shown in the analysis in
Figure H.2, the current in the coil is proportional to the acceleration experienced
by the accelerometer as long as the frequency confent of the acceleration motion

is much lower than the closed loop bandwidth of the servo accelerometer.

H.4 Optical pick-off considerations

A Siemens SFH405-2(Table H.1) infra-red light-emitting diode (LED) was used
as a light source. The pendulum arm was specially designed to allow the LED to
shine through a narrow slit of 75 um (0.003 inches) in the bottom of the pendu-
lum. The photo detector is a Siemens S¥FH204 four-quadrant silicon photodiode
(Table H.2). The active units are only 12 pm apart and 100 um wide and were
connected in pairs to sense the beam deviation along one axis only.

An important consideration for the choice of this detector as opposed to two sep-

arate phototransistors, is the fact that all the active areas are on the same piece
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of silicon substrate, which provides the most similar behaviour of the differential
active areas under temperature variations.

The choice of a light beam width of 75 um for the 100 ym wide active area of
the detector results in a maximum to minimum variation of the detector output

current for a pendulum motion of only 75 pm.

By taking the difference between the output currents from the two active areas,
a reasonably linear relationship between pendulum position and detector output
signal can be obtained, as shown in figure H.3. The output currents from the
photodiodes are in the order of tenths of a zA and the light beamwidth should be
chosen wide enoungh to generate enough photo current without flooding the whole
active area. The distance from the light source to the detector was minimized by
mechanical design for the same reason.

Temperature drift and other forms of pi'ocess noise cause errors in the servo ac-
celerometer outputs which cannot be distinguished from actual accelerations. It
is shown in the analysis of figure H.4 that the errors due to detector drift can
be minimized by maximizing the sensitivity of the photo detector to pendulum
position changes. Since one of the few parameters available to the designer to
increase this sensitivity is by decreasing the light beamwidth, it is a conflicting
requirement to that stated in the previous paragraph. A compromise of making

the light beam approximately half as wide as the detector active area was chosen.

In order to compensate for the non-uniformity of the light source and detector
sensitivity, the total light received by all the active areas of the detector is regulated

to be constant as described in the next section.
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H.5 Detector electronics and servo amplifier design

Figure H.5 depicts the electronic circuit diagram for the servo accelerometer. A
voltage proportional to the total light received by the photodiode detectors, is
compared with a well stabilized 8V reference signal. The difference is used to

regulate the current to the LED in order to keep the total received light constant.

A differential amplifier stage converts the difference in the photo currenfs to a volt-
age which is propotional to the pendulum displacement. The photodiode package
is mounted on a separate printed circuit board which can be repositioned mechani-
cally to receive the light beam in the middle of the detector under zero acceleration

conditions. Any remaining offset is corrected for electronically.

The small signals from the photodiodes are susceptible to interference from stray
| electromagnetics {e.g. 60Hz hum, switching amplifier noise, D.C. motor commu-
tator moise, etc.). All the photodetector electronics are mounted on a minature
circuitboard (Figure H.6) which is positioned on the side of the accelerometer as
close to the photodiodes as possible. The whole unit is packaged in a metal box
at ground potential, which effectively eliminates any stray environmental electro-

magnetic influences.

The actuator coil has a 25 £} resistance and requires approximately 160 mA to
reposition the pendulum to its original position when the accelerometer is turned
on its side. A class A servo amplifier is included with feedback to provide the

driving current without cross over distortion.

H.6 Openloop frequency response and plant model

The frequency response from the coil current control voltage to the differential

photodiode output was measured. The gain and phase responses are plotted in
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Figure H.7 and it is seen that the plant response compares well to that of a lightly

damped second order system with:

. Kp = 0.684 low frequency gain
w, = 466Hz undamped natural frequency
£ = 0.01 damping factor
' _ Kyw?
= G.‘P(s) - 32 + 261-0“3 + w%’

The coil inductance measured 22 mH and together with the 250 coil resistance
and 3002 series resistor, it forms another plant pole at

R 55
'wp = f = m = 2500 ra,d/sec

This pole is at a much higher frequency than the control bandwidth of approxi-
mately 200 rad/sec and is therefore ignored in the plant dynamic model.

H.7 Compensation design

The compensator is designed to increase the damping on the lightly damped plant
poles and it also adds a pure integrator into the loop to provide zero error to
contant acceleration inputs. Two additional zeros are required to draw the closed
loop root locus far enough into the left half of the s-plane to provide an acceptably

short settling time.

The second order electronic compensator that was selected is shown in Figure H.8.

’ For unity feedback, the closed loop characteristic polynomial is:

1+ Gy(8)Gc(s) =0, ie.
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' R w2
4 3 2rft2 2 n _ K
%4 __.CR.;S + 'wﬂ[.R1 K, +1]s* + CRikik. {[R3(R: + R4) — Ry R4)K, + R1R3}s
Kuw?:
+ ohm =" | (H.1)

The desired closed loop poles were chosen to be at the 4th order ITAE positions,

therefore the desired closed loop polynomial is:
[(w—s- +0.424)% + (1.263)2][(wf- + 0.626)% + (0.4141)%] = 0 (H.2)
0 0

where wg is the desired bandwidth of the compensated closed loop system.

Simplifying equation H.2 gives:
% 4 2.1wos® + 3.4wls? + 2.Twds + wi = 0 _ (H.3)

Solve for R; by comparing the coefficients of the powers of s in equation H.1 and

equation H.3.

— prrz;
B = C?Rawg (H.4)
_ Rl 3.4'&1%
Ry = X\ wz 1] (H.5)
R1R4'w2 'KP
= - H.
e wi[(Ry + Ry) K, + Rq] - 2.7TwiC Ry Ry (1.6)
1 .
Ry = (H.7)

21wl

A condition that stems from the fact that the resistor values must all be positive,
is:

A CTRL-C program, ’lgtitae.ctr’ calculates the required resistor values. The re-
sulting print-out in Section H.8 shows that the compensator results in a pole at
s=0, one more on the negative real axis and a pair of complex zeros in the left

half of the s-plane.
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A root locus of the closed loop poles versus the overall loop gain, K, is shown
in Figure H.9. The poles are at the ITAE positions for K=1. The compensated
openloop system frequency response in Figure H.10 shows a 30 degrees phase
margin. A low pass filter is added on the output to reduce the output oscillations
during impulsive disturbances. The step response in Figure H.11 shows that the
closed loop system is reasonably well damped with a settling time of approximately

30 ms.

H.8 ITAE compensator calculation program

PLANT PARAMETERS

0.6840

FR =

46.6000

ZETA

0.010¢

292.7964

PLANTPOLES

1.0d+02 =

-0.0293 + 2.92781
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=-0.0293 - 2.9278i

ITAE COMPENSATOR PARAMETERS: WO=DESTRED C.L. BANDW ; C=CAPACITOR VALUE
WO =

351.3557

1.0000d4-07

EXACT RESISTOR VALUES

2.8390d4+04

1.6171d+05

2.74994+03

1.3553d+04

NEAREST AVATLABLE RESISTOR VALUES & CAPACITOR SHUNT RESISTOR RS

Ri =

28700.0
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162000.0

2870.0

14000.0

3300000.0

COMPGAIN =

115.7491

COMPZEROS =

1.0d4+02 =

-0.8088 + 1.9454i
-0.8088 - 1.9454i

COMPPOLES =

=714.2857
~3.0303

CLOSED LOGP SYSTEM PARAMETERS

CLZEROS =
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1.0d+02 =

—0.8088 + 1.9454i
-0.8088 - 11,9454}

CLPOLES =
1.04+02 *
-1.5542 + 4.5407i
~1.5842 - 4.5407i
-2.0617 + 1.48611i
=2.0617 - 1.48611i
LOW PASS FILTER OR OUTPUT ( WC = CUT-OFF FREQ. IN RAD/SEC ) :

HC =

212,8000

H.9 Servo accelerometer calibration

The servo accelerometers were mounted on a dividing head for calibration, using
the gravity acceleration and tilt angle relationship to calculate the acceleration

input. The dividing head has a 0.1 degree accuracy.

First the servo loop was opened by disconnecting the actuator coil and the ac-
celerometer was positioned vertically (0 m/s? acceleration input). The optical
detector screws were loosened and the detector was shifted until the differential
current in the two halves of the detector was zero. The dividing head was then

tilted from -180 degrees to +180 degrees and the differential output voltage of the
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optical detector stage was recorded. Figure H.12 shows a reasonably linear range

with a steep slope for tilt angles between +20 degrees.

Thereafter the servo loop on the lateral accelerometer was closed and the sensor
was mounted verically on the dividing head. The offset on the output voltage
was trimmed to the minimum value by means of the potentiometer on the sensor.
Figure H.13 shows a plot of the sensor ouput voltage as a function of the tilt angle.
A very linear relationship is obtained for a range of 20 degrees. A least squares

fit to the data point for the linear region yields:

VEAT — _0.311¢  volt

where ¢ is the roll angle in degrees. Since i +90 degree tilt angle corresponds to

1g acceleration, the transfer function can be rewritten as:
latace = 0.35048VEAT m/s?

where latace is the lateral acceleration.

The longitudinal accelerometer is calibrated in the same manner and its transfer

function is shown in Figure H.14, A least squares fit for the data points gives:

VICT — _0.3452 x4  (volt)

out

where # is the pitch angle in degrees.
lgtace = —0.31576VECT m/s?

where [gtace is the longitudinal acceleration.

The sensor output voltage drift due to temperature effects measured less than
+10mV. This is equivalent to :I:ﬁ of gravity acceleration or an uncertainty of

+ 2 degree in the measured tilt angle.

[
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H.10 Hall-effect frame angle sensor design

A device to measure the unicycle frame pitch angle was designed by using a trailer
wheel that touches the ground, as shown in Figure 4.1, A Hall-effect transducer
(915S812-2 LOHET by MICRO SWITCH, a Honeywell Division) is attached to the
unicycle frame, separated from the magnet at the end of the aluminum rod from

the trailer wheel by a 2 mm air gap.

The ahalog electronic interface to the LOHET is shown in Figure H.15. The output
of the fourth operational amplifier is connected to the analog-to-digital interface
card described in Appendix J.

The sensor was calibrated to determine the output voltage as a function of the
pitch angle. The calibration curve is shown in Figure H.16. The sensor is linear

over a range of -5 degrees to +5 degrees with a gain of 0.8541 volt /degree.
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INCHES

Figure H.1: Mechanical Design of Servo Accelerometer
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plant compensator
dynamics dynamics
G (s) G (s)
D c
1
X 2 2 I
K,Wp 0 K (s +as+b) coll
—_— K2 P —C © B
accgl— c 2 s (S+p)
eration s + 2w_s+w
. n n
input

Ko

control
current

closed loop transfer function

' 2, 2
_ Ioin K, K Ko wy (s” +as+b)
Gep (8) ‘——*.};— =

” 2
s (s+p) (s%+ 28w, S+W)) + KoK K w2 (s2+as+b)

for frequencies much lower than the servo accelerometer
closed loop bandwidth:

1im GCL (s) = Ieoil _ K2 —> the coil current is !
00 -
s#0 X :Ezzg}; T proportional to the acceleration
state |

Figure H.2: Feedback Control System Block Diagram
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- X = beam displacement

I
B = beam width
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Figure H.3: Relationship between Differential Photodiode Output and Light Beam Po-

sition
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Qi = torques on pendulum arm

X = displacement approximately proportional

pendulum to deviation angle O for small angles

K2 D (detector drift)
Q spring constant
a ‘ +
+ ‘ v
e  mx [2M] | A,.
— M7 —> R, . =5 T
= optical 1
' . detector gain
coil actuation current T ot
<} : coil
AV - _2°5 . and AV _ 1
P loopgain : D loopgain
. o Ky1S _ " Av X loopgain =D
LN KS
X _ K
D K,1lS

% Lo get the apparent acceleration due to drift,
D, small, make S(=ZB—M) as large as possible

make B as small as possible
Figure H.4: Sensitivity to Process Noise Analysis
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THEBRETICAL & MEASURED PLANT FREQUENCY RESPONSE

50. —_ . -
0.00 }j\\
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frequency (hz)
0.00 —_ _w —_— _ i
.50
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-200. Bl S —
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1071 100 10l 102 103 10%

frequency (hz)

Figure H.7: Plant Measured and Theoretical Frequency Response
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Figure H.8: Second Order Electronic Compensator
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Figure H.9: Closed Loop System Root Locus versus Overall Loop Gain K
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Figure H.10: Servo Accelerometer Openloop Frequency Responses
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STEP RESPUNSE
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Figure H.11: Theoretical, Step Response of the Closed Loop Servo Accelerometer
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LATERAL ACCEL. BPTICS XFER FUNCTI@N

175

e

N

/

o

-40. -20. 0.00 20.

ANGLE

(DEGREES)

40. B0.

Figure H.12: Differential Output of the Optical Detector as a Function of the Accelerom-

eter Tilt Angle

80.

100.




(V@L T)

BUTPUT

i

LUKivc o | - AMi-

YU

LJ:U!\i\L_n\I | - /.H‘

176 APPENDIX H. SERVO ACCELEROMETER DESIGN

LATERAL SERVB-ACCEL. CL@SED LB@P XFER FUNCTI@N
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Figure H.13: Measured Transfer Function for the Lateral Accelerometer
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Figure H.14: Measured Transfer Function for the Longitudinal Accelerometer
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Figure H.15: Hall-effect Transducer Electronic Interface
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Appendix I

Position Encoder and Servo

Amplifier Interface

I.1 Introduction

This computer card extracts velocity information from the position encoders mounted
on the axles of the turntable and wheel drive motors, and interfaces these signals
to the G64 bus of the GESPAC computer. It also takes digifal motor current
command signals from the computer bus and outputs it as analog signals to the

servo amplifiers.

I.2 Position encoder interface

The Datametrics K3D0-200-55E-4A optical encoder outputs two 0 - 5V square
waves in quadrature at 200 pulses per revolution of the motor shaft. On the state
transition of one of these signals, a counter is started. It is clocked with a high
frequency clock derived from the microprocessor system clock. When the next
encoder state transition occurs, the counter’s contents is stored in a register, the
counter cleared and the process repeated. The number stored in the register can be

read by the microprocessor and inverted to obtain motorshaft speed. A schematic

181
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diagram of the position encoder digital logic is shown in Figure L1 and Figure 1.2.

The layout of the components on the interface card is shown in Figure 1.3.

I.3 Operation of the logic circuitry

A master clock, SCLK, controls the timing of all the logic transitions of the po-
sition encoder interface card, as shown in the timing diagram of Figure 1.4. The
frequency of SCLK is jumper selectable, and is chosen from considerations dis-
cussed in the next section. The two quadrature signals from the position encoder
are synchronized with SCLK and the direction of rotation is determined and indi-
cated by the U/D. The logic level of this signal is written to the data bus bit zero
to indicate the direction of motor rotation to the microprocessor. When the mo- -
tor stands still or reverses direction hexadecimal FFFF is written to the counter

buffer register in the 7415699 ICs by means of the CLOAD strobe.

One clock cycle after the low to high transition of the second phase signal of the
position encoder, the upper 15 bits of the counter are loaded into the buffer regis-
ter(by the RLD strobe) and are available to the upper 15 bits of the data bus. One
clock cycle later, the counter is cleared (CC LR strobe) and it starts counting the
number of clock pulses until the next low to high transition of the second phase

of the position encoder occurs.

The lower 5 bits of the address bus is decoded to place the lateral position encoder
rate data at peripheral address hexadecimal 800020 and the longitudinal encoder
rate data at 800030.
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I.4 Selection of the interface clock frequencies

Define:

¢ = the number of clock pulses counted during one complete cycle of the second
phase of the position encoder.

f = the frequency(in Hz) of the master clock of the position encoder logic circuitry.

w = motor axle angular velocity in rad/sec.

For the encoders which generate 200 pulses per revolution, the motor speed is
given by:
2r f

W= o radjsec (L1)

From the lateral control system simulations, the maximum turntable speed is
expected to be Nmgz = .12 rad/sec. With the turntable drive gear ratio of 60:1
the maximum lateral drive motor shaft -speed will be 60 x .12 = 7.2 rad/sec.
Let the counter on the interface card reach its maximum count of (21% — 1) at
1% of this speed. The lateral encoder interface clock frequency is calculated from
equation 1.1 as:

200we
27
200 x 0.072 x (2% - 1)
27

= 75.096kHz | (1.2)

since the clock is derived from a subdivision of the 8MHz microprocessor system
clack, a convenient value is

SMH=z

LATCLK = —

= 31.25kH 2 (1.3)

The typical nominal wheel speed is f2g = 3 rad/sec. The typical maximum per-

turbation of the nominal wheel speed is 2 = 0.12 rad/sec.
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The gear ratio for the wheel drive system is 24:1, so the motor speed at 3 rad/sec
wheel speed is:

2r f
wo=3x24= 2o (1.4)

If the accuracy of the motor speed should be measured to 1% of the maximum

perturbation speed, then:

o 2rf

(ot 750) = oo(e—1) (L5)
12 2r f

— 4 = ———— 1.6

(3+ 7550 % 2 200(c — 1) (16)

eliminate ¢ between equation 1.4 dnd 1.6 to get the optimum clock frequency
200&)0(1000)0 + L:r)
= I
f 27 (L.7)
= 5.732MHz (1.8)

" Let the master clock frequency for the longitudinal encoder rate interface be the

same as the microprocessor clock frequency:

LGTCLK = 8MHz (19)

I.5 Servo amplifier interface

The two DC motors are driven with pulse width modulated (PWM) servo ampli-
fiers. These amplifiers have internal current feedback and are adjusted so that a
-10V to +10V input signal commands an output current of -10A to 4+10A to the

servo motors.

12 bit Digital-to-Analog Converters(DAC) are used on the computer interface card
to convert the digital current command on the microprocessor bus to an analog

voltage for the servo amplifiers, as shown in Figure L5.
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Define:

D = digital number supplied to the DAC
B = djgital number appearing on the microprocessor bus
Vout = output voltage of the DAC
Vres = reference voltage for the DAC output
= 10V

For the DAC and operational amplifiers as configured in Figure 1.5,

D — 2048

Vout = WEI(W)

(1.10)

where 0 < D < 4095
Because of the negative logic of the G64 data bus, a binary value of B written to
the DAC will give an output voltage of

2048 — B

Tfout = T/re,f( 2048

) Volt (L11)

where 0 < B < 2048

The lower 5 bits of the address bus is decoded to place the lateral DAC at periph-
eral address hexadecimal 800000 and the longitudinal DAC at 800010.
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Appendix J

~Analog-to-Digital, Radio and
FPP Interface

J.1 Analog-to-Digital interface design

J.1.1 Hardware design

Figure J.1 shows the AD574AJD 12 bit analog-to-digital converter(ADC) from
Analog Devices Inc, and its interfacing to the G64 bus. Its peripheral address
is $8000F0 (where the $ sign implies a hexadecimal number). Up to 8 analog
signals with magnitudes between +10V can be muliplexed (by the multiplexer
at address $8000EQ) and connected to the sample-and-hold device at peripheral
address $8000D0.

J.1.2 Software for controlling the ADC interface

To read and digitize one analog input channel, the microprocessor executes the

following commands:

1. writes the code for the analog channel to be discretized to the multiplexer

address $8000EQ. A binary number of 000 on the data bus will correspond to

191
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the first analog input which is the lateral accelerometer signal, The binary
number 001 corresponds to the second analog input which is the longitudinal

accelerometer signal.

2. executes a software wait state for 1.8us to allow the analog switches in the

multiplexers to complete the switching process.

3. writes a "1’ on data bus bit 0 to address $8000D0 to start the sampling process
of the LF398A sample and hold device.

4. enters a software wait state for 25us which is the required acquisition time

for the LF398A to reach within 0.1% of its steady state value.
5. writes a ’0’ to $8000D0 to place the sample and hold device into hold mode.

6. writes any number to the ADC address at $8000F0 to start the analog to

digital conversion.
7. enters a software wait state for 35us for the ADC to complete the conversion. |
8. reads the digitized value of the analog input.

9. repeats steps (1) through (8) to read the other analog input signals.

The FORTH program code to implement this algorithm is shown in section J.1.4

J.1.3 Binary values of the analog input voltage

The 12 output data lines of the ADC are connected to the 12 lea,stlsig'niﬁca.nt
bits (LSB) of the microprocessor bus. The 4 most significant bits (MSB) of the -
databus are masked out in software, because they are meaningless. Because of
the negative logic of the G-64 databus the value read from the databus should be
subtracted from 4095 to obtain the actual digital output of the ADC.

The ADC null offset is trimmed so that the major carry operation (binary 0111
1111 1111 to 1000 0000 0000 ) should occur at an analog value of I LSB below
analog common i.e. - 1.221mV. The full scale calibration is set so that the last
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transition (from 1111 1111 1110 to 1111 1111 1111) should occur for an analog
value 13 LSB below the nominal full (9.9963 volts for 10.000 volts full scale).
Fitting a straight line through the above two pairs of coordinates gives the analog
reading:

A = 10.00366 — 4.884 x 1073(4095 — Dy,,,)

where Dy, 1s the 12 bit value read on the databus.

J.1.4 FORTH Program to drive the ADC converter

( === Analog to Digital Converter Driver === )
CR

ONLY FORTE DEFINITIONS

HEX #00000 CONSTANT LATDACADDR ( Set LAT DAC’s address )
800010 CONSTANT LGTDACADDR ( Set LGT DAG’s address )
800020 CONSTANT LATENCADDR ( Set LAT Enceder’s address )
800030 CONSTANT LGTENCADDR ( Set LGT Encoder’s addres= )

8000D0 CONSTANT S&HADDR { Sample & Hold’s address )
BOOCEO CONSTANT MUXADDR { Multiplexer’s address )
8000OF0 CONSTANT ADCADDR { Analog-to-Digital Converter’s address )
0 COESTANT LATACCMUX ( MUXCaode for Lateral Accelerometer )
1 CONSTANT LGTACCMUX ( MUXCode for Longitudinal Accelerometer )
CR
DECIMAL

. { Loading LATDAC word code) CR
: LATDAC 10000 SWAP - 2048 * 10000 / ( get 12 bit equiv. for ocutput to DAC )
LATDACADDR W! ; ( write 16 bit word to DAC1 )
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: HAIT4N ( N - ) ( S/¥ WAIT for n*4 microseconds )
0 DO LOOP ;

+{ Loading MUXSWITCH word cede )} CR

: MUXSWITCH ( channel# - ) ( switches MUX to specified input channel )
MUXADDR W

1 WAITAN ; ( waits 4 microsec. for MUX to settle )

. ( Loading SAMPLERHOLD word code ) CR

: SAMPLERHOLD ( - ) ( SAMPLE and HOLD command )
1 SEHADDR W! ( sample analog signal )

7 WAIT4N ( waita 28 microsec. for S&H to settle )

0 SEHADDR W! ; ( place S&H device in HDLD made )

. { Loading AD_CONVERTER word code ) CR

: AD_CONVERTER ( -~ DigitizedValue ) { Do Analog to Digital Conversiom )
1 ADCADDR W! ( Starts A4 to D Converter )

9 WAIT4N ( Waits 36 microsec. for ADC fifnish )

ADCADDR W ; ( Reads the digital result from the ADC )

. Loading AtoD_CONVERT word code ) CR

: AtoD_CONVERT ( channel# - DigitizedValue )}
MUXSWITCH t Complete process for an AtoD Conversion )
SAMPLEZHOLD

AD_CONVERTER ;

. { Loading RLATACC word code } CR

: RLATACC ( - LatAcc_Volt ) ( Conv. Analog Volt. from Lateral Accelerometer)
10003660 4884 4095 |
LATACCMUX AtoD_CONVERT

- % -1000 / . ; ( Dutput in millivolts )

.{ Loading RLGTACC word code ) CR
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; RLGTACC ( - LgtAcc.Volt ) ( Comnv. Analog Volt. from Longit. Accelerometer)
10003660 4884 4095

LGTACCHUX AtoD _CONVERT

- % = 1000 / . ; ( Output in millivolts )

J.2 Radio receiver interface design

J.2.1 Hardware design

The radio receiver emits pulse width modulated (PWM) signals in response to
the radio signals received from the radio transmitter. The pulses for each radio
channel are repeated every 17.4 ms and has a low voltage of 0V and a high voltage
of 4V. The pulse width is 0.82 ms for a maximum negative stick input and 1.72

ms for a maximum positive stick input.

Figure J.2 shows how the 8254 programmable interval timer (PIT) is used to count
the number of timer clock pulses during the high level of the PWM signal. The
timer interface clock is 4 MHz, half of the microprocessor clock frequency. The
count for the maximum positive stick input will therefore be 7280 while the min-

imum count for full negative stick will be 3280 counts.

The PIT has 3 independently programmable 16 bit counters. The PWM output
from channel 1 of the radio receiver is connected to the gate of counter 1 at address

$800082. The PWM output of channel 2 is connected to counter 2 at $800084.

J.2.2 Software interface

Counters are programmed by writing a control word to address $800086. Coun-

ters 1 and 2 are programmed to operate in Mode 0, by sequentially writing the
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bytes $70 and $B0 to the control word upon system initialization. Because of the
negative databus logic, the ones complement of these values is actually written

out by the microprocessor, namely $8F and $4F.

As shown in Figure J.2, the falling edge of the second radio channel pulse is used

to generate an interrupt request (IRQ) to the microprocessor.

The interrupt service routine then reads the two count values in the P.I.T. and
saves these in the variables for the lateral and longitudinal input commands. The
counters are then re-initialized to zero before the interrupt request flip-flop on the

P.1.T. interface card is reset to receive the new radio commands about 17 ms later.

A listing of the software code that drives the radio receiver interface is listed in
the next section. The interrupt service routine, RADIQ-READ, was written in
Motorola 68000 assembler code to maximize the speed of the interrupt service

routine.

J.2.3 Program to drive the radio receiver interface

( === Radio Receiver Interface Driver === )
CR

ONLY FORTH DEFINITIODRS
ALSQ ASSEMBLER

VARTABLE LATPWM
VARTABLE LGTPWM
HEX

B000B0O CONSTANT RCCOUNTERO { Radio Receiver Interface )
800082 CONSTANT RCCOUNTER1 { Counter Adresses )
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800084 CONSTANT RCCOUNTER2
800086 CONSTANT RCCONTROLWORD ( Counter Comtrolword address )

800090 CONSTANT RCTRIGGER ( Trigger address to RESET IR} flip~-flep )
68 CONSTANT LEVEL2_IRQ { Level2 Autovector Address )

DECIMAL

CODE RADIO_READ { Reads Radio Receiver Chamnels upon IRQ )

MOVE.L DO,~(A7) { saves contents of DO on stack )

MOVE.B #$21,RCCONTROLWORD ( Latches all counts )

MOVE.¥ RCCOUNTER1,D0 ( Reads LSB of Counteri )
MGVE.B DO,LATPWM ( Save temporaly )

MOVE.¥ RCCOUNTER1,D0 ( Reads MSB of Countaerl )
LSL.H #8,D0 _

MOVE.B LATPWM,DO ( Get LSB )

MOVE.VW DO,LATPHK ( Save )

MOVE.W RCCOUNTER2,D0 ( Reads LSB of Counter2 )
MOVE.B DO,LGTPWM ( Save temporaly )

MOVE.W RCCODUNTER2,D0 ( Reads MSB of Counter2 )
LSL.¥W #8,D0

MOVE.B LGTFWM,D0 ( Get LSB )

MOVE.H DO,LGTPWM ( Save )

MDVE.B #$8F,RCCONTROLWORD ( Rewrites Cntrlword to 1 }
MDVE.B .#0,RCCOUNTER1 ( Write LSB of initial counteri )
MOVE.B #0,RCCOUNTERL '( Write MSB of initial counteri )
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MOVE.B #$4F,RCCONTROLWORD ( Rewrites Cntrlwoxd to 2 )
MOVE.B #0,RCCOUNTER2 ( Write LSB of initial counter? )
MOVE.B #0,RCCOUNTER2 { Write MSB of initial counter2 )
MOVE.B #1,RCTRIGGER ( Reset IRQ flip-flop on Radio Int )

MOVE.L (A7)+,D0 ( Restores original value of DO )

RTE ( Return from exceptiocn routine )

END-CDDE

CR

.{ Loading RADIO_INIT code to Initialize R/Control Interface & Interrupt )
CR

3 RADIO_INIT ( Initialize Radio Contxol Interface & Interrupt )

[’] RADID_READ ( Initialize Radio Receiver )

LEVEL2_IR ! ( Lewel 2 Auntovector )

BINARY

10001111 RCCONTROLWORD ¢! ( Set Counters 1,2 )
01001111 RCCONTROLWORD G! ( for Mode 0 )

1 RCTRIGGER G! ( Reset IRQ flip-flop on Radio Intf )
DECIMAL ;

: WAGHBIETJIE ( Wait a while )
10000 0 DO 1000 1000 = DROP LOOP ;
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CR
. ( Loading RCSHOW code to show R/C Reading on Terminal Screem )
CR

: RCSHOW ( Show R/C Reading on Terminal Screen }

BEGIN
LATPWM W@ 5164 - CR 20 SPACES .
5178 LGTPWM We - 10 SPACES .
WAGnBIETJIE ?TERMINAL ‘
UNTIL ; '

J.3 Floating point processor (FPP) interface

The Motorola MC68881 floating point coprocessor interface to the G-64 bus and -
MC68000 CPU is shown in Figure J.4.

The address decoding locates the base address for the FPP at $20 000 in memory.

The Mach 2 FORTH Software confains a special floating point instruction set to
utilize the floating point processor.
The component layout for interface card described in this appendix is shown in

Figure J.5.

J.4 Electrical and electronic wiring diagram

Figure J.6 shows schematically how the electrical and electronic elements on the

unicycle robot are interconnected.
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J4. ELECTRICAL AND ELECTRONIC WIRING DIAGRAM
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Appendix K

Gear Ratio for Maximum

Wheel Acceleration

K.1 Introduction

The unicycle wheel is driven by a direct current motor mounted on the frame. A
gear and belt drive system is used to increase the motor torque. If the frame is
falling forward or backward away from vertical, it will be advantageous to apply
maximum acceleration of the wheel to reposition the wheel axle directly below
the frame’s center of mass. This appendix will show how the optimal gear ratio is

calculated to allow maximum acceleration of the wheel.

K.2 Optimal gear ratio for wheel drive system

A schematic diagram of the wheel drive system is shown in Figure K.1.

The gear drive system has the constraint equation:

w=n( —§) (K.1)

206
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Assuming no slip at the ground contact point of the wheel, the second constraint
equation is:

&= ry,{2 (K.2)

The rotational and translational kinetic energy elements of the system are:

Wheel:
T = .;_IgV 0? (K.3)
™ = %mwig (K.4)
Frame:
TF - %Iféz (K.5)
TF = %mp(é: . (K.6)
Motoer rotor:
Tf = SIf(w+6)? (®.7)
The potential energy of the system is:
V =mprrgcosd (K.8)

The Lagrangian is then:

L = Twot— Vit
= %[I;"W + mwi? + IF 0 + mp(3 + rrb)?
+ Hw + 0)?] - mprrgcosd (K.9)

Let the derivatives of the generalized coordinates of the system be:

1 = ﬁ y 9:'1 =

=T : ; =
o & (K.10)
g3 =0 ; @3 =46

=
ll
€l
ey
]
€
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The two nonholonomic constraint equations K.1 and K.2 are augmented to La-
grange’s equation to give:

d /8L aL 2 :

(fori= 1,2, 3,4)
where (J; is a generalized force. Friction forces will be neglected for the purposes

of this derivation.

9;

;i = = K.12
It a(q‘_) ( . )
(for j = 1,2)
where ¢; are the constraint equations of the system.
h=wtn@-0) = 0 (K.13)
$pr=2-rwll = 0 (K.14)
Rewritten in differential form:
1do+n(dd—dQ) = 0 (K.15)
ldz —rwdQ = 0 (X.16)
We can readily identify the a;; coefficients:
a1 =-—n a1 =0 a3 =0 mga =1
11 12 13 14 (K.17)
g1 =7Tw @22 =1 a3 =0 @ =0
Apply Lagrange’s equations for each generalized coordinate:
1. q: = ﬁ: .
VO = —Mn— dorw (K.18)
2. qe=x

(mw + mp)i + mpir'pg = Ag (K.19)
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3. qa = f:
(IF + mprh+ )8 4+ mprei + IR0 — mprpgsind = ndy — Qp  (K.20)

4, q4 =@
g+ Bo=2+4Qr (K.21)

where @ r is the motor rotor torque.

Eliminate the two Lagrange multipliers to yield the two dynamic equations of

motion for the system:
[ + mpre(rw + 75) + B0 + [mwrw + me(rw + rr))E

+ IR+ I¥Q - mprpgsing = —Qp (K.22)

(nI«f + mFrF'rw)é + nIfcb + I,_E”Q + (mw + mp)rwi = nQpr

(K.23)

Use the constraint equations to eliminate the w and z variables:

UF 4 mprp(rw +7r) + (1 — n)IF)P
+ [I¥ + mwrd + mprw(rw + r7) + nIRQ - mprpgsing = —Qg

(K.24)

(K.25)

Subtract equation K.25 from K.24

[ 4 mprd + (o — 12100 + [n(1 — 2) I 4+ mprprw Q)

= mrrrgsind — (n+ I)QR (K.26)
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Notice that equation K.25 and K.26 compare well to the longitudinal dynamic
equations of motion if the reflected rotor moments of inertia are taken into ac-

count.
Now proceed to calculate the optimal gear ratio for maximum wheel acceleration:

Eliminate § between equation K.25 and K.26:

Define:
A = n(l-)f 4+ mprerw (K.27)
B = I¥ +n? B+ (mw + mp)rly, (K.28)
C = IF4+mprk+4(n—1201 (K.29)
D = mgprrgsing (K.30)

. _ [(C+4)+ AlQr - AD

1) ey (K.31)

We want the maximum wheel acceleration as a function of the gear ratio, n and

since the frame will be nominally vertical, § = 0 and therefore D=0.

We can set : )
L CEOREA P
dn _ dn| BC ¥+ A2 R=

and solve for the optimal gear ratio n,p; analytically.

(K.32)

The gear ratio used in the mechanical design may not necessarily be exactly the
same as the optimal gear ratio calculated above, It is therefore more useful to use
equation K.31 to plot the curve of sz_R as a function of the gear ratio, n, in order

to see the effect of nonoptimal gear ratios used in practice.
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Equations K.28 through K.30 can be readily extended to include the mass and

inertia properties of the turntable on top of the frame:

A = a(l - n)If+ (mpre+ mrre)rw
B = IV + 2’ IF + (mw + mp + mp)r¥y
C = IF+mprk+ I +mprd 4 (n— 1)L

The measured mechanical parameters for the unicycle from Appendix M and the

CTRL-C program lgtnopt.ctr is used to generate the curve of Figure K.2.
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|~ FRAME:
mass = Mg

moment of inertia

"about center of mass = 12

ROTOR:
///nmss = negligible

R
inertia = 12

(0 = rotor angular velocity
relative to the frame

GEAR drive belt:
gear ratio = n:1

WHEEL:

mass = m

¥ 13 W W
p T inertia = I
x = forward 2

€) = wheel rotational
speed in inertial
reference frame

velocity:

S B

no slip at ground contact point

 Figure K.1: Wheel Drive System
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WHEEL ACCELERATION VS. GEAR RATIOQ

40.

T

| e

\

T~

35.

30.

N

25.

20.

15.°

10.

5. 10.

15.  20.
GEAR RATIO

20.

N

30.  35.

40.

Figure K.2: Normalized Wheel Acceleration as a Function of the Wheel Drive System

Gear Ratio



Appendix L
Unicycle Mechanical Design

L.1 Introduction

One of the goals of this research is to compare the performance of a computer
stabilized one wheeled robot to that of a person riding a unicycle. The mechanical
design of the unicycle should therefore approximately emulate a human riding a

unicycle.

A person uses four major motions to balance on a unicycle. The longitudinal
stabilization is largely obtained through the torques exerted on the pedals of the
wheel and to a lesser extent by the forward backward leaning motion of the rider’s
- torso. The simplified mechanical robot emulates the pedal control action only; by
a direct current motor driving the wheel through a reduction gear system., Lat-
~ eral stabilization is obtained through sideways leaning of the rider’s body and by
twisting his torso with the arms partially extended. During the twisting action,
the rider uses the inertia of the upper part of his body to rapidly steer the wheel
of the unicycle into the direction into which the unicycle is falling. In this way the
lateral component of the ground reaction force on the wheel is used to upright the
falling unicycle. It was shown in Appendix F that the twisting motion is much

more effective than the sideways leaning motion for lateral stabilization of the

214
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unicycle. The rotary battery pack on top of the unicycle robot is used to simulate
the twisting motion of a human rider’s torso. It should be noted that although
the battery pack is designed to allow full 360 degree rotations, it will not be used

as a control moment gyro for stabilizing the unicycle.

The mass, inertias and length dimensions of the unicycle robot were selected to
be similar to those of a teenage child riding an actual unicycle. This will enable
interesting comparisons between the computer stabilized and human stabilized

unicycles without the need of scaling the time constants of the dynamic system.

The unicycle robot consists of three major parts:

1. The wheel drive system (Figure L.1)

2. Frame and electronics system: This is the middle section of the robot and
consists of a frame which connects the wheel drive system to the turntable
drive system. The on board microprocessor, servo amplifiers and other elec-

tronic components are mounted to the frame.

‘3. The turntable drive system (Figure L.2)

All of the more complex parts of the unicycle robot were manufactured out of

Aluminum (Al 6061 - T6) using a numerically coded milling machine.

Full scale drawings prepared on the Hewlett-Packard "HPDRAFT” system are
avajlable on floppy disc at the Computer Aided Desigh Facility of the Design
Division, Department of Mechanical Engineering, Stanford University. The Pascal
code for programming the MATSUURA milling machine is also available at the

same facility.
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L.2 Effect of center of mass height

Here, we simplify the unicycle model to consist of a wheel and a frame only. We
neglect fricton effects and assume that a direct drive torque motor has its rotor

on the wheel axle and its stator connected to the frame.

The longitudinal system dynamic equations can be obtained from equations N.1
and N.2 by letting I = mq = rp = fir = 0. We will be investigating the control
torque required to cause a constant wheel acceleration. Since we are interested in
performance near the state where the frame is stabilized vertically, # can also be

set equal to zero in equation N.1.

(I + mpr)i + merprwQ = —Qw (L.1)
mprprwd + I + (mw + me)rg 1 = Qw (L.2)
Eliminate 8
Qw _ U +merif + (mw + mp)rly] — (mererw)?
Q If + mFrF(rw +rF)

B + (mw + mp)rly] + (1 + mwrl Imerk
mpry + mprwre + I3

(L.3}
The expression on the right hand side can be viewed as the effective inertia that

has to be accelerated by the wheel torque motor.

Figure L.3 shows how the effective moment of inertia decreases as the center of

mass of the frame is placed at increasing heights above the wheel axle.

Letting rp = 0 in equation L.3 gives the maximum effective inertia, which is the

case where the frame center of mass is at the height of the wheel axle:

Loz = Igv + (mw + mF)T%V (L.4)
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Letting rF — co the minimum effective inertia is obtained:
Inin = 13 + mwrly (L.5)

It is therefore concluded that the mechanical design should place the center of mass
of the frame as high above the wheel axle as possible for ease of stabilization. The
side support frames of the wheel drive system were manufactured on a numerical
milling machine and lightened out to leave a rib structure with minimal weight
around the lower sections. The heavy drive motors were mounted as high on the
structure as was practical. The turntable drive system which contains the lead-acid
batteries is mounted at the top of the robot. Although the frame structural design
was made as light as possible, it was designed strong enough so that structural

flexibility effects need not be a consideration during the control system design.

'L.3 Design of the gear drive systems

A precision cable and polyurethane chain drive system from BERG Inc. was se-
lected for the gear drive systems. These chain and sprocket components require
no lubrication and have small backlash effects at reasonable cost. It also facilitates
gear ratio adjustment at any stage of the unicycle robots life cycle without the

_ need for mechanical redesign.

Bearings are supplied on gear shafts to reduce friction. The bearings are mounted
in bearing blocks whose positions can be adjusted. In this way the drive belt

tensions can be adjusted to minimize backlash in the drive systems.

Appendices G and K show that optimal gear ratios can be selected for the wheel
drive and turntable drive systems. The optimal turntable gear ratio is selected
to yield maximum yaw acceleration of the frame, since this is the action that will

be utilized to stabilize the unicycle laterally. The wheel gear ratio is selected to



218

APPENDIX L. UNICYCLE MECHANICAL DESIGN

yield maximum wheel acceleration about its axle, since this is how longitudinal

instability will be controlled.

For the mechanical parameters measured and shown in Appendix M, a practical

gear ratio for the wheel drive system is 24 : 1 and 60 : 1 for the turntable drive

' system,
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EFFECTIVE INERTIA VS. FRAME C.M. HEIGHT
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Figure L.3: Effective Longitudinal System Moment of Inertia as a Function of the Height
of the Frame Center of Mass above the Wheel Axle
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Mechanical Parameter

Measurements

M.1 Ihertia measurenient method

The moments of inertia of the wheel, frame and turntable about their mass cen- .
ters were measured by means of the trifilar pendulum method. Since the objects
are relatively symmetric, the cross products of inertia were assumed to be negligi-

bly small and the three principal moments of inertia were determined for each part.

The equation relating oscillation period of the pendulum to the moment of inertia
of the object is derived below. For practical reasons we used a trifilar pendulum
to perform the experiments, but we will derive the equations for a bifilar pendu-
lum for simplicity, since the results are the same. The oscillation amplitude of
the pendulum is kept small enough to validate small angle approximations for the
angles 8 and 4 shown in Figure M.1.

Vertical force balance:

2T cosy = 2T = mg (M.1)

222
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Torque balance:

—2Trsiny & —2Try= I8 (M.2)
From geometry:
Oy = § fﬁ (M.3)
From equation M.1 to M.3
2
., M
J+ Ty =0 (M.4)

The solution of this differential equation is a sinusiodal function with an oscillation

_[mgr? 2z
‘l_Un—\/ = (M.5)

where 7 is the period of the oscillation. With the mass of the object and the local

frequency of :

gravity constant known, as well as the two lengths I and r, the moment of inertia
is:

I=7 (LYT_”TZ (M.6)

M.2 Center of mass measurement method

The center of mass for each object was determined by finding the locations where

each object would balance when placed on a narrow beam.

M.3 Friction measurements

M.3.1 Longitudinal system friction coeffients

The friction in the drive chains and at the contact point between the wheel and
the ground are nonlinear functions of the rotational speeds. For simplicity it is
assumed that the wheel drive system consists of a Coulomb friction and a viscous
friction component. An approximate value for the viscous friction was obtained

by closing a velocity feedback loop by means of the tachometer mounted on the
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wheel drive motor and commanding various constant speeds in the vicinity of the
nominal wheel speed. The average torque over 100 samples was calculated for
each speed. A linear regression of these data points with the torque values on the
abscissa and the wheel speeds on the ordinate yields a straight line whose slope

gives the viscous friction. The value is recorded in the table of the next section.

The Coulomb friction in the wheel drive system was determined by swinging the
upside down unicycle with the wheel rigidly clamped to a suspended beam. It can
be shown that the envelope of a free oscillation decays linearily for a system with

Coulomb friction only:

From equation N.1 and the upside down unicycle and no applied torque:

Iof = — fwb — mglb — f.sgn(6) Ny
where:
Iy = IF+mprk+ I +mprd 4 a?If (M.8)
mgl = (mprF+ mrrr)g (M.9)
f: = coulomb friction measured in N - m

Since f. > fw équation M.7 can be simplified-to
b4+ 28 mg’ = f“.sgn(a) f° (M.10)

Laplace transform:

2@_390_90+mgle if i (M.11)

where g and 6 is the initial angle and velocity of the free oscillation. The exper-
iment will be performed with 8o = 0 and 8 # 0.

800 "% 7

82 4 w2 T s(s® + wi)

O(s) =

(M.12)
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where

w? = T (M.13)
Iy

The inverse Laplace transform of equation M.12 yields

6(t) = (ao q: mi“gz) cos wyt + mf_;l (M.14)

The amplitude of above time response decays linearily with T%cr during every com-
lete sinusoidal cycle which provides a means of obtaining the Coulomb friction,

fe, from experimental data.

In the present unicycle configuration where we actually measure 9(75), equation M.14

can be differentiated to yield

A — f-c ) .
B(t) = (:1: L2~ 60) wasinw,t (M.15)
In this case the amplitude of the §(¢) response decays with
A
8= . .
A p— Wy (M.18)

during each cycle.

Notice that the undamped natural frequency w,, can also be determined from the

experimental data since the period of the oscillation is

TE ——= — (M.17)

Figure M.2 shows a plot of the experimental data. By means of equation M.16
above, it is calculated that the Coulomb friction for the wheel drive system is

fo=184 N-m (M.18)
and the undamped natural frequency is

Wn

3.63 rad/sec

0.58  hz (M.19)
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M.3.2 Lateral system friction measurements

The turntable friction is measured by closing a velocity feedback loop on the
turntable speed. The position encoder mounted on the turntable drive motor
shaft is used to obtain the speed of the turntable relative to the frame. Various
constant speeds around zero are commanded while the frame is constrained in
movement and the average torque over 100 samples is calculated. When these
data points are plotted with the wheelspeeds on the ordinate and a straight line
is fitted through these data points, the slope of this line yields the viscous friction
and the intercept with the vertical axis gives the Coulomb friction present in the

turntable drive system.

The friction between the ground and the rubber tire is not only very nonlinear,
but also varies with the type of the terrain that the unicycleu is traversing. An
estimation of the ground friction during yaw motions was obtained by a similar
procedure as described above, but in this case the turntable instead of the frame

was constrained from turning.




M.4. MEASURED MECHANICAL PARAMETERS
M.4 Measured mechanical parameters

Wheel:
mw = 2.109 kg

rw = 0.195 m

IV = IV = 0.01888 kg - m? o, 0906
IV = 0.03716 kg - m? o, 0g&e 7
fw = 0.047 N-m per r/s 0.1bb

fe = 0.0245 N-m per r/s

Frame:
Ly wd.a 4+ (oot

Z

mr = 23.18 kg 86’588\63 j

e ey
rr = 0451 m HLE6S ™Y _

b \O‘é’- 2 l-al&
IF = 1.3514 kg - m? \®S3 "‘\gf»},ma iz

IF = 1.5121 kg - m? 15262 Ve’ ) ows

3

IF = 0.3635 kg - m? ouany \e.m®  p3ma

U@'g’bl.r B C)., 007
Uesebid = o,001%
3
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& "“;-,.
f 2
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Turntable:
mr = 24.09 kg 23,00
re = 0.79T m
%
FA
IT = If =0.2928 kg - m? 0,2625 B I,
i /w
I = 0.5028 kg - m? -

fr = 0.0786 N-m per 1/s

Lateral accelerometer height above wheel axle:

rgz = 0.186 m

Longitudinal accelerometer height above wheel. axle:

rrz = 0.635 m

M.5 D.C.motor and gear drive system parameters

Longitudinal System:
Motor Rotor Inertia:

I =452 x 10~* kg - m?®
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Motor Torque Constant:
KIGT —§3x 1072 N-m /A
Lateral System:

Motor Rotor Inertia:

If = 4.377 X 10~% kg - m?
Motor Torque Constant:
KEAT = 33x 1072 N-m /A

' i
0= % GeAr WP w«e;a.\_‘-

n: b Aundedds
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suspension
cable

Vg

vertical

T cos'Y

T = force.
in cable

" —— T e —— . —— i — — e o St —— . —

T sin

-

v

reference line

mg m

in inertial space

W inertia I to be measured

= mass of object

Figure M.1: Schematic Diagram of a Bifilar Pendulum for Measuring the Moment of
Inertia of an Object :
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Appendix N

Continuous Time Longitudinal

Control System

N.1 Longitudinal equations of motion

The longitudinal equations of motion can be found from derivations in Appen-
dices A, B and C. The following assumptions are made to decouple these equa-

tions from the lateral system dynamic equations:

1. The nominal turntable angular rotation speed 5p = 0.

2. The unicycle frame is symmetric about a lengthwise centerline. This implies

that Mm=rg= 0.

With these assumptions, the longitudinal dynamic equations of motion from equa-

tions A.94 and A.95 simplify to:
[F 4+ mprk + IT + merdli + (mprp + morr)rp Q2
= fw(Qo + Q-8+ (mprp +mrrr)gh — Qw (N.1)
[mzrr + merplrwd + [IV + (mw + mp + mz)riy|Q
= fw(a - QQ — Q) + QW (N'z)

232
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The derivations in Appendix A assume that the wheel is driven by a torque Qw
applied directly to the axle. The robot that was constructed uses a gear drive
" - system to drive the wheel. The inertia of the d.c. motor should be reflected to the
wheel as indicated by the dynamic equations K.25 and K.26 for the geared drive
system for the wheel. The modified dynamic equations of motion that include the

finite motor rotor inertia I are:

) -

Ju " Jg. -~ -
(U +mpry + I + merd+ (n — l)zI.f]f -]- [(mpre 4+ morr)rw + n{n — DIFQ

= fw(Q0 H2~@) + (mrrr + mrrr)i8- Qw (N .3~)

[(mgrr + mpre)rw + n(n — DIFG + [V + (mw + mp + mp)rdy, + n2IFQ

= fw(b-2-@)+Qw (N.4)

The constant wheel speed term, g, does not affect the longitudinal system dy-
namics other than causing a constant torque loss due to friction. In practice these
friction losses will be compensated for by increasing the commanded torque to the
drive motors by the required constant value. Qg is therefore ignored in the design

of the longitudinal feedback control system.

Rewriting these equations into state space representation, they become:

Lin hp 0f| 6| | —fw fw Ja|]| ¥ ~1
In Ip o || Q|=| fw —fw O Ql+| 1 |Qw (N5)
0 0 1|4 1 0 0 8 0
Where:
Li=IF +mprk+ IF + merd + (0 - 1)2IR (N.6)
-dyy = Iy = (mprp +mar)rw + n(n — DI (N.7)
Do = IV 4 (mw + mp + mp)rey + n2IF (N.8)

Jiz = ('rn,FrF + mTTT)g (N.g)
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Multiplication of equation N.5 by the inverse of the first matrix containing the
inertia terms, yields the standard state space form of the system of dynamic equa-

tions:

x=Fx+ Gu (N.10)

whereu = Qw and x= [§, Q, 6.

N.2 Longitudinal sensors

A tachometer and an accelerometer are used as the longitudinal sensors.

ic The tachometer is mounted directly on the rotor shaft of the wheel drive motor. It

is actually a digital position encoder, but angular velocity information is extracted
from this sensor by means of the electronic circuitry described in Appendix I. Ifit-
is assumed that the wheel gear drive system has negligible elasticity and backlash,

the tachometer on the motor shaft reads:
wrer = nrer(fo + Q - 6) (N.11)

where nai-,lgr is the known wheel drive system gear ratio, g is the constant nominal
wheel speed and is typically much larger than the wheel perturbation velocity Q2
and the frame pitch rate 6. Sincé iy is known, a measurement comnsisting of a
combination of the two states € and § can be reconstructed in the microprocessor

software:

yp=Q—0 (N.12)

A, The accelerometer design is described in Appendix H. It is mounted on the uni-
cycle frame, with its acceleration sensitive axis in the direction of the forward
motion of the unicycle. With the accelerometer mounted at a height rga above
the wheel axle, it measures a combination of the acceleration due to the pitch of

the frame and the forward acceleration of the wheel of the unicycle. As shown in
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Figure N.1, t.he.signal measured by the accelerometer is proportional to the servo

pendulum control torque:

QuzoT) = ko[98 — (rwd + Tr3f)] (N.13)

The pitch acceleration of the frame and the wheel acceleration are from equa-

tion N.5:
6 = Fi18 + FioQ + Fisf + G1Qw (N.14)

Q= F21é + FooQ) + Fosf + G2Qw (N.15)

By scaling in the microprocessor software and by using equations N.14 and N.15,
the accelerometer measurement can be rewritten in terms of the states and control

input:

Yo = g0—rwQ —rraf
= —(rraFu +rwFa)8 — (TRaFiz + rw F22)Q
+ (9-7rsFi3 — rwF23)8 — (rraGi + rwG2)Qw (N.16)

N.3 Longitudinal system characteristics

The CTRL-C program ’lgtchar.ctr’ is used to calculate the longitudinal system

characteristics.

The results presented in section N.3.1 show the state transition matrix and the
input and output matrices for the system \;vith measured mechanical parameters
ag listed in Appendix M. The eigenvalues calculated show a pair of poles on the
real axis on either side of the imaginary axis. These are due to the pitch instabil-
ity of the frame of the unicycle. The third pole is the rigid body mode which is
slightly shifted from the origin due to the wheel friction.
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The controllability matrix (marked CTR in the print-out) shows that all three
modes are controllable with the wheel torque, Qw . All modes are also observable
from the tachometer and accelerometer measurements. The residue matrix shows
how much of each mode is present in the tachometer and accelerometer measure-

ments.

The program also calculates open-loop transfer functions as shown below., A
frequency response (Figure N.2) of the transfer function from the wheel torque
to the pitch angle, shows that the open-loop bandwidth of the longitudinal system
is a,pproxima.tély 0.75 Hz.

N.3.1 Longit. system characteristics calculation

UCYC6/LGTCHAR. CTR

LONGITUDINAL SYSTEM CHARACTERISTICS

HOR R AR AR oo A A e s AR ol
LONGITUDINAL STATES : THETA.DDT; OMEGA; THETA
CONTﬁDL INPUT : WHEEL MOTOR TORQUE (QW)
MEASUREMENTS : TACHOMETER; ACCELERDMETER

UNITS : METERS, RADIANS, SECONDS

0.6350

FLGT L
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~0.0333
0.1138
1.0000
GLGT
-0.7075
2.4216
0.

MLGT

-1.0000
=-0.0011

NLGT

0.
=0.0230

EIGVAL
=0.0216
7.3232
=7.4486

EIGVEC
0.0000

1.0000
=-0.0006

CONTROLLABILITY, OBSERVABILITY AND RESIDUE MATRICES :

CTR

0.4597

0.0333

54.5447

-0,1138 -151.2607 b

0,

1.0000
0.0011

-0.38620
1.0000
=-0.0494

0.

0. i
4.6700

-0.3592
1.0000
0.0482

237
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0.9659
0.95961

0BS

1.0000
-0.0018

RESIDU

0.4597
-0.0008

1.3620
-0.2294

1.3156
-0.2216

1.3592
0.2267

1.3539
0.22568

TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE Ta TACHOMETER MEASUREMENT

GATN

3.1291

ZERDS

2.8309
-2,8309

POLES

=7.4486

7.3232
-0.0216

TRANSFER FUNCTIDN FROM WHEEL DRIVE TORQUE TO ACCELEROMETER MEASUREMENT

GAIN

=0.0230

ZERODS
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~0.0000 + 9.44571
=0.0000 - 9.4457i
0.0000 + 0. i

POLES =

-7.4486
7.3232
-0.0216

N.3.2 Experimental confirmation transfer functions

‘Before a control system for the longitudinal stabilization can be designed, experi-
ments should be performed to verify that the actual plant transfer functions cor-
respond to the theoretical model. The unstable longitudinal dynamics are difficult
to identify in an openloop configuration. The unicycle was therefore suspended
upside down with the wheel clamped to a beam. Although this configuration can-
not provide information on the influence of the wheel dynamics in the system, it
can be used to confirm certain parameters of the longitudina,l system.

The theoretical model for the upside down unicycle configuration is

I = —fyd — f.agn(8) — mgld + Qw (N.17)
where
_ IF 2 T 2 2fR
Iy = L +mprg+ 1 + meryp+0°l;
mgl = (mprr+ mrrT)g (N.18)

Apart from Coulomb friction, f., the belt and sprocket wheel drive system also
has other nonlinearities like backlash and torque variations due to the imperfect
gear system. A tight velocity feedback loop was therefore closed first to enhance

the system linearity:
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Qw = —kz(f — 42) | (N.19)

so that the closed loop system becomes
Iof = —fwb — fcsgn(é) — kb — mglf + kry. (N.20)

If the velocity feedback gain is large enough the feedback torque will completely
dominate the plant friction effects, so that the transfer function can be approxi-
mated by

Iof = —krb — mgld + kry, (N.21)

Henceforth the tachometer speed command, y,, can be considered as the new
longitudinal system control input. The Laplace transform of this equation gives

@(3) - IGT
ve(s) Ios? +krs + mgl

(N.22)

The state space representation of the continuous time longitudinal system is there-
é’ _k __mgl ok
=TT T | % | (N.23)

# 1 0 8 0

The accelerometer sensor measures the specific force on the frame at a distance

rRra from the wheel axle:
Ya = rRsf + g8 | (N.24)
so that the closed loop system transfer function to accelerometer measurement is

Ya(s) _ _kr(rrss® +9g)
ye(8)  Ios%+ krs+ mgl

(N.25)

The frequency response of this transfer function have the following characteristics
which can be verified experimentally:
— The low frequency gain is g}%
: i x o kpr
— The high frequency gain is LR,

— The zeros are at wz = £ ;% so that the plant should have zero gain at this

frequency.
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— The undamped natural frequency of the poles are at w, = i\/%‘-gi. The
relative positions of w, and w, on the frequency axis will be evident from the

phase behavior of the experimental results.

The proportional tachometer feedback compensator was implemented as a digital
control system in the on board microprocessor of the unicycle. A fast sampling
frequency of 100 hz was selected and a computational delay of 1.2 ms between the
sampling instant and the moment the control command is issued, was measured.

This delay, Ty, was included in the plant model by means of a first order Padé

“ L.
approximation: - T 3\‘ ol u&hﬁ\&ﬂ O :s_n, + X2
_ _Tq '
@ — e_.Tda — e 2 ?
u(s) o s
1-4 8— 2
o b '} (N.26)
1 + —24-3 s 4 Td-

To include the delay in the state space model, an additional state, x4, is defined.

Equation N.26 in the time domain then becomes

2y = —(u—md_)

T = 2zq—1u (N.27)

The original plant & = Fz 4+ G'% of equation N.23, is therefore modified to include
the transportation delay: |

z F 2@ z -G

= | R + U (N.28)

id 2 it/ Pl Zq oy
Qp?. d d
A listing of a CTRL-C program that calculates the discrete time system matri-
ces for equation N.28 as well as the transfer function from the tachometer speed

input command to the measured accelerometer output is shown in the next section.

Sinusoidal tachometer speed commands were generated in the on board computer

of the unicycle and used to excite the system. The accelerometer output signal was
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recorded and a typical input-output time response is shown in Figure N.3. Notice
that some distortion in the accelerometer signal occurs at the instants when the
sign of the acceleration changes. This is probably caused by backlash in the drive
system, which cannot be corrected by feedback since the tachometer is mounted

on the drive motor and not directly to the wheel.

Figure N.4 shows the theoretical frequency response with the measured data points
indicated with squares. The sharp decrease in the gain between 0.6 and 0.7 hz
confirms that the transfer function zero.s are near the theoretical location of 0.63 hz.
The fact that the pha;se first decreases below zero degrees and then has a positive
discontinuity indicates that the undamped natural frequency of the complex pole
pair is at a lower frequency (theoretically (.58 hz) than the zeros. The measured
low and high frequency gains are within 2 dB of the expected theoretical values.
The discrepancies between the measured and theoretical frequency responses are

attributed to the following factors:

— The electronic interface used to extract angular velocity information from
the position encoder on the wheel drive motor (Appendix I) was designed
to provide accurate wheel speed information in the vicinity of the nominal
wheel speed of 3 rad /sec. In the frequency response identification experiments
with the wheel clamped to the suspending be;un, the maximum value of the
sinusoidal speed command was only 0.05 rad/sec so that the resolution of the

velocity information available to the controller, is suboptimal.

- Characteristics of the belt drive system like backlash and elasticity have been
ignored in the linear theoretical model. Although it is assumed that the
control torque dominates the friction effects in the drive system, it is rea-
sonable to expect that at low speeds, frictional characteristics can be worse
and include stiction effects when the speed becomes zero at the apexes of the

pendulum swings.

In spite of these reservations, satisfactory agreement between the experimental
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data and theoretical predictions has been obtained. The conclusion is drawn that
the theoretical model for the upside down pendulum is acceptable. Since the
unicycle parts with major weights and inertias as well as the complete wheel drive
system have been included in the experiment, it is assumed that the model for the

vertical unicycle on its wheel is also valid for small pitch motions.

N.3.3 Upside down unicycle transfer functions

ucycid/pend.ctx

LGT UPSIDE DOWN UCYC WITH PADE APPROX FOR TIME DELAY

e 2 el o e e aje ajeofn ool ook e e e ol ke 2k e o ol g afuoferie e o 3 e ok vk ol e o
LONGITUDINAL STATES : THETA.DOT; OMEGA; THETA; XD
CONTROL INPUT : WHEEL MOTOR TORQUE (QW)
'MEASUREMENTS : TACHOMETER; ACCELEROMETER
UNITS : METERS, RADIANS, SECONDS
TSAMPLTACH =

0.0100
TDELAYTACH =

0.0012
kwwted  CONTINUQUS TIME SYSTEM MATRECES  sewodedcko
FLGT =

1.04+03 »
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~0.0000 =0.0132 -0.0001
0.0010 O, 0.

0. 0. -1,7094

GLGT =

1.0d+03 *

0.0000

0.

1.7094

MLGT =

=1.0000 0. 0.
0.0014 ~-1.4440 a.

NLGT =

0.
0.0288

ddciokks  DISCRETE TIME SYSTEM MATRICES

PHI =
0.9993 -0.1317 -0.0001
0.0100  0.9993 -0.0000
0. 0. 0.0000
GAM =
-0.0004
-0.0000

1.0000

doioekdk  PLANT TRARSFER FUNCTIONS

Heaeokogok

ok
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TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE TD TACHOMETER MEASUREMENT

TACHZERDS =
~0.1325
1.0000
TACHPDLES =
0.0000 + 0. i

0.9993 + 0.03631i
0.9993 - 0.03631

TACHGAIN

3.9984d-04

TRANSFER FUNCTIDN FROM WHEEL DRIVE TORQUE TO ACCELEROMETER MEASUREMENT

ACCZEROS

-0.0000 + 0. i
0.9993 + 0.039341
0.9993 - 0,03931

ACCPOLES =
0.0000 + 0. i
¢.9993 + 0.03631
0.9993 - 0.03631

ACCGAIN =

0.0288

wiokwsx TACHOMETER FEEDBACK LOOP PARAMETERS ( INNER LOOP )  ##kkex
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TACH LOOP PROFORTIDRAL FEEDBACK COMPENSATOR GAIN=KT

25.0
CLOSED TACHOMETER LODP GAIN, ZEROS AND POLES : YACC(S)/TACHCMD(S)
TACHLOOPZE =

0.9953 + 0,03931
0.9993 ~ 0,03931
-0.0000 + Q. i

TACHLODPFD =

0.9937 + 0.035681
0.9937 -~ 0.03681
0.0013 + 0. i

TACHLOOPGA =

0.7150

N.4 Longitudinal control system design

The feedback control system design is performed in three steps:

1. Assume that all states are available to the feedback controller and design the
optimal feedback gains for a linear quadratic regulator.
2. Design an optimal linear quadratic estimator to estimate all the lateral states

from the tachometer and accelerometer measurements.

3. Discretize the continuous time design so that it can be implemented as a

digital control system in the microprocessor on the unicycle.
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A block diagram of the feedback control system is shown in Figure N.5. x is the
state vector [9' © 9)7 and uis the control input torque, Qw. The measured
output vector, yus, is the tachometer and accelerometer signals. It was decided
that the reference input, 1, to the regulator should be a commanded perturbation
of the wheel angular velocity, £2,. This will enable increasing and decreasing of
the unicycle forward speed by external cbmmands. The regulator also features
integral error control to provide zero error to step input commands and improved

rejection of constant disturbances on the plant.

N.4.1 Optimal continuous time regulator design

K it is assumed that all the plant states are available to the controller, an optimal

linear quadratic regulator can be designed to minimize the cost function:
1 f= 7 T
J= 5 (z* Az + u* Bu)dt (N.29)
0

where A and B are diagonal matrices whose diagonal elements are the weights on

the states and control input.

It was decided to introduce feedback of the integral of the error in the wheel
speed. This will ensure good control of the unicycle forward speed and rejection
of constant disturbance inputs on the plant. This introduces an extra state, e,

and from the block diagram in Figure N.5 the closed loop system matrices are:

el 0 H|| e 0 ~1
= + %+ r
| % 0o F|]|=x G 0
€
© = -[C. C] (N.30)
x

where H = [ 0 1 0 ] for integral error feedback of the wheel speed Q.

A CTRL-C program ’lgtlgg.ctr’ is used to calculate the optimal feedback gains for
specified weighting matrices A and B. A print-out of the results of the program is
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shown in section N.6.1. The diagonals of the weighting matrices are called ADIAG
and BDIAG in the print-out and the feedback gains are CERR and CLGT for the

integral error and state feedback gains respectively.

For analysis of the closed loop system, equation N.30 can be rewritien as:

é 0 H e -1
= + | 2, (N.31)
% ~GCy F-GC || x 0 -
. e I
Q= (001 0 (N.32)
X

If the state weighting matrix places a penalty, a, on the error in the wheel speed
only, and the control, u, is weighted by b = 1, a locus of the closed loop poles as
a function of ¢ can be calculated. These closed loop pole locations for values of £
J:'anging from 0 to 10 000 are plotted in Figure N.6. This is essentially a symmetric
rootlocus plot. The low frequency branches of the loci approach the location of
the zero and the reflected non minimum phase zero of % as T approaches infinity.
This constitutes an inherent bandwidth limitation for the unicycle longitudinal
closed loop dynamics with a regulator designed by. the technique of minimizing a

linear quadratic cost function.

For practical reasons the value of ¢ should not be too large, because the state feed-
back gains would be so large that signal saturations in the controller may occur. A

choice of = 30 gives moderate gains and an acceptably fast closed loop response.

Figure N.7 shows the time response of the closed loop system for a step command

to increase the wheel speed by 1 r/s.

The frequency response plot of Figure N.8 shows that the closed loop longitudinal
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sys.tem ha.é a bandwidth of approximately 0.3Hz.

N.5 Process and measurement noise models

In order to evaluate the performance of various compensators, a model of the
process and measurement noise is required. The plant model is modified to include

these random disturbance effects:

g = Fz4+Gu+ Guw (N.33)
Ym = Mz +v (N.34)
_ aj'.,;wtsu
where: g 7 L)

w i a random disturbance vector, with spéctral density>matrix Q

v is a random measurement noise vector, with:spectral density matrix R.

”"_wc:j_bg“;”u

The complete statistical nature of these random noise signals is rarely known in
practice. Since we can usually rely on the inherent band limitation present in
most control systems, it is convenient to assume that w(t) and v(f) are indepen-
dent white noise processes. We now proceed to estimate the ratios of the spectral

densities.

Let
R; = spectral density of the tachometer measurement noise in units of rad? [s.

R, = spectral density of the accelerometer measurement noise in units of m?/s3.

From practical experience with the accelerometers and tachometers that were

constructed, the ratio of the measurement spectral densities is estimated as

R 005 24, 4
R =01 rad“s*/m (N.35)

The principal source of process noise in the plant is the vibrations of the unicycle
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caused by the roughness of the terrain over which the wheel travels.

It is assumed that process noise enters the plant with the same input distribution
matrix as the control torque, i.e. G, = G. In the absence of the exact knowledge
of the statistical nature of the process noise, it is assumed that the spectral density
of Q is much larger than the measurement noise spectral densities. A choice of
;%, which places the estimator poles in the same s-plane region as the regulator

poles is (see Section N.6.1).

}% =20 N?m?s? (N.36)
For the numerical gsimulations in the sections that follow, it will be necessary to

approximate the continuous time purely random gauss-markov processes (with

the spectral densities Q and R given) by discrete time gauss-markov sequences

(with covariance matrices QD and RD). Chapter 11 of reference [Bryson 2] shows
that a good approximation of the continuous random process would be a discrete
gaussian random sequence with a correlation time 7, which is short compared to

the characteristic time constants of the plant, and a covariance (QD) determined

from:
QW)22-T,-QD (N.37)
likewise
Rt) = 2.T,-RD; (N.38)
R.(t) & 2.-T,-RD, (N.39)

The shortest characteristic time in the longitudinal system is about 0.125 sec (
from the inverted pendulum poles at s 2 +8 rad/s. A noise correlation time of

T. = 0.01 sec is therefore assumed, and taken to be the same for all 3 noise sources.
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Even though only the ratios of the various spectral densities are considered during
an LQG estimator design, we need to estimate particular values for these quantities

that can be used in time response simulations. From equation N.16 and the actual
BT
vlues of the coefficients of the states, we see that the accelerometer measurement

Yo & g0 (N.40)

If we assume that the spectral densities of the random noises are reasonably uni-
form from 0 hz to the control bandwidth, we can approximate the noise covariance

by the square of the standard deviation of the signal, eg.

RD, =2 (N .41)

Figure N.7 shows that the maximum pitch angle during a typical manuever is 1

degree. The maximum acceleration is then (from equation N.40):

(yc:)maa: =0.1 m/32 (N42)

Assume that (05 )maz 18 approximately 10% of (¥4 )maz, then

T 0.01 m/s® (N.43)

RD,

(012 =1x10"% m?/s? (N.44)

From equations N.37 to N.39 the tachometer measurement noise covariance and

standard deviation is

RD; = 5x107% rad?/s? (N.45)
ot = VRED,=707x107% rad/s (N.46)

and the process noise covariance and standard deviation is

QD = 1x107% N?m? (N.47)
o, = VQD=316x10"2 Nm (N.48)

The computer language CTRL-C has a function that generates a random number

with normal distribution (0 mean and standard deviation of 1.0) every time it is
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called. Simulation of the noise signals will therefore be performed by using a time
step equal to the 0.01 sec correlation time and then scaling the random number

with the square root of the appropriate covariance.

N.6 Optimal continuous time estimator design

A linear quadratic estimator can be designed to estimate all the states of the lon-
gitudinal system from the accelerometer and tachometer measurements, provided
that we have some knowledge of the degree of uncertainty in the measurements
" and of the degree of intensity of the random disturbances on the plant. The plant
model is modified to include the random disturbance effects on the plant and

measurements:

T = Fz4GutGuw
UYm = Mzt ‘ (N49)

where:

z is the state vector

w is a random disturbance vector

Ym 18 a vector of the measured quantities

v is a random measurement noise vector,

Assume that w(f) and v(t) are independent white noise processes with spectral
density matrices Q and R, respectively. A Kalman-Bucy filter, [Kalman] with
filter gains L, can then be designed for the optimal estimate of the state vector,
&, given by

& = Foi + Gou + L(ym — M%) (N.50)

Ideally the plant model used in the estimator would have the same parameters as

the actual plant, i.e. Fp = F and Gy = G.
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The complete statistical nature of the random plant disturbance vector, w, and
the process noise input matrix, G, is rarely known in practice. By the lack of any
better approximations, the process noise input matrix is assumed to be the same
as the control input matrix, i.e. G, = G. w is then a scalar white ncise process,
whose spectral density, Q, will be selected upon inspection of the symmetric root

locus of the estimator poles.

The spectral densities of the random noise in the tachometer and accelerometer
meastrements can be determined with frequency spectrum analysing instruments.
If we assume that the spectral densities are reasonably uniform from 0 hz to the
control bandwidth, we only need to concern ourselves with the ratio of the two

measurement noise gpectral densities during the estimator design.

The paper by Bryson and Hall in [Leondes] give the Euler-Lagrange equations for
the optimal filter problem as:

I

. . T r Ym (N.51)
A —MTR 1M -F A MTR?

w=—-QGT) | (N.52)

If we take the Laplace transform of the above three equations, and eliminate z(s)

and A(s) we obtain the symmetric rootlocus characteristic equation (SRCE)

I +QZT(~s)R™*Z(s) | = 0 (N.53)

where:

Z(s) = ¥m(s) _ | Ze) | _ M(sI - F)™G,, (N.54)
w(s) Z,,(.s)
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and Zy(s) and Z,(s) are the transfer functions from the process noise input to

tachometer and accelerometer measurements respectively.

If the two measurement noise processes are uncorrelated, equation N.53 can be

rewritten as

1+Q [Z‘(_gtz‘(s) + Z"(_;)GZ“(S)] =0 (N.55)
If we let Z;(s) = %‘-((5}- we can rewrite N.55 as
R
R Nio)Ni(s) + BeNa(=5)Na(s) 6

Q D(~-3)D(s)
The zeros of the symmetric root locus equation above are a function of the ra-
tio of the measurement noise spectral densities. They are called the compromize
zeros because they are located somewhere between the zeros of Z;(s) and Z,(s).

The form of the locus of the compromize zeros as a function of ﬁ{% is shown in

Figure N.9.

The CTRL-C program ’lgtlgest’ is used to calculate the compromize zeros and
estimator poles as functions of R;, R, and Q. The results of this program are

listed in the next section.

The process noise spectral density (@ rer in the print-out) was then chosen so that
the low frequency estimator poles were in the same range as the low frequency

regulator poles.

The Kalman filter gain matrix, L, of equation N.50 is indicated under ESTGAINS

in the print-ount.

The matrix equations that constitute the complete longitudinal system with a full
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order estimator and feedback of the integral error and estimated states can be

summarized as:

i = Fz+Gu+ Gpw (N.57)
¥m = Mz+uv o (N.58)
¢ = Hi—r (N.59)
u = —Cee—Ci (N.60)
i = Fot+ Gou+ L(ym ~ M&) (N.61)

The interconnection of all these equations is shown in the longitudinal system
blockdiagram of Figure N.5. These equations can be represented in matrix form

for analysis and simulation purposes:

i F  -GC, -GC x 0 Gn 0
u}

el=1] o 0 H e |[+| -1 [r+] 0 o
. v

& IM —GoC. Fo—-GoC—-ILM || & 0 0 L |
(N.62)

The eigenvalues of the system matrix above are the same as the eigenvalues of the
regulator and the estimator if 3 = F, and G = G. If the initial estimate of the
state vector is the same as the initial state vector, the step response of this system
will be the same as the response for the full state feedback system of Figure N.7.
An example of the response when 6(0) = 0.1 rad,but the initial estimate §(0) =
0 rad is shown in Figure N.10. It can be seen that large excursions of the plant
states occur initially because the control commands are issued based on the wrong
estimates of the plant states. As the LQG estimator improves its estimates of the
plant states, the wheel speed approaches the commanded value of ), = 0 and the
frame is held vertical ((0) = 0 rad).

The performance of the closed loop system in the presence of measurement and

process noise was evaluated. The plot of Figure N.11 is generated with the initial
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state estimate the same as the initial plant state and noise inputs as described in

section N.5.

N.6.1 LQE gain calculation program
UCYC6/LGTLOG. CTR

ANALOG LONGITUDINAL CONTROL SYSTEM WITH FULL CGRDER LG ESTIMATOR

kot et o ke e ol ok ke s sk ok ol e ok sl ol sk ok skl ook ok ok **

LONGITUDINAL STATES : THETA.DDT; OMEGA; THETA

CONTROL INPUT : WHEEL MOTOR TORQUE (QW)

MEASUREMENTS : TACHOMETER; ACCELEROMETER

UNITS : METERS, RADIANS, SECDNDS

wxpdk  CONTINUQUS TIME PLANT MATRICES &~ &¥%%%

FLGT =

-0.0333 0.0333 54,5447

0.1138 -0.1138 -151.2607

1.0000 0. 0.

GLeT =

=-0.7075

2.4216

0.

GNDISELGT =

-0.7075
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2.4216

MLGT =

~1.0000 1.0000 0.
~-0.0011 0.001%1 4.6700

NLGT =

a.
—-0.0230

*xxk: MATRICES FOR INTEGRAL ERROR FEEDBACK CONTROL  kaak
EXTENDED STATE VECTOR IS : OMEGA.ERR; THETA.DOT; OMEGA; THETA
FINT =
0. 0. 1.0000 O,
0. -0.0333  0.0333 54.5447
0. 0.1138 -0.1138 -151.2607
o, 1.0000 0. 0.
GINT o=
~0.7075
2.4216
#hkdk  REGULATOR DESIGN  #skskon

COST FUNCTION WEIGHTING FACTORS ON STATES AND CONTROL :

ADIAG o=
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30.0 0. 0. Q.

BDIAG - =

1.0

CPTIMAL INTEGRAL ERROR AND STATE FEEDBACK GAINS

CERR ' =

~-5.4772

cLa?l =

-47.6924 -6.8830 -228.2964

REGPOLES

-1.2208 -~ 1.000561
-1.2208 + 1.000B1
-7.3891 + O,.729531
-7.3891 -~ 0.72951
#kgkke  ESTIMATOR DESIGN  #wwsx

PROCESS AND MEASUREMENT NOXSE SPECTRAL DENSITIES :

QLeT =

1.0
RLGT =
0.0500 0.
0. 0.1000

XYER FN, ZEROS FROM PROCESS NOISE INPUT TG TACHOMETER & ACGELEROMETER DUTPUIS :
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TACHZERDS =

2.8309
=2.8309

ACCZEROS =

-0.0000 + 9.44571
-0,0000 -~ 9.4457i

0.0000 + 0. i
PLANTPOLES =
~7.4486
7.3232
-0.0216

COMPROMIZE ZEROS FOR SYMMERIC ROOTLOCUS OF ESTIMATOR :

COMPRZEROS =

192.0571
~192.0571
3.,0991
2.5927
-3.0981
-2.5927

OPTIMAL ESTIMATOR GATNS AND ESTIMATOR POLES :

ESTGAINS =

~6.3092 0.6621

15.7493 -1.0452
-0.7363 0.1181
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ESTPOLES =

-1,5074 - 0.00001
-4,4218 + 0.00001
-16.8260 - 0.00001
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4 a5 (vertical)

for forward pitch :8> 0
 EEEEEEE— | pendulum control torque
Q p (LGT) > O

Pendulum position for forward acceleration

if no control torque of the frame;

had been applied (1) ( 7 Q+ Tpq 8) >0
i
]
1

pendulum control torque
Q p (LGT) < 0

F
G
direction of r

frame acceleration

The output signal from the servo accelerometer is proportional to
the total pendulum control torque: Qp(LGT)= ka[ge - (rwfz + I3 .e' )1

Figure N.1: Longitudinal Accelerometer Measurement
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LEONGITUDINAL PLANT @PENLBEZP FREQUENCY RESPBNSE

'30, L T ™7 ~T T L T —T T T T T T T T T

s N

N\
e

-70.

-80. T . L N Lo .

104 1073 107° 1071 109 101
frequency (Hz)
INPUT : WHEEL T@RQUE : BUTPUT =« PITCH ANGLE
100, ———

80. \\
60. \
. A\

20. \\
oobreo ol 1 T
1074 1073 1072 107! 10° 1ol

frequency (Hz)

Figure N.2: Openloop Frequency Response of ﬂ%(v%f
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INPUT FREQUENCY = 0.2 HERZ
0.12 M/Aﬁﬁik ' , /A%ﬁék\
0.10 /// \\% //;ZLID :\\%\

’ \ , SIINE FIT \
(- \
ACCELERD- \\ DasHED| =
0. 08 AEEE

METER SIGNAL . ME ASURED \\\\ )///
+/1 - r
0.06 ‘ 4 LA
0 ael A\ AN\

ol /

0.0

TACHPMETER \\ ' X\
- 0o | COMMAND

S 1GNAL \ / - | \ /
-.04 \// - | \//

0. 1. 2. 3. 4, 5. 6. 7. 8. 9. 10.
time(s)

=

TachCmd(rad/s) ; Yacc(m/s#%2)

Figure N.3: Typical Time Response During a Transfer Function Indentification Test
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UPSIDE D@WN UCYC CLE@SED LREP FREQUENCY RESP@NSE

0.0
M [
-5, | ﬁﬂZA‘ P s
/ﬁn SELID L[INE =
-10.
[ | | THEBRETICAL RESPONSE
_15. ol
]
RECTANGLES =
-20.
MEASURED RESP@NSE
-25, L ‘ i ' Io
frequency (Hz)
INPUT ¢ TACH CMD = QUTPUT ¢ YACCEL -
100.
50. A
E}WKELB\J

h

0. 00 F=——o

" \c
-100.

-150.

1 1 10

frequency (Hz)

Figure N.4: Theoretical and Measured Frequency Responses for the Upside Down Uni-
cycle
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‘ X
§=Fx+GuHMw

REGULATOR

ESTIMATOR

' Figure N.5: General Feedback Control System Blockdiagram



Imagiary

266 APPENDIX N. CONTINUOQUS TIME LONGITUDINAL CONTROL SYSTEM

SYMMETRIC R@87T LBCUS @F LBNGIT. SYSTEM

10. \
9

RN

14, -12. -10.  -8. -B. -4, -2,
Real

Figure N.6: Symmetric Rootlocus of the Longitudinal Closed Loop System for values
of # ranging from 0 to 10 000
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RESPONSE WITH FULL STATE FEEDBACK

267

1.6 T
4. QW
t N
1.4 ‘,' \.
! \
' \
1.2 ; .
! .
J Y
1.0 AN
\ .\
AW
0.8 r'll / '\'
:! Vool
0.6 l' \L \.
] ‘! \.\.
('l I
i v
C.4 ';1 Y L
/ o
f AR
a5 / () \ N
' ! SN,
!! N 4
. N
/! ~ o~ I R
0. 0 g=r R S e e T
N Qc’ommand =1 r/9 STEF
P! ,
-0.21
a.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 8.0

time(s)

Figure N.7: Step Response of the Longitudinal Closed Loop System with Full State

Feedback _
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FREQ. RESPONSE WITH FULL STATE FEEDBACK
C.0

- 10.

-15.

-20

.01 . 1

INPUT : BMEGA-C@MMAND ; QUTPUT : BMEGA

-50. : '

[

~

-100. P

-130.

-200. ' ' \

-250

.01 .1

frequency (Hz)

Figure N.8: Frequency Response of the Longitudinal Closed Loop System with Full
State Feedback
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LOCUS BF COMPRBOMIZE ZEROS VS. RT/RA
15. _ '

1 O P e

—

0. 0¢—e— ' —@4—@—-—@—-@3

s N

30.

-10.
-15,
-30. -25. -20. -15. -10. -5. 0.0 5. 10. 15. 20. 25.
Real
Pp = plantpole
P, = reflected pole
agtimator pola Im ,
ectimater pels locaticns for A Z, = Ccompromize zZero
lowations :o:g- =0 L <00 [0 = estimator pele
R, l R.
PPy Z. Zc¢ BB, Zo  Zg

Re

SYMMETRIC ROOT LOCUS OF THE ESTIMATOR POLES vs. Q/Rt

Figure N.9: Symmetric Root Loci of the Compromize Zeros and Estimator Poles
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RESP@NSE WITH FULL BRDER ESTIMATER

20,
QW
15, |
Actlual ®(Q) =| 0.1 rad while
0 Tnitial Estimated|States}all Zerlo
K i
5., [

-5 \@/ i
\ / .
-10, | : :
-10. - , '
0. 1.0 2.0 . 3.0 4.0 5.0 6.0

time(s)

Figure N.10: Response of the Longltudma.l System with a Full Order Estimator with .
6(0) = 0.1 rad
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RESPUNSE WITH FULL BDRDER ESTIMATOR

1.6 |
N
Qj\/\/—!t
’ AL\ ]Hl
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' |
|rr Ai'l
> 1.2 : .
I |
f \ Q
1.0 VAN A Sl b %\J
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o
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\
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! \: \p;" f‘\ Vol Afy I /
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T T f!

; I )\ iy “\
z \"r A
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Figure N.11: Step Response of the Closed Loop System with a Full Order Estimator
v and Measurements Corrupted by Noise



Appendix O

Discrete Time Longitudinal

Control System

0.1 Sampling rate selection

The continuous time compensator designed in the previous section must be dis-
cretized for implementation as a digital control system in the on-board computer
of the unicycle. The selection of the best sample rate for the digital computer is
a compromise among many factors. First of all, the sample period must be long
enolugh to allow all the control calculations for the longitudinal and lateral control
systems to be completed. The sampling theorem states that in order to recon-
struct an unknown band-limited continuous signal from samples of that signal, the
sample rate f, must be at least twice as high as the highest frequency contained
in the unknown signal. We can consider the input signal to a digital controller
to have a spectral content up to the system’s closed loop bandwidth, f.. The
longitudinal closed loop system has a bandwidth of less than 0.5 Hz, so that the
fund amental lowef bound on the sampling frequency should be approximately 1
Hz. In order to have acceptable tracking effectiveness of the reference input com-

mand, good regulation during random disturbance inputs and rejection of errors

due to measurement noise, it is customary to use sampling rates of at least an

272
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order of magnitude greater than this value. (Refer to chapter 10 in [Franklin]).
Experiments with the microprocessor mounted on the unicycle have shown that
all the control system calculations can be done in less than 25 milliseconds. A

sampling frequency of 40 Hz is therefore chosen, i.e.

Tsample = 0.025  sec. (0.1)

We can associate a pure transportation delay of approximately one half of a sam-
ple period with the sample and zero-order-hold (ZOH) device which converts the

analog plant signals for input to the microprocessor.

]

Gzom(s) =€

where s is the Laplace operator.

The phase shift added to the openloop system due fto the sampling process is
caluculated, because it can decrease the phase margin of stability significantly if
the sample rate is too low. At the closed loop bandwidth (fpW) of approximately
0.5 Hz, the phase la.g due to the ZOH is

®zop = “EWliwmsle |

= W}r’lﬁ =225 degrees

This small phase lag should not have a serious effect on the system stability.

0.2 Equivalent discrete LQG compensator

0.2.1 Discrete time regulator

A discrete time regulator with integral error feedback of the wheel speed, 2, can be
designed by first discretizing the continuous time plant matrices of equation N.30,

using the sample time 7} defined in the previous section:

T»

e(k +1) 1 H. || ek) T W (02

= . +| - u(k) +
z(k+ 1) 0 z(k) r
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where {z(k) = 4(k) Q(k) 6(k)F
and r(k) is the reference input.

The measured outputs are
ym(k) = Mz(k) + Nulk) (0.3)
Simpify equation 0.2 to:
ik +1) = @Srz1(k) + Cru(k) + Torr(k)
[e(k).. é(k). Q(k) . e(k)]? ..(0.4)

_ where  zy(k)

The continuous time cost function of equation N.29 can also be converted to
an equivalent digital performance index as described in Appendix D of reference

[Bryson 1].

Given the continuous time performance index
[=~]
J= .12. f (2T Az + T Bu)dt . (05)
0

the CTRL-C program ’lgtdlqg.ctr’ uses the algorithm by Van Loan [Van Loan]to
calculate the weighting matrices in the discrete time performance index below,
which will produce the discrete closed loop system whose performance is the same
as that of the original continuous time system.

oo ' AD ND z1(k

Ip = 3 lF (0T (8] ) (0.5)

k=0 NDT BD u(k)-
The QZ algorithm in CTRL-C does not currently support the cross terms ND in
the cost function above, but if we transform the system in equation 0.4 to

er(k+1) = (&7-T;BD 1. NDT)zs(k) + Iru(k) (0.7)
u(k)

u(k) + BD™Y . NDTz (k) = —Ca (k) (0.8)

the cost function of equation 0.6 becomes

Jo = > ef(k)(AD— ND-BD . NDT)o (k) + a7 (k)BDu(k)
k=0
(0.9)

S
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We can now use the standard QZ algorithm to solve for the regulator feedback
gains C of the system of equation 0.7 and modified cost function of equation 0.9.
The desired feedback gain for the regulator u(k) = —Crz (k) is then from equa-
tion O.8:

Cr=C-BD'NDY (0.10)

A print-out of the results of this program is shown in section 0.2.3. The optimal
feedback control law, with all states available, is:
(k)
u(k) = —Cee(k) — C | Q(k) (0.11)
o(k)

A pole mapping of the continuous time regnlator poles of section N.6.1 by means
of the z-transformation, z = 7, confirms the locations of the equivalent discrete
time design’s regulator poles as indicated in the print-out listed in section 0.2.3.
The step response of the discrete plant shown in Figure 0.2 is also the same as

the continuous system step response of Figure N.7.

0.2.2 Discrete time estimator

A discrete equivalent of the continuous time estimator of section N.6 is designed to
estimate the plant states from the twosampled data measurements of the tachome-

ter and accelerometer signals.

The spectral densities of the process and measurement noise inputs, Q@ and R of
the continuous time system must be converted to covariance matrices QD and RD
for the digital estimator. Appendix D of reference [Bryson 1] shows that QD can

be found using duality of the regulator performance index design conversion.

The measurement noise input v4(t) to the discrete time estimator is a sample of

the random white noise input v(2) of equation N.49. For the discrete time system
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we should rather model #(t) as colored noise with a variance V and a correlation

* time T}, that is small compared to the shortest time constant of the plant. w(¢)

could be generated by the first order system
To() + v(t) = n(2) (0.12)
where n(t) is a white noise process with spectral density
R=2VT, (0.13)

If we discretize the shaping filter of equation 0.12 with the sample period of T,

we have

vk + 1) = e ug(k) + ng(k) (0.14)

and the variance of the purely random sequence ng4(k) is

RD=V [1 - e—%"‘":‘] | (0.15)

as derived in reference [Bryson 1].

If V is eliminated between equations Q.13 and 0.15,

2T,
¥
ED = *—pr— R (0.16)

The elements of the RD matrix were therefore chosen proportional to the elements
of the given spectral density matrix, R, as a function of the correlation time T,
and the sampling period T,. The choice of values for 7, and T, was motivated in
sections N.5 and Q.1 respectively.

A print-out of the discrete time matrices is given in the next section. It shows the

optimal closed loop estimator eigenvalues and the Kalman filter gains, L,‘ where

Ek+1)
3(k)

®2(k) + Tu(k) (0.17)
5(k) + Llym(k) — ME(k) - Nu(k)] (0.18)

1l

Il
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Equation 0.17 is known as the time update of the Kalman filter and equation O.18
is called the measurement update. Substitution of 0.17 into O.18 gives the pre-

diction estimator equation
Ek+1)=®[I—- LM)z(k) + ®Lym(k) + [I' — @LN]u(k) (0.19)

The optimal prediction estimator poles are therefore given by the eigenvalues of
®[I - LM].

The integral error state which is shown as part of the plant system of equations 0.4

is actually part of the compensator,

Therefore let
e(k + 1) = e(k) + HoZ(k) + Leu(k) + T'pr(k) (0.20)

where
H, = &;(1,2:4) (0o
T, = Tfl) (0.22)

The regulator feedback law is |
u(k) = —Cee(k) — Cz(k) (0.23)

Equations 0.19, 0.20 and 0.23 can now be combined to form the compensator

system matrices

e(k+1)} - TURG He—'I‘GC } [ o(6) :l

F(k + 1) | (BLN -T)C. @[I-LM]+[2LN--TIC || 2(k)
10 s [ o ] r(k) (0.24)
| 8L 0 :
| e(k)
u(k) = —[C, C (0.25)
(G ] L(k)} -

A block diagram of the discrete time closed loop system is shown in Figure O.1.

The closed loop system matrices are obtained by using the plant equation z(k+ 1)
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= ®z(k) + Tu(k) and eliminating u(k) and 3, (k) from this equation and the

compensator equations:

a(k+1) & -TC. _rc 2(k)
Z(k +1) | #IM -TC. @[I-LM]-TC || z(k)
+ T, | r(k) (0.26)
0

If the initial estimate of the state vector is the same as the initial plant state
vector, the step response of this system will be the same as the response for
the full state feedback system of Figure 0.2. An example of the response when
8(0) = 0.1 rad, but the initial estimate §(0) = 0 rad is shown in Figure 0.3. It
can be seen that large excursions of the plant states occur initially because the
control commands are issued based on the wrong estimates of the plant states.
As the LQG estimator improves its estimates of the plant states, the wheel speed
approaches the commanded value of Q; = 0 and the frame is held vertical (§ = 0
rad).

0.2.3 Optimal regulator and estimator gains

DISCRETE LONGITUDINAL LQG DESIGN

ol kR

LONGITUDINAL STATES : THETA.DOT; OMEGA; THETA

CONTROL INPUT : WHEEL MOTDR TORQUE (QW)

MEASUREMENTS : TACHOMETER, ACCELEROMETER
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UNITS : METERS, RADIANS, SECONDS
*¥scden CONTINUOUS TIME SYSTEM MATRICES sk
FLGT =
-0.0333 0.0333 54,5447
0.1138  -0.1138 -151.2607
1.0000 0. 0.
GLGT =
-0.7075
2.4216
0.
GNDISE =
-0.7075
2.421¢6
0.

MLGT =

~1.0000 1.0000 0.
~0.0011 0.0011 4.86700

NLGT =

0.
-0.0230

*xdioex CONTINUQUS TIME SYSTEM MATRICES WITH INTEGRAL ERROR FB ##ad#*

EXTENDED STATE VECTOR IS : OMEGA.ERR; THETA.DOT; OMEGA; THETA
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FINT -
0. 0. 1.0000 0.
0. -0.0333 0.0333 54,5447
Q. 0.1138 -0.1138 -151.2607
0. 1.0000 0. 0.
GINT =
-0.7075
2.4216
GREFIRT =

-1.0

0.
0.

+ WEIGHTING FACTORS FOR OPTIMAL CONTINUOUS TIME REGULATOR *
ADIAG =

0.0 o. 0.  o.
BDIAG =

1.0

* PROCESS AND MEAS. SPECTRAL DENSITIES FOR CONTINUOUS SYSTEM *

QLGT

1.0
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RLGT =
0.0500 0.
0. 0.1000

#kkknk DISCRETE TIME SYSTEM MATRICES ##¥wi#

TSAMPLE =

0.0250

PHE =

1.0162

-0.0445
0.0251

=0.0178
0.0607
~0.0002

* DISCRETE TIME SYSTEM MATRICES WITH INTEGRAL ERROR FEEDBACK *

PHIINT =
1.0000 =~0.0004
0. 1.0162
0. =0.0445
0. 0.0251
GAMINT =
0.0008
-0.0178

0.0607

0.0008
0.9971
0.0000

1,3692
=-3.7957
1.0171

0.0250
0.0008
0.9971
0.0000

-0.0473
1.3692
-3.7957
1.0171

R

[N

281
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~-0.0002

GAMREFINT = =

-0.0250

0.

* DISCRETE OPTIMAL REGULATOR COST FUNCTION WEIGHTING MATRICES =»
AD =
0.7500 -0.0001 0.0094 -0.01i8
=-0.0001 0.0000 -0.0000 0.0000
0.0094 -0.0000 0.0002 -0.0002
-0.0118 0.0000 -0,0002 0.0003
KD =
1.04-03 =*
0.1893
=0.0000
0.003b
=0.0054
BD =
0.0250
# DISCRETE REGULATOR FEEDBACK GATNS FUR.ERRUR AND STATES =*

CERR =

-4.4247
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CLGT =
-41.0670 -5.6284 -201.8878
* DISCRETE REGULATOR POLES *
REGPOLES =

0.8312 + 0.01621

0.8312 - 0.01624
0.96%6 + 0,0243i
0.9696 - 0.0243i

* DISCRETE SYSTEM PROUCESS AND NOISE COVARIANCE MATRICES *
QD =
0.0126 -0.0431 0.0002

=0.0431 0.1474 -0,000b
0.0002 -~0.0005 6.0000

2.5000 0.
0. © 5.0000

# CURRENT ESTIMATOR GAIN MATRIX =*
LLGT L
=0.11565 0.0126
0.2900 ~-0.0193
~0.0138 0.0023

* PREDICTION ESTIMATOR GATN MATRIX : LPRED=PHI*LLGT =

LPRED =

A8 -

)
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-0.1360
0.3465
-0.0169

* PREDICTION ESTIMATOR POLES *

ESTPOLES

0.6780
¢.8922
0.9654

0.0160
~0.0286
0.0027

+ 0.000031
- 0.00001
+ 0.0000i

* CLOSED LOOP SYSTEM POLES *

SYSPOLES

0.6780
0.8312
0.8312
0.8922
0.96564
0.9696
0.9696

= 0.00001

+ 0.01523

- 0.01521
+ 0.0000i
= 0.0000i
- 0.0243i
+ 0.0243i

sdxkdk  COMPENSATOR

ACOMP

1.0034
-0.0769
0.2657
-0.0007

BCOMP

0.0308
0.1663
2.7681
0.0017

MATRI.CES

0.0292
0.0389
0.9887
0.0160

Fkkok

0.1056
~2.2157
8.46156
0.9723

[En———
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0.

~-0.1360

0.3465

-0.0169

CcoMP

4,4247

DpcomMp

0.

0.0160
-0.0286

0.0027

41.0670

=-0.0250

0.

5.6284 201.8878

MODAL FORM OF COMPENSATOR :

COMPENSATOR INPUTS :

[ YTACH(K)

YACC(K) REF(K) ]

COMPENSATOR OUTPUT : QW(K) = WHEEL TORQUE

AMODAL

-0.0564
0.0000
0.0000
0.0000

BMODAL

4.6483

0.0806

0.2574

=-1.2481

CHODAL

~1.1031

=0.0000
0.9314
0.0000
=0.0000

-0.5677
~0.0051
=0.0476

0.2868

~2.1475

0.0000
0.0000
1.0011
0.0000

0.0521
=0,0008
=(.2436
~0.0448

~0.0305

0.0000
0.0000
0.

1.2545

1.3899

285
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DMODAL

SYSPOLESH

6780
.8312
.8312
.8922
.9664
.9696
. 9696

S o o o O O O

NOMINAL WHEEL SPEED DURING STEADY STATE :

OMEGAQ

3.0

STEADY STATE VALUES OF ESTIMATOR STATES XI(1) THROUGH XI(4) :

II

13.3487
3.4916
-38.7489
15.2396

STEADY STATE VALUE OF CONTROL TORQUE:

aw =

0.141

0. i
0.0152i
0.01524
0.00004
0. %
0.02431
0.02431
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0.3 Modal decomposition of LQG compensator

The number of numerical calculations can be significantly reduced if the compen-
sator of equations 0.24 and 0.25 is transformed to modal form. Implementing

the compensator in this form is also numerically less sensitive.

Rewrite the compensator as

-

mc(k + 1) = Aczc(k) + B, ym'(k) (0'27)
] r{k) ]
| |
u(k) = Cauk)+D.| " (0.28)
] r(k) ]
where
0 -1
B = [ ] = [B, B (0.29)
®L 0 |
Let the modal coordinate state vector be £(k), then
ﬁ(k) = Tf(k) = f(k) = T_l.'l?(k) (0.30)

where T is a non-singular transformation matrix, whose columns are the right

eigenvectors of A, above.

With this transformation applied to equations Q.27 and O.28 the modal form of

the compensator becomes

Ek+1) = Anf(k)+ Bm ym (k) (0.31)
| (k)
[ ]

u(k) = Cné(k)+ D 'f’(’;()k) (0.32)
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where

A, = T AT

B, = TB.
Cm = CcT
D, = D, (0.33)

Ap, is a diagonal matrix if A, has no repeated eigenvalues. The values of the
compensator matrices in modal form are listed at the end of Section 0.2.3.

Notice that since D, = 0,
u(k) = Cré(k) (0.34)

The closed loop system with the compensator in modal form then becomes

z(k+1) _ ¢ I'Cr z(k) + 0 (k) (0.35)
E(k+1) BM An+ ByNCp, £(k) B,
The compensator is implemented in the on-board microprocessor of the unicycle,
using the FORTH [Mach2] programming language. Since calculation of the control
torque command takes up approximately 25% of the sampling period, a prediction
compensator is implemented to calculate the correct control command at the next
sampling instant, based on measurements a,f the present sampling instant. The

algorithm is summarized below:
— At the sampling instant, issue the control torque command u(k) that was
calculated during the previous sampling period, to the wheel drive motor.
— Read the sensors to obtain yn, (k) and r(k).
— Update the compensator states by using equation 0.31:

ym(k)

r(k)
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— Calculate the control command for the next sampling instant, u(k + 1), by
using equation O:32;

u(k + 1) = Cné(k + 1)
— Wait for the next sampling instant and then repeat the loop.

In order to start the longitudinal system with minimum transients in the control
torque the best estimate for the initial values of the estimator states should be
used. The unicycle is first brought up to the nominal speed Q¢ by using feedback
of the tachometer signal only. No attempt is made to stabilize the unicycle during
this phase, and the operator holds the unicycle as vertical as possible during the
speed-up phase. The plant model simplifies to a first order system

[BY + (mw + mp + mr)riy 2+ fwQ = Qw (0.36)

with the coefficients as defined in Appendix M. A PID compensator with integral

error feedback control was designed, with the transfer function
Z— 2t
Qw(z) = Kr——[Rema(2) — 2(2)] (0.37)

K; = 16 and z; = 0.9 gives a good time response of the longitudinal system dur-

ing the phase where the wheel speed is accelerated to the nominal operating speed.

The initial values for the plant and estimator states when the nominal operating
speed is reached, can be calculated from equation 0.35 by noticing that in this

steadystate condition

o | _| ek _te® | sm=0  (038)
£o §k+1) £(k)
so that
-1
ol _ | _|® TCm ° oy (039)

& BM An+B,NCn | B,
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whence we find & that should be used to initialize the compensator states in the

on-board computer.

A listing of the FORTH code that implements the longitudinal control algorithm

is shown in Appendix P.

0.4 Pole-zero compensator with accelerometer sen-

sor

Control systems designed by successive loop closure techniques not only produce
compensators of low order, but usually have better robustness to plant variations

than LQG designs.

We will use the same sampling period as for the LQG design. The CTRL-C pro-
gram ’lgtdtach’ is used to design the controller and a listing of the program is
shown in the next section. The on board microprocessor on the unicycle takes
a finite time, Ty.}q,, to complete all the calculations for the compensator. This
delay is incorporated in the plant model as a pure transportation lag by means
of a first order Padé approximation before the plant is discretized. Section N.3.2

describes how this adds an additional state to the plant state space model.

The first loop closure in the compensator design is a proportional feedback of the
tachometer signal. Figure 0.4 shows the rootlocus of the tachometer feedback loop
as a function of the feedback gain K;. We would like to select K; as large as possi-
ble since this would decrease the nonlinear effects of stiction, Coulomb friction and
friction variations due to the eccentricities in the gears of the wheel drive system.
Figure O.4 also shows that there is an upper limit on the magnitude of K; be-

cause the damping in the tachometer feedback loop can become unacceptably low.
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The accelerometer feedback loop is closed next. Since an unstable pole is present,
a compensation pole is placed close to it outside of the unit circle. A compensation
zero is also placed just inside the unit circle to draw the rootlocus into the stable
region of the z-plane as shown in Figure O.5. Notice that there is a ra.ﬁge of loop
gain values, K, for which the closed loop system is stable. The lower bound on
K, is determined by the gain for which the low frequency locus enters the unit
circle and the upper bound by when the high frequency part of the locus leaves
the stability region. Without careful compensator design it can happen that the
damping on the low frequency closed loop poles is not yet sufficient before the
damping on the high frequency poles become unacceptably low. The final design
of the compensator was obtained through iteration and inspection of the closedl

loop step response.

In order to simulate the time response of the closed loop system the compensator
was modeled as shown in the block diagram of Figure 0.6. The block diagram
shows a first order compensator in the tachometer loop for greater generality, but

it can be changed to a proportional feedback controller by letting p; = z; = 0.

The plant equations are

z(k+1) ®z(k) + Tu(k) (0.40)
yn(k) = Ma(k)+ Nu(k) (0.41)

I

where yn, (k) is the measured tachometer, y,(%), and accelerometer, y,(k).

The compensator matrices are

sk +1) | _ | 2 Ka(pamz) [ | @l®) | | -1 K || we(®)
ma(k+1) 0 p, 1| =) 0 -1 Ya(k)
r A
K, K,
+ r(k) (0.42)
K,
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ar

&k +1) = Aci(k) + Betim(k) + Rer(k) (0.43)

wB) = [Kupe ) KKolra—2)] [mt(k)] I [yt(k)}

ma(k) ya(k)
+ [KiEK K (k) (0.44)
u(k) = C.&(k) + Dcym(k) + S.r(k) _ (0.45)

The value of K, is selected so that the transfer function from (k) to §2(k) is unity
in steady state:

. ba(k) 2= 2
Im Ty = mEKe—
= K KaiT%e (0.46)
- i ul""pa - .
so that K, must be
_ 1 .1_pa
K= 1 (0.47)

We can now combine the plant equations 0.40 and O.41 with the compensator

equations 0.43 and Q.45 to obtain the closed loop system eguations:

l 2(k+ 1) } _ [e+rpam re.+panc) } [ 2(k) }

gk+1) | B.JM A.+ B.JNC. 2(k)
T(S.+ D.JNS.,
+ (S + ) (k) (0.48)
R.+B.JNS, | \
where
J=[I-NDJ™? (0.49)

Figure 0.7 shows a step response for a 1 r/s command in wheel speed. Figure O.8

shows the loop gain and phase versus frequency of the longitudinal system.

L
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0.4.1 Successive loop closure compensator parameters

UCYC9/LGTDTACH.CTR

LGT DISCRETE COMPENSATOR DESIGN WITH PADE APPROX FOR TIME DELAY

s sl e o o e el oo ke Sl ol o e e el g ook e i o s s s ofe e ok o o e #kk okt ok
LONGITUDINAL STATES : THETA.D&T; OMEGA; THETA; XD
CONTROL INPUT : WHEEL MOTOR TORQUE (QW)
MEASUREMENTS : TACHOMETER; ACCELERDMETER
UNITS : METERS, RADIANS, SECONDS
TSAMPLE - =

0.0250
TDELAY =

0.0050
#kkkdk  CONTINUDUS TIME SYSTEM MATRICES ks
FLGT =

~0.0333  0.0333 54.5447 ~1.4149

0.1138 -0.1138 -151.2607  4.8433

1.0000 0. 0. 0.

0. 0. 0. -400.0000

GLGT =
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0.7075

~-2.4216
0.

400.0000

MLGT =

-1.0000 1.0000 0. 0.
-0.0011 0.0011 4,6700 0.

NLGT =

-0.0230
sk DISCRETE TIME SYSTEM MATRICES skak*x
PHI =
1.0162 0.0008 1.3692 -0.0036
=-0.0445 0.9971  -3.7957 0.0122
0.0251 0.0000 1.0171  -0.000t
0. 0. 0. 0.0000
GAM =
-0.0142
0.0485
-0.0001
1.0000
#xk#¥*  PLANT TRANSFER FUNCTIONS &%k«

TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE TO TACHOMETER MEASUREMENT

TACHGAIN =
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0.0627 + 0.00001

TACHZERQOS

1.0733
0.59317
-0.2488

TACHPDLES

1.2009
0.9995
0.8301
0.0000

TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE TO ACCELEROMETER MEASUREMENT

ACCGATN

0.0230

ACCZERDS

1.0035
1.0000
1.0035
=-0.0023

ACCPOLES

1.2009
0.993b
0.8301
0.0000

TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE TO WHEEL SPEED ( OMEGA )

4

+=

+

0.00001
0.00003%
0.00003
0. i

0.00001

0.23591
0.00001
G.23594
0. i

0.00001
0.00001
0.00001

0. i
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OMGGAIN =

0.0486 + 0.00004

0MGZEROS =
1.0838
0.9227
=-0.2488

OMGPOLES =

1.2009

0.00001
0.9995 + 0.0000i
0.8301 - 0.00001
0.0000 + 0. i
*¥dksx+ TACHOMETER FEEDBACK LOOP PARAMETERS ( INNER LOOP )  skoksk
TACH LOOP PROPORTIONAL FEEDBACK CDMPENSATOR GATN=KT
KT =
15.0
CLOSED TACHOMETER LOOP GAIN, ZEROS AND POLES : YACC(S)/TACHCMD(S)
TACHLODPZE =
1.0035 + 0.23591
1.0000 + 0.0000i
1.0035 - 0.2359i
-0,0023 + 0. i

TACHLOOPPO =

1.0876 + 0.00004i
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0.9423 - 0.00001
0.0302 + 0.47681
0.0302 - 0.47681

TACHLODOPGA =

=0.3447

#akakk  ACCELEROMETER FEEDBACK LOOP PARAMETERS { OUTER LDOP )  dkakokx

FIRST ORDER COMPENSATOR:

GAIN=KA; ZA=ZERO & PA=POLE

=-20.0

PA =

1.050¢

ZA =

0.9600

0.0625

ACCLOOPZE =

1.0838 + 0.00001
0.9600 - 0.00001
0.9227 + 0.0000i
-0,2488 + 0. i
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ACCLOOFPD =
0.9351 + 0.16254
0.9782 + 0.0281i
0.9782 - 0.0281i
0.9351 - 0.1625i
0.0337 - 0.0000i

0.5 Pole-zero compensator with vertical sensor

We will use the same successive loop closure design approach as in section 0.4,
but this time assume that we have a sensor t}lat measures the pitch angle, #. The
first loop closure in the compensator is feedback of the tachometer signal, with an
integral error compensator consisting of a pole at z = 1 and a zero at z; = 0.75.
Figure 0.9 shows the root locus of the tachometer feedback loop as a function of
the loop gain K;. The print out of the CTRL-C program that was used to design

the compensator is shown in section 0.5.1.

The pitch angle feedback loop is closed next, with a first order compensator where
the pole is at z = 1.03 and the zero at 2 = 0.95. The root locus of the outer
loop is shown in Figure O0.10. Notice that the high frequency root locus enters
the unstable region of the z-plane for high loop gains |K,| > 150. This is a sig-
nificant improvement over the situation with the accelerometer sensor where the
high frequency root locus branches were strongly attracted by the pair of complex
zeros just outside thel unit circle. The enlargement of the low frequency root locus
branch near z = 1 (Figure 0.11) shows that the loop gain K, was selected so that

the closed loop poles were well damped.

The simulation of Figure O.12 shows a time response of the closed loop system to
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a unit step command in wheel speed.

0.5.1 Pitch feedback compensator calculation

UCYCT/LGTDTACH.CTR
LGT DISCRETE COMPENSATOR DESIGN WITH PADE APPROX FOR TIME DELAY

ok ke ok otk ke ok HAk Ak sk *

LDﬁGITUDINAL STATES ; THETA.DOT; DMEGA; THETA; XD
CONTROL INPUT : WHEEL MOTOR TORQUE (lih’)
MEASUREMENTS : TACHOMETER; PITCH SENSOR
UNITS : METERS, RADTANS, SECONDS
TSAMPLE =
0.0260
TbEI.AY =
0.0040
#skdesx  CONTINUOUS TIME SYSTEM MATRICES skskk*
FLGT =
-0.0333 0.0333 54,5447 -1.4149
0.1138 -0.1138 -151.2607 4.8433

1.0000 0. 0. 0.
0. a. : 0. =500.0000
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GLGT =
0.7075
-2.4216
0.
500.0000

MLGT =

-1.0 1.0 0.  o.
0. 0. 1.0 o,

NLGT =

sakkss DISCRETE TIME SYSTEM MATRICES #¥%*#*
PHI =
1.0162 0.0008 1.3692 -0,0029
~-0.044b6 0.9971  =3.7957 0.0098
0.0251 0.0000 1.0171  -0.0001
0. 0. 0. 0.0000
GAM =
=0.0149
0.0509

-0.0002
1.0000

*¥xkskx  PLANT TRANSFER FUNCTIONS  sewews

TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE TO TACHOMETER MEASUREMENT
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TACHGATN =
0.0658
TACHZERDS =
1.0733
0.9317
=-0.1895
TACHPQOLES =
1.2009 + 0.0000i
0.9995 + 0.00001
0.8301 - 0.0000i
Q.0000 + 0. i
TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE TO PITCH MEASUREMENT
PITCHGAIN =
-1.5614d-04
PITCHZEROS =
-1.7782
1.0000
=0.0203
PITCHPDLES =
1.2009 + 0.0000i
0.9995 + 0.00001

0.8301 - 0.00001
0.000C + 0. i
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TRANSFER FUNCTION FROM WHEEL DRIVE TORQUE TO WHEEL SPEED { OMEGA )

OMGGAINR

0.0509
OMGZEROS =
1.0838
0.8227
-0.1895
OMGPOLES =
1.2009 + 0.0000i
0.9995 + 0,00001
0.8301 - 0.0000i
0.C000 + 0. i

wiksdx  TACHOMETER FEEDBACK LOOP PARAMETERS ( INNER LOOP )  sksedoksk

TACH LOOP PROPORTIONAL FEEDBACK COMPENSATOR GATN=KT, ZER0=ZT, POLE=PT

KT =
15.0
ZT =
0.7500
PT =
1.0

CLOSED TACHOMETER LOOP GATN, ZERDS AND POLES : YPITCH(S)/TACHCMD(S)
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TACHLOOPZE

-1.7782 - 0.00001
1.0000 = 0.00001
0.7500 + 0.00001

=0.,0203 + 0. i

TACHLOOPPO =

0.1736 + 0.41601
1.0766 + 0.00001
0.9271 ~ 0.00004
0.6922 + 0.00001
0.1735 - 0.41601

TACHLODOPGA
0.0023

swinrs  PITCH ANGLE FEEDBACK LOOF PARAMETERS ( OUTER LOOP )  sx#kk*

FIRSf ORDER GDHPENSATdR:

GAIN=KP? ZP=ZERC & PPF=POLE

KP =

1.0300
ZP =

0.9500
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KR
- 0.0150
PITCHLOOPZ

1.0838

0,9600 4

0.9227
0.7500
-0.1885

¥

+

PITCHLOOPP

0.3142
0.3144
0.9834
0.9834
0.8472
0.5366

+

+

0.0000i1

0.00001
0.00004i
0. i

0.47361
0.47361
0.02491i
0.0249i
0.00001
0.00001

DISCRETE TIME LONGITUDINAL CONTROL SYSTEM

500001
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------------------------------------------------------

REGULATOR : X (k+1)

1
- : U.(k) + 1 X(k)
7L :
Z : i +
1 1
. ! ()
c| |Co i :
' :
________________ : b e oANT
u(k) | + e~ |
Ple [ 2 :
: +EX! |
1 [}
1 J
L ] I
! INTEGRAL ERROR !
! Hyg ESTIMATOR !
¥ 1
r (k) Iy T S o
reference E
input ! _ N N ym(k)
E + (k+1) % (k) +
— -1 M
u(k) ! E z -
; + 17
: o
1
!
§ 1P
! STATE
! 'ESTIMATOR

Figure 0.1: Blockdiagram of a Discrete Time LQG Compensator with Integral Error
Feedback
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DISCRETE SYSTEM RESPBNSE WITH FULL STATE F.B.
1.8

Qw
YR A
/ \ Tsamples=ZDms

0.0 St S
Qcommand 1 r/sg STER
0.0l
0. 1.0 2.0 3.0 4.0 5.0 6.0
time(s)

Figure 0.2: Step Response of the Longitudinal Discrete Time System with Full State
Feedback
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RESPUNSE WITH FULL ORCER ESTIMATER

20.
[ ﬁW
15,
Tsample |= 25 ms
E . Actual|©(Q) =| 0.1 rad while
' E : Initial [Estimated|States| all Zeﬂo
_ A |-
= |
~— 5, +
: J//,/ N
’EB 0.0 \/ \ 1)‘:(' / "h"LT.___ - — — )
o T —
s N/ A
7710
" -5 Il +
o \
Q 8,
o) N/
@
X~ -10.
-15. Kf
-20.
0. 1.0 2.0 3.0 4.0 5.0
time(s)
Figure 0.3: Response of the Longitudinal System with a Full Order Estimator with
6(0) = 0.1 rad, but #(0) = 0 rad
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ROGTLOCUS BF TACHUMETER -LOBP VERSUS KT
1.0 . -

11

Imaginary(z)

b1

1.0 -0.5 0.0 0.5 1.0 1.
Real(z)

-~

Figure 0.4: Rootlocus of the Discrete Time Longitudinal Tachometer Loop with Pro-
portional Feedback of the Tachometer Measurement
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RODTLEZCUS BF ACCELERGMETER L@BP VERSUS KA

013 I 3 T 1
0.2
0. 13
=
B
= Q. t=
g
ap
o
=
_.1>
-2
"-3 1 i L t
0.6 0.7 0.8 0.9 1.0 I.

Real(z)

Figure 0.5: Rootlocus of the Accelerometer Loop with a First Order Pole-zero Com-
pensator
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Blockdiagram of the Discrete Longitudinal Successive Loop

Closure Control System

Figure Q.6
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LONGITUDINAL TIMz RESPUNSE

Tsample=25ms

Qcommand = 1 r/s STEP

,.3“ ) [ t 1 1 1 1 ) 1 L ]
g. 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

time (seconds)

Figure O.7: Step Response of the Longitudinal Closed Loop System Designed by Suc-
cessive Loop Closure (Gecosdsnges senset)
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LONGITUDINAL PLANT CL@SED LP@P FREQUENCY RESP@NSE
8.

/ﬁ\\:_
6 ™,

| \ -3 dB
4,
2 \ | ' )
. \\ |
. ' ' N —
1 2 4 1 10

frequency (Hz)
INPUT : @MEGA CMD 3 BUTPUT : OMEGA

0.00g
—
—{_

-100. -\
N

200 \

NAIANEEEE]

"1 1 10

-400

frequency (Hz)

Figure O.8: Loop Gain and Phase versus Frequency of the Discrete Time Longitudinal
Control System Designed by Successive Loop Closure
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REATLBCUS BF TACHOMETER LBBP VERSUS KT

11 T

1.0

Imaginary(z)

| . 1

1.0 -0.5 0.0 0.5 1.0
Real(z)

Figure 0.9: Root Locus of the Discrete Time Longitudinal Tachometer Loop with
Integral Error Feedback of the Tachometer Measurement
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R@@TL@CUS @rF PITCH F.B. LZ@P VERSUS KP

1.0

<150
0.5+ '
= \'fx
~V.p
~
N
)_"_.f
O . m i RN o 5 = ,gj
-0.5F ”
1.0 = l
0. 0.5 1.0
Real(z)

Figure 0.10: Root Locus of the Pitch Angle Feedback Loop with a First Order Com-
pensator :
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RBETLOCUS BF PITCH F.B. L@BBFP VERSUS KP

O.].OE* T v 7

Imaginary(z)
X

- . 1 Oee— : : :
0.90 . 0.95 1.00 1.05

Real(z)

Figure 0.11: Enlargement of the Pitch Loop Root Locus in the Vicinity of z = 1
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LONGI TUDINAL STEP RESPUNSE

4. ]
3. | -
Tsample=25ms

2. 7
1.
0. =
1. Qcommand = 1 r/s STEP |
-2, : — ' — '

0 1. 2. 3. 4. 5, 5.

time (seconds)

Figure 0.12: Step Resonse of the Longitudinal Closed Loop System with Pitch Angle

Feedback



Appendix P

FORTH Codes for
Longitudinal Control

P.1 Successive Loop Closure and Accelerometer

The FORTH [Mach2] code which implements the compensator designed by suc-
cessive loop closure (section 0.4) with an accelerometer sensor, is listed below.
During the first 200 sample periods, the control algorithm closes the tachometer
feedback loop only, to bring the wheel speed up to the nominal speed, Q. The
operator tries to hold the unicycle robot as vertical as possible during this stage.
Thereafter the algorithm closes the accelerometer feedback loop to start the bal-

ancing process.

ATl the compensator calculations are performed in fixed point arithmetic with a
64-bit word length, in order to minimize the computational delay. The tachometer
measurement and control torque signals are scaled up by a factor of 10° and the
accelerometer signal is scaled up by a factor of 10° in the computations in order

to maintain good numerical accuracy.

317
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The program listing is documented with comments to explain the logic of the

algorithm.

( = Longitudinal Control Turnkey Program ]

{ Program to test ucycS/lgtdtach controller : Tsample = 25 milliseconds )
( Tight tach feedback loop closed first ) '

0 VERIFY !
LOAD/TARGET ( Turn echoing off during downloading )

( * ok »* DEFINE ADDRESSES AND CONSTANTS R * )

800000 CONSTANT LATDACADDR { Set LAT DAC's address )
800010 CONSTANT LGTDACADDR { Set LGT DAC’s addreas )
800020 CONSTANT LATENCADDR ( Set LAT Encoder’s address )
800030 CONSTANT LGTENCADDR ( Set LGT Encoder’s address )

800080 GDNSTAHT‘RCGOUNTERO ( Radio Receiver Interface )
B8000B2 CONSTANT RCCOUNTER1 ( Counter Adresses )

800084 CONSTANT RCCOUNTER2

800086 CONSTANT RCCONTROLWORD ( Counter Gontrolword address )

800090 CONSTART RCTRIGGER ( Trigger address to RESET IRQ flip-flop )
68 CONSTANT LEVEL2_TRQ ( Level2 Autovector Address )
8000D0 CONSTANT S&HADDR ( Sample & Hold's address )

8000E0 CONSTANT MUXADDR { Multiplexer’s address )
8000F0 CONSTANT ADCADDR ( Analog-to-Digital Converter’s address )
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0 CONSTANT LATACCMUX { MUXCode for Lateral Accelercmeter )
1 CONSTANT LGTACCMUX ( MUXCoda for Lomgitudinal Accelercmeter )

81000F COKSTANT RTCctrlADDR ( Set Real Time Clock’s Cntrlword address }
81000B CONSTANT RTCcoumteril ( Set Real Time Clock’s (ounter 1 address )
0 CONSTANT CHANNELO ( Terminal task number }
DECIMAL
15 CONSTANT LGTKt { Tach loop gain )
-20 CONSTANT LGTKa ( Acc loop gain )
62500 CONSTANT LGTKr ( Kr*10e6 : reference input gain )
3000 CONSTANT Dmega0 ( 1000%nominal wheel speed )

500 CONSTANT STORELength ( # of entries to be saved in STORE arrays )

1250 CONSTANT RICperiodl ( Real Timer Clock Timer 1 initial count )
{ for 40 hz sampling fraq )

VARIABLE LATPWM ( Lateral Radio Pulse Width )
VARIABLE LGTPWM ( Longit. Radic Pulse Width )

VARIABLE TICKSAVE ( Memory location to save tick count )

VARIABLE LgtEncCount ( Counter for # vheel speeds to averags )
VARTABLE SpeedUpCount { counter for time in speed-up mode )

VARTABLE STORECount ( Counts numbers stored in STDRE arrays )

VARTABLE LGTCmd ( LGT acceleration command *1Ce6 )
VARTABLE LGTxak ( LGT accelerometer compensator statexi0ef )

VARIABLE Ytach3 ( Tachometer measurement *10ed }
VARTABLE Yaccé ( Accelerometer measurement * 10e6 )
VARTIABLE (w3 ( Wheel Torque #10e3 }
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400 1000 BACKGRQUND SLAVE
400 1000 TERMINAL BQSS

 Hoan ¥ REAL TIME CLOCK REPROGRAMMING WORDS sk sokksciohskskikkks )

CODE RTCset { Sets RTC Counter 1 to sample rate )
MOVE.L DO,-(AS8) { saves contents of DO on stack )

MOVE.B #$74,RTCctr1ADDR  Rewrites Cnirlword for counter 1 )

MOVE.W #RTCperiodi,DO

MOVE.B DO,RTCcounterl { Send low byte )
LSR.W #8,D0 N -
MOVE.B DO,RICcounteri ( Send high byte )

MOVE.L (A6)+,D0 ( Restores original value of DO )
RTS ( Return to subroutine )

END-CODE

CR .( Loaded RTCset )

ALSD MATH

FP32

FVARIABLE STORE1 STORELength 2» 2% VALLOT { Time history )
FVARTABLE STDRE2 STORELength 2+ 2% VALLOT ( arrays 1, 2, 3 )

FVARTABLE STORE3 STORELength 2% 2+ VALLOT

{ *xx *¥ #xkxxx REAL TIME CLOCK READING WORDS skdskacaraskkkakaseoor ok ko )

CODE ZEROtheTICKS ( - ) { Zercs the tick counter register )
CLR.L (A5)

RIB

END-CODE
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CR .( Loaded ZEROtheTICKS )

CODE TICKEStoSTACK ( - n ) ( Loads tick count on top of stack )
MOVE.L (A5),-(46) ( Current tick counter value onto stack )
RTS

END-CODE

CR .( Loaded TICKStoSTACK )

( * wok ok ¥+ COONTROL SYSTEM ALGDRITHM WORDS s

*

: 5 2048 LATDACADDR W! 2048 LGTDACADDR H! ; { Quick motors stop)

1 TDACSATURATE ( n - n ) ( Check if DAC command Saturates )
DUP 4095 > ( check for positive saturation )

IF DROP 4096 ( drop large value & supply Bat. valﬁe )

ELSE DUP 0 < ( check for negative saturation )

IF DROP 0 ( drop large value & supply sat. value )

THEN THEN ; ( otherwise keep commanded DAC wvalue )

: WAIT4H ( n - ) ( S/W WAIT for n+*30 microseconds )
0 DD LOOP ;

+ CHECKTSAMPLE ( - £ ) ( Check if sample time has expired )
TICKStoSTACK ( get tick count )

0 > ; ( sets true flag if df >= Tsample )

CR .( Loaded CHECKTSAMPLE )

WORK ACTIVATE ( Activate Background task )

S ( Stop all motors )
0 LGTCmd ! ( Initial LGT reference input assumed = 0 )
0 LGTxak ! { Initialize acc. comp. state to zexo )

0 SpeedUpCount ! ( Initialize SPEED_UP counter )

0 STORECount ! ( Ipnitialize STOREi counter )
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RICset ( Set Real Time clock to Tsample )

BEGIN
CHECKTSAMPLE ( Check if sample time has expired )
IF ZERDtheTICKS ( If TRUE Reset counter to zZero . . . )

{ ssskrsesnss READ LGT TACHOMETER AND ACCELEROMETER #d#skswkhsks )

LGTENCADDR W& ( read binary value from enc. interface )
{ Bt <~ top of stack )

LGTACCMUX MUXADDR W! ( switch MUX to LGT accelerometer )
1 S&HADDR W! { sample analog signal )
1 WAIT4N ( wait 30 microsec for S&H to settla )

0 SEHADDR W! ( place SEH device in HOLD mode )

1 ADCADDR W! ( Starts A to D Converter )}
1 WAIT4N ( buy a little time for ADC to finish )

ADCADDR We¢ ( reads binary value from A/D )
( Bt Ba <- top of stack )

4095 - 4884 » 10003660 + ( convert to a voltagexliQe6 )
-31576 100000 */ { scale by LGTACCHAIN => acc#10ef j

( Bt Ya6 <- top of stack )

DUP YaccB ! { save copy of accel to print later )
( Bt Ya6 <~ top of atack )

SpaedUpCount € 200 > { check if speed-up phaze is over )
( sdokkhsxaksssss ACCELEROMETER LODP COMPENSATION smkdkkusdkmkkuk )
IF ( if so , add accelerometer compensation )

LGTCud € ( get acceleration command )
LGTKr * { mult. by Kr*10e€ -> 10eé * accel. cmnd )
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SWAP ~ ( subtract Yaé to get acc. error*10e6 )
DUP { save a copy for compensator update )
( Bt Ea Ea6é <- top of stack )

LGTxak @ ( get LGT accelerometer compensator state )
{ Bt Ea6 Fa6 JYa6<- top of stack )
9 100 */ + ( multiply by pa-za and add to acc. error )

LGTKa 1000 */ ( mult. by LGTKa; div. by 1000 => 1000%da )
{ Bt Ea6 da3 <- top of stack )

ELSE { during speed-up do tach loop comp. only }
DROP ( drop -Ya6 from top of atack )

0 0 ( supply zeros for Ea6 and da3 )
( Bt 0 0 <= top of mstack )

( wkwhksnmrkexsss TACHOMETER LOOP COMPENSATIODN LT k)
THEN ( do tachometer compensation loop )

Omega0 + ( vheal speed + da3 )
{ Bt Ea6 sum <~ top of atack )

ROT ( gef binary value of the tach )
( Ea6 sum Bt <- top of stack )

DUP ( copy to determine sign later )
10471976 SWAP / ( get 1000%abs(ytach) )

SHAP 2 MOD 0= ( get sign of the wheel speed : )
IF NEGATE THEK ( 0 => even # => neg. speed )
{ Ea6 sum T+3 < top of stack )

DUP Ytach3 ! ( save a copy to print later )
( Ea6é sum Yt3 <- top of stack )
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( get velocity error*10e3 )
- { Ea Et3 <- top of stack )

LGTKt * ( mult tach loop gain )
{ -> 1000xWheel torque )
( Eaé Qu3 <~ top of stack )

DUP Qw3 ! ( make a copy to print later )
( Ea6 Qw3<- top of stack }

15120 + 2048 15120 x/ ( get binary command for DAC )
7DACSATURATE ( check if DAC saturates )

LGTDACADDR H! { output torgue command )
( Ea6<- top of stack )

( #rxkxennxsrammniokrs COMPENSATOR STATE UPDATE sdk¥dokiksoskdbhbin )

LGTxak € { get LGT accelerometer compensator state )
( Ea6 Xa6 <- top of stack )

105 100 #/ ( multiply by LGTpa )
+ LGTxak ! { add to the acc. error and save xhat(k+1) )
{ stack empty <~ top of atack )

1 SpeedUpCount +! ( increment speed-up counter )

( wkddomrdkkakmmkikkrs STORE TIME HISTORY sk komokmokdgkkdokks )
STORECount © STORELength <

IF

Qw3 @ I>F 1000, F/ { Scale to normal units )

STORE1 STDRECount € 2% 2% + F! ( multiply index by 4 to )

( store 64 bit # )

Ytachd € I>F 1000. F/ ( Scale to normal units )
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STORE2 STORECount € 2% 2% + F!

Yaccé & I>F 1000000. F/ ( Scale to normal units )
STORE3 STOGRECount € 2% 2% + F!

1 STDRECount +! { Increment the counter of # atored )
THEX
THEN PAUSE ( Go do terminal task )
AGATIN ;
( #+«* BUILDING OF TERMINAL E BACKGROUND TASKS FOR TURNKEY APPLICATION #*+ )

: WHIP ( Build and Activate Background task )
SLAVE BUILD
SLAVE WORK ;

: 7XEY ( Check if key was depressed )
BEGIN

PAUSE

TTERMINAL

DUP

IF

KEY DROP

THEN

UNTIL ;

: PRINT ACTIVATE ( Activate Terminal task )
-1 INIT-DISK ( reset all disk drives )

BEGIN

CR

." Press any key to aee BACKGROUND variable "
TKEY
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CR ." Qw=[ "
STORELength 0 DO
STORE1 I 2% 2% + F@
I 9MOD O=1IF ." .. " CR
THEN F. . *
PAUSE LOopDP ." 1; " CR

CR ." Ytach=[ "
STDORELength 0 DD
STORE2 T 2+ 2» + Fa
I 9MOD O=1IF ." .. "CR
THEN F. .» ¢
PAUSE LODP " 1; " CR

CR ." Yacc=[ "
STORELength ¢ DD
STDRE3 I 2% 2% + Fo
19 MOD O=TIF ." .. " CR
THEN F. .,»
PAUSE LOOP ." 1; " CR

CR

AGAIN ;

: START

CHANNELO BOSS BUILD { Initializes Terminal Task )
BOSS PRINT

WHIP ; ( Iritializes Background Task )

TURNKEY START ( Turn program into a TURNKEY application )

CR CR CR
. ( ¥rite protect STATIC memory and reset the computer )

EOF
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P.2 LQG Compensator with Accelerometer Sensor

The FORTH code which implements the LQG compensator (sections 0.2 and 0.3)
is listed below. The algorithm has an initial phase to bring the robot up to the
nominal wheel speed, Qq, where after the LQG compensator is invoked to start

the balancing process.

The compensator is implemented in modal form since it requires fewer arithmetic
operations. Floating point arithmetic is used because of its convenience and the
fact that the calculation time is not that critical due to the prediction estimator
that is used.

( CTRL-C program : ucyc6/lgtdlqg.ctr )

( Longitudinal Contzrol Turnkey Program )

( Discrete LOG compensator with integral error feedback of wheel speed )

0 VERIFY !
LOAD/TARGET ( Turn echoing off during downloading )

( #ksokkaxaonkknisiss DEFINE ADDRESSES AND CONSTANTS ********t********;**t* )

HEX

800000 CONSTANT LATDACADDR ( Set LAT DAC’s address )
800010 CONSTANT LGTDACADDR ( Set LGT DAC’s address )
800020 CONSTANT LATENCADDR ( Set LAT Encoder’s address )
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800030. CONSTANT LGTENCADDR { Set LGT Encoder’s address )
800080 CONSTANT RCCOUNTERO { Radio Receiver Interface )
800082 CONSTANT RCCOUNTER1 ( Counter Adresses )
800084 CONSTANT RGCOUNTER2
800086 CONSTANT RCCONTROLWORD ( Counter Controlword address )

800090 CONSTANT RCTRIGGER ( Trigger address to RESET IRQ flip-flop )

68 CONSTANT LEVEL2_TRQ ( Lavel? Autovector Address )

8000DC CONSTANT S&HADDR ( Sample & Hold's address )
8000E0 CDNSTANT MUXADDR { Multiplexer’s address )}
8000F0 CORSTANT ADCADDR ( Analog-to-Digital Comverter’s address )

0 CONSTANT LATACCMUX { MUXCode for Lateral Acceleromster )
1 CONSTANT LGTACCMUX ( MUXCode for Longitudinal Accelerometer )

81000F CONSTANT RTCctrlADDR ( Set Real Time Clock's Cutrlword address )
81000B CONSTANT RTCcounterl { Set Real Time Clock’s Counter 1 address )

DECIMAL

VARTABLE LATPWM ( Lateral Radio Pulse Width )
VARTABLE LGTPWM ( Longit. Radie Pulse Width )

VARTABLE LATDACCMD ( Commanded Lateral Current )
VARTIABLE LGTDACCMD ( Commanded Longitudinal Current )

VARTABLE TICKSAVE ( Memory location to save tick count )
VARIABLE LgtSBflag { SPEED.UP / BALANCE flag ) !
VARIABLE LgtEncCount ( Counter for # wheel speeds to average )

VARTARLE SpeedUpCount ( Counter for period in SPEED_UP mode )

VARIABLE STORECount ( Counts numbars stored in STURE arrays )
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VARIABLE PanicFlag ( 1 => panic ; 0 => everything DK )

240 CONSTANT STORELength ( max # of entries which in array STOREL )
0 CONSTANT CHANNELO

1250 CONSTANT RICperiocdl ( Real Timer Clock Timer 1 initial count )
( NOTE : Must do Radio Initialization code BEFORE Math words are included )
{ slopmipkkkeekkkkninn LADI0 RECEIVER READING WORDS scksckmukokkookkohbdokhsbkk )

CODE RADIO_READ { Reads Radio Receivaer Channels upon IRQ )
MOVE.L DO,-{A6) { saves contents of D0 on stack )
MOVE.L $24(A4),-(A6)

MOVE.L D5,{A2)+

MOVE.L D6,D5

MDVE.L (A6)+,D6

MOVE.B #$21,RCCONTROLWORD ( Latches all counts )
MOVE.W¥ RCCOUNTER1,D0 { Reads LSB of Counterl )

MOVE.B DO,LATPWM ( Save temporaly )

MOVE.W¥ RCCOUNTER1,D0 ( Reads MSB of Countarl )

LSL.¥W #8,D0

MOVE.B LATPHM,D0 ( Get LSB )

MOVE.W DO,LATPWM ( Save )

MOVE.W RCCOUNTER2,D0 ( Reads LSB of Counter2 )

MOVE.B DO,LGTPWM ( Save temporaly )

MOVE.W RCCOUNTER2,D0 { Reads MSB of Counter2 )

LSL.W #3,D0

MOVE.B LGTPWM,D0 ( Get ISB )

MOVE.W DO,LGTPWM ( Save )

MOVE.B #$8F,RCCONTROLWORD { Rewrites Cntrlword to 1 )
MOVE.B #0,RCCOUNTER1 ( Write LSE of initial counterl )
MOVE.B #0,RCCOUNTER1 ( Write MSB of initial counterl )
MOVE.B #$4F,RCCONTROLHWORD { Rewrites Cntrlword to 2 )
MOVE.B #3,RCCOUNTER2 ( Write LSB of initial counter2 )
MOVE.B #0,RCCOUNTER2 ( Write MSB of initial counter2 )
MOVE.B #1,RCTRIGGER ( Reset IRQ flip-flop on Radie Int )
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MOVE.L D6,-(A6)

MOVE.L D5,D6

MOVE.L -{A3),D5

MDVE.L (A6)+,$24(A4)

MOVE.L (46)+,D0 ( Restores original walue of DO )

RTE ( Return from exception routine )

END-CODE
CR .( Loaded RADID_READ )

: RADIO_INIT ( Initialize Radio Comtrel Interface & Interzupt )

[*] RADIO_READ ( Initialize Radio Receiver ... )
LEVELZ_TRQ ! {( ... Level 2 Autovector )

BINARY

10001111 RCCONTROLWORD C! ( Set Counters 1,2 )
01001111 RCCONTROLWORD C! ( for Mode 0 )

1 MmGGEH c! ( Reset IRQ flip-flop on Radio Intf )

DECIMAL ;

RADID_INIT ( Do radio receiver interrupt initialization )

{ NOTE : Must do Radio Initialization code BEFORE Math words are included )
{ erkkdornrxkksxniorx REAL TIME CLOCK REPROGRAMMING WORDS soeskdokdaksbskskkkk® )
CODE RTICeet ( Setz RT Clock Counter 1 to sample rate )}

MOVE.L DO,-(46) ( saves contents of DO on stack )

MOVE.B #374,RTCctx1ADDR { Rewrites Cnitrlword for counter 1 )
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MOVE.W #RTCperiodl,DO

MOVE.B DO,RTCcounterl ( Send low byte )
LSR.W #8,D0

MOVE.B D0,RTCcounterl ( Send high byte )

MOVE.L (A6)+,D0 ( Restores original value of DO }
RTS ( Return to subroutine )

END-CDDE

CR .( Loaded RTCset )

ALSO MATH ( include floating point proceesor words )
FP3a2 ( set for 32 bit floating point numbers )

3. FCONSTANT Omega0 ( Bominal wheel spead )

19.8 FCONSTANT LATi0NKtorgq ( Lateral 10#Ngear*Ktorque )
15,12 FCONSTANT LGT10NKtorq ( Longit. 10#Ngear*Ktorque )

0.35048 FCONSTANT  LATACCGAIN ( LAT Accel’meter calibr conetant )
-0.31576 FCONSTANT LGTACCGAIN ( LGT Accel’meter calibr constant }

( in units of m/a"2 per volt )

1. FCONSTANT LGTpt ( LGT tach comp pole )
0.9 FCONSTANT LGTzt ( LGT tach comp zero )
16. FCONSTANT LGTKt ( LGT tach comp gain )

FVARTABLE LGTcommand { LGT command from radic receiver )
FVARIABLE LGTtach_meas { LGT tachometer meas )
FVARIABLE LGTacc_meas ( LGT accelerometer meas )

FVARTABLE [LATcommand { LAT command from radio receiver )
FVARIAELE LATtach_meas { LAT tachometer meas )
FVARIABLE LATacc_meas ( LAT accelerometer meas )
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FVARTABLE
FVARIABLE
FVARIABLE

FVARTIABLE

FVARTABLE

FVARIABLE
FYARIABLE
FVARTABLE
FVARTABLE

FVARTABLE
FVARTABLE

FVARTABLE
FVARTABLE
FVARTABLE

FVARTABLE

FVARIABLE

FVARTABLE

FVARTABLE

FVARTABLE
FYARTABLE
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thetadot { Plant theta_dot )
onega ( Plant omega )

theta ( Plant theta )

LGTVelError { LGT velocity error }

LG6Txtk ( LGT tach loop compensator state )

LGTxhatik ( modal compensator state )
LGTxhat2k { modal compensator state )
LGTxhat3k ( modal compensator state )
1GTxhatd4k ( modal compensator state )

EtaSign ( Sign of Turntable speed ETA )
DmegaSign ( Sign of Wheel speed OUMEGA )

LGTcontrelTorq ( Qcontrol = Qw of simulations )
LGTTorqAverage { Average Longit Torque = Qfric)
LGTtotalTorq ( Qtotal = Qfric + [contrel )

OmegaOAverage ( Average Wheel Speed )

DmegaOAccum { Wheel Speed Accumulator )
LGTTorqAccum ( Longit Torqne Accum. )

STORE! STORELength 4 # VALLOT ( Time history )
STORE2 STORELength 4 #* VALLOT ( arrays )
STORE3 STDRELength 4 * VALLOT

400 1000 BACKGROUND SLAVE

400 1000 TERMINAL BDSS

{ wkdckEmkmidrkknhkkx DTGITAL-TO-ANALOG CONVERTER WORDS #ksoickskadidkkakkdhak )
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: WAG 5000 0 DO 1000 1000 * DROP LODP ; ( General purpose S/¥W wait loop )

: 7DACSATURATE ( n = n ) ( Check if DAC command Saturates )
DUP 4096 > ( check for positive saturatien )

IF DROP 4096 ( drop large value & supply sat. value )

ELSE DUF 0 < { check for negative saturation )

IF DROP 0 ( drop large value & supply mat. value )

THEN THEN ; ( otherwise keep commanded DAC value )

: LATDAC ( #n - } ( Get 12 bit binary <-> Qt )
LAT10NKtorq F/ ( divide by 10%NgearsKtorque )
1. FSWAP F- 2048, F*

F>I 7DACSATURATE ( check if 0 < BINARY < 4096 )
LATDACADDR W! ; ( write 16 bit word to LATDAC )

: LGTDAC ( £n - } ( Get 12 bit binary <> Qw )
FNEGATE ( so that Qw > 0 causes OmegaQ > 0 )
LGT10NRtorq F/ ( divide by 10#Ngears+Ktorque )
1. FSWAP P- 2048. P+ '
F>I TDACSATURATE ( check if 0 < BINARY < 4096 )
LGTDACADDR W! ; ( write 16 bit word to LGTDAC )
CR .( Loaded LGTDAC )

S 0. LATDAC 0. LGTDAC ; ( Quick vay to stop motors )

( swakrmunsrmssnimisn ANALDG-TO-DIGITAL CONVERTER WORDS F—

WAIT4N ( n - ) ( S/W WALT for n*4 microseconds )
0 DD LOOP ;

MUXSWITCH (n - ) { awitches MUK to specified input channel n }

MUXADDR W!
1 WAIT4N : { waits 4 microsec. for MUX to settle )

: SAMPLEEROLD ( - ) ( SAMPLE and HOLD command )}
1 SRHADDR W! ( sample analog signal )
T WAIT4AN ( waits 28 microsec., for S&H to settle )
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0 SEHADDR W! ; ( place SEH device in HDLD mode )

: AD_CONVERTER ( - n ) { Do Analog to Digital Conversion )
1 ADCADDR W! ( Starts A to D Converter )

9 WAIT4N ( Waits 36 microsec. for ADC to fimish )

ADCADDR W0 ; ( Reads the digital result from the ADC )

¢ AtoD_CONVERT ( n - n } ( Input Chamnel# ; Output Digitize value )
MUXSWITCH ( Complete procese for an AtoD Conversion }

SAMPLEEHOLD

AD_CONVERTER ;

{ mkekiokekkensrmrrss ACCELEROMETER READING WORDS *x )
: RLATACC ( - fn ) ( Reads acceleration as the instrument sees it )

4095

LATACCMUX AtoD_CDNVERT { Reads binary value from A/D )

- I>F ( Converts to floating point # )

0.004884 F*

10.00366 FSWAP F- ( Get analog voltage )

LATACCGATN F* ( Multiply by calibr. constant to get ... )

; ( real acceleration seen by the instrument )
¢ RLGTACC ( - fn } ( Reads acceleration as the instrument sees it )

4085

LGTACCMUX AtoD_CONVERT { Reads binary value from A/D )

- I>F ( Converts to fleoating point # )

0.004884 F+

10.00366 FSWAP F~ ( Get analog voltage )

LGTACCGAIN F+ ( Multiply by calibr. constant to get ... )
: ( real acceleration seen by the instrument )

CR .{ Loaded RLGTACC )

( *#%% POSITION ENCODER READING WORDS sskkdisukuokidihsdnksick )
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: RLATENC ( - fn ) { Read TurnTable Speed ETA )
LATENCADDR We¢ ( Read number of clock pulses counted )
DUOP 2 MDD 0= ( 0 => even number => negative speed )
IF -1. EtaSign F! ( 1 => odd number => positive spead )
ELSE 1. EtaSign F!

THEN I>F ( Convert encoder reading to float. point )
27.2708 FSWAP F/

EtaSign F@ F* ; ( Turntable Speed ETA in rad/sec )

: RLGTENC ( - £n ) ( Read Wheel Speed OMEGA )

LGTENCADDR W¢ ( Read number of clock pulses counted )

DUF 2 MOD 0= ( 0 => even number => negative speed )

IF -1. OmegaSign F! ( 1 => odd number ﬂ)vpositive speed )
ELSE 1. OmegaSign F!

THER I>F ( Convert encoder reading to float. point )
10471.9755 FSWAP F/

OmegaSign F@ F+ ; ( Wheel Speed OMEGA in rad/sec )}

CR .{ Loaded RLGTENC )
( wdokidoki s kkkghknnkek REAT, TIME CLOCK READING WORDS #dsdkkssokdiihskikikkkx )

CODE ZERDtheTICKS ( - ) { Zeros the tick counter register )
CLR.L (Ab)

RTS

END-CODE

CR .( Loaded ZERDtheTICKS )

CODE TICKStoSTACK ( - n ) ( Loads tick count om top of stack )
MDVE.L (A5),-(46) ( Current tick counter value onto stack )
RTS

END-CODE

CR .{ Loaded TICKStoSTACK )

{ dondokkkkkxkkaskskxs RADID RECEIVER READING WORDS sk ke srdck )

: RLATPWM ( - LatR/C ) ( Read Lateral radio command )
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LATFWM W& 5164
I>F 1700. F/ : (. Scale to a value between -1 and +1 )

{ Remove bias )

: RLGTPWM ( - LgtR/C ) ( Read Longit. radic command )
LGTPWM We¢ 5164 - ( Remove bias )

I>F -1700. F/ ; ( Scale to a value between -1 and +1 )
CR .( Loaded RLGTPWM )

{ sk ssck CONTROL SYSTEM ALGORITHM WORDS ks skoksmsortskkikdkink )

: CHECKTSAMPLE ( - £ ) ( Check if pample time has expired )
TICKStoSTACK ( get tick count )

0 > ; ( sets true flag if dt >= Teample )

CR .( Loaded CHECKTSAMPLE ) '

:+ READ_SENSORS ( - ) ( reads radio commands, tacho- & accelerometers )

RLGTACC ( Reads Longitud. acceleration : ya )

LGTace_meag F! ( save the accelerometer measurement ya )

RLATACC ( Reads lateral acceleration as seen by sensox )

LATacc_maas F!

RLGTENC ( Reads wheel speed — pitch rate )

LGTtach_meas F! ( Saves longit. tach measurement yt )

RLATENC ( Reads turnmtable speed relative to frame : "eta" )}

LATtach_meas F! ( Saves lateral tach measurement yt )

RLGTPYM ( Reads command from radio receiver )
FDROP ©. { Temporary no additional wheel speed commanded )
Imega0 F+ ( Add nominal wheel speed )

LGTcommand F! ( Saves Longit. command )

RLATPWM ( Reads command from radio receiver )

LATcommand F! ; ( Saves Lateral command }
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CR .{ Loaded READ_SENSORS )
: PLANTmodel ( Plant model for simmlation purposes )

{ First calculate y(k) = Mx(k) + nu{k) : )

omega FO thetadot F@ F- LGTtach meas F! ( simulated tach meas, )

0.0011 omega F¢ thetadot F¢ F- F=*
4.687 thata F@ F« F+
-.023 LGTtotalTorq F@ Fx F+ ( direct feadthrough term )

LGTacc_meas F! ( sinulated acc measurement )

( simulate state transitions : x(k+l) = PHT#x(k) + GAMMA*u(k) )
1.0162 thetadot Fd F*

0.0008 omega FQ Fx F+

1.3692 theta FQ Fx F+

=~0.0178 LGTtotalTorq F@ F* F+

( thetadot(k+l) remaine on stack )

0.0445 thetadot FO F#
'0.9971 omega  F@€ F+ F+
-3.7957 theta  F@ F* F+

0.0607 LGTtotalTorg F& F» F+

( omega(k+1) remains on stack )

0.0251 thetadot FQ F»
0.0 omega F@ F* F+
1.0171 theta F¢ F* F+

-0,0002 LGTtotalTorg F& Fs F+

{ theta(k+1l) remains on stack )
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theta F!
omega F!
thetadot F!

( CR ." thetadot = " thetadot F¢ F. )
( CR ." onega = " omega F@ F. )
{ CR ." theta = " theta FQ F. )

-

! GetAverageOmega0 ( — ) ( Checks if Average Omegal ... )

( close to desired Omega0 )

LgtEncCount @ I>F FDUP ( number of numbers in accumulators )
OmegaOAccum FQ FSWAP F/ ( calculate average vheel speed )

OmegaOAverage F! ( stores the value )

LGTTorgAccum F@ FSWAP F/ ( calculate average friction torque )
LGTTorqAverage F! ( stores the value )

0. OmegaQAccum F! { Clears the accumilator )
0. LGTTorgAccun F! { Clears the accumulator )
0 LgtEncCount ! ( Resets counter )

1 SpeedUpCount +! ( increment counter )

SpeedUpCount @ 3 > ( check if 300 sample periods have passed )
IF i LgtSBflag ! ( Set flag => BALANCE routine next time )

0 SpeedUpCount ! ( Reset counter )

THEN ;

CR .( Loaded GetAverageUmega0 )

+ CHECK_SPEED ( - ) ( Check if wheel speed is up to Dmegal )

LGTtach_meas F@ ( Reads Wheel speed onte Floating Peint stack )
DmegaOAccum F@ F+ DmegaCAccum F! ( Accumulate Speeds )
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LGTtotalTorg F¢ ( Reads latest commanded wheel torque )
LGTTorgAccum F@ F+ LGITorqAccum F! ( Accumulate torgues )

1 LgtEncCount +! ( Increments # wheel speeds stored counter }
LgtEncCount @ 100 > ( Check if enough values saved on stack )
IF GetAverageDmegal

THER ;

CR .{ Loaded CHECK_SPEED )

! SPEED_UP ( Tachometer FB compensation to speed up wheel to Omegal )

Dmega0 ( nominal wheel speed )
RLGTENC FDUP LGTtach_meas F! ( reads wheel speed and saves it )

F- LGTVelError F! ( present velocity error )

LGTpt LGTzt F- LGTxtk F& F* LGTVelError F@ F+ LGTEt F#
FDUP LGTDAC { Iseues wheel torque command through D/4 )
LGTtotalTorq F! ( Saves the control command )

LGTVelError F@ LGTpt LGTxtk F¢ F& F+
LoTxtk F! ( Update tach comp atate Ffor next Tsampla )

CHEGE_SPEED ; ( Check if wheel speed is up to Omega0 )

: LGT_CONTROL ( Calculates the LGT contr output for this sample instant )
LGTToxrgAverage FQ

LGTcontrolTorq F@ F+ ( Add control torque to friction torque )

FDUP LGTtotalTorg F! ( save the total torque commanded )

LGTDAC ;+ ( Output torque command to wheel motor )
CR .( Loaded LGT_CONTROL )

: LGTCompUpdate ( Updates LGT compensator states and control ... )
( for next Tsample )

~0.0564 LGTxhatlk FQ F+
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4,6483 LGTtach_meas
-0.5677 LGTacc_meas
0.0521 LGTcommand
LGTxhatlk

0.9314 LGTxhat2k
0.0806 LGTtach_meas
-0.0051 LGTacc_meas
-0.0008 LGTcommand
LGTxhat2k

1.0011 LGTxhat3k
0.2574 LGTtach_meas
=-0.0476 LGTacc_meas

=0.2435 LGTcommand

LGTxhat3k

1.2545 LGTxhatdk
~1.2481 LGTtach_meas
0.2868 LGTacc_meas
-0.0448 LGTcommand

LGTxhat4k

-1.1031 LGTxhatik

-2,1475 LGTxhatZk

-0.0305 LGTxhat3dk
1.3899 LGTxhatdk
LGTcontrolTorg F!

Fo
Fe
Fe

Fa
Fo
Fe

Fe
Fe
Fe

Fe

FQ

Fe
Fe
Fa
Fo

Fa
Fx

Fx

F!

Fe
F*
Fr
F#

Fo
Fx
F
Fx

Fa
Fx
F&
F*

Fx
Fx
Fx
Fx

FORTH CODES FOR LONGITUDINAL CONTROL

F+
F+
F+
{ store xlhat(k+1) for next Tsample )

Fx*
F+
F+
F+
( store x2hat(k+l) for next Teample )

Fx
F+
F+
F+
( store x3hat(k+l) for next Tsample )

Fx
F+
F+
F+
{ store x4hat(k+1) for mnext Tsampla )

{ calculate control torque .. )
F+ { command for next Tsample )
F+
F+

; ( Bave u(k+l) )

: CONTROL_SYSTEM ( CONTROL of lateral & longitudinal motion )

PanicFlag @ 0= { Check the panic flag first )

IF ( If zere => mo panic )

LGTcommand F& FDUP

-.5 F> 0.5 F< * 0= { check if ~.5 < LGTstick < 0.5 )



P.2, LQG COMPENSATOR WITH ACCELEROMETER SENSOR 341

IF 1 PanicFlag ! ( Set panic flag )
ELSE LGT_CONTROL { Do LGT system control )

THEN
ELSE { Panic Mede : Command LGT torque directly from R/C )
LGTcommand FQ@ LGT10HKtorq F» LGTDAC
THEN

LATcommand F@ { get Lateral Radioc Command )
LAT10NKtorq F* ( Let Lateral Stick control turntable torgue )
LATDAC ; ( Dutput as a Current Command to Lat motor )

CR .( Loaded CONTROL_SYSTEM )
¢ STOREtimeHistory ( Stores a time history of a variable )

STORELength STORECount & > ( check all data stored 7 )
IF

LGTtotalTorg F§ ( get tha variable to be stored )
STORE1 STORECount € 2% 2% + F! ( increment index by 4 .. )

( to store F1. Pt. # )

LGTtach_meas FQ ( get the variable te be stored )
STORE2 STORECount @ 2% 2% + F!

LGTacc_meas FQ@ ( get the variable to be stored )
STORE3 STORECount © 2+ 2% + FI

1 STORECount +! ( increment index )
THEN ; ( increments array pointer )

: WORE ACTIVATE ( Activate Background task )
§ ( Stop all motors )

RADIO_INIT ( Initialize Radio receiver )

0. LGTtotalTorq F! ( Initial LGT comtrel torque = 0 )
Omega0 LGTcommand F! ( Initial LGT ref imput = 0 )
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Omega0 LGTtach_meas F! ( Initial LGT tachometer meas = 0 }
0. LGTacc_meas F! ( Initial LGT accel meas = 0 )

0. LGTVelError F! ( Imitial LGT velocity error = 0 )

0. thetadot F! ( Initialize plant simu. states )
Dmegal omega F!

0. theta F!
0. LGTxtk F! ( Initialize SPEED_UP comp state )

13.34B7 LGTxhatlk F! ( Initialize the modal .. )

3.4915 IGTxhat2k F! ( compensator states )
-38.7489 LGTxhat3k F!

15.2396 LGTrhatdk F!

0. OmegalAccum F! { Zero wheel apeed Accumulator )
0. LGTTorqAccum F! ( Zerc wheel torque Accumulator )

0. LGTTorgAverage F! ( Zero friction torque )

0.141 LGTcontrolTorq F! ( Steady st. cntrl torque(Qw) .. )

{ for Dmega0 )

0 LgtEncCount ! ( Counter for # wheel speeds to average )

0 SpeedUpCount ! ( Counter that determines how long to SPEED_UF )
0 PanicFlag ! ( Start with no panic condition ) '

0 STORECount ! ( initialize STOREi array counter )

0 LgtSBflag ! ( Start with speed-up algorithm )

RICset ( Set Real Time clock to Tsample )

BEGIN

CHECKTSAMPLE ( Check if sample time has expired )
IF ZEROtheTICKS ( If TRUE Reset cntr =0 ... )
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LgtSBflag ¢ 0= ( Speed_up/Balance Flag =7 .. )
IF SPEED UP ( 0 => speed up wheel )
EISE ( 1 => do balance algorithms )

LGT_CONTROL { caleulate LGT control torque )

STOREtimeHistory ( Stores a time histories )
READ_SENSORS { Read all the sensors simultaneocusly )

{ PLANTmodel simulate plant model to predict states .. )

( and measurements at mext sample )

LGTCompUpdate ( Update LGT comp states for next Ts )
THEN THEN PAUSE ( Go do terminal task )

AGATE ;
( %% BUILDING OF TERMINAL & BACKGRDUND TASKS FOR TURNKEY APPLICATION %% )

! WHIP ( Build and Activate Background task )
SLAVE BUILD
SLAVE WOEK ;

: TKEY ( Check if key was depressed )
BEGIN

PAUSE

?TERHINAI;.

bUP

IF

KEY DROP

THEN

UNTIL ;

¢ PRINT ACTIVATE ( Activate Terminal task )
-1 INIT-DISK ( reset all disk drives )
BEGIN

CR
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." Press any key to see BACKGROUND variable "
TKEY
CR ." gw=[ "
STDRELength 0 DD
STORE1 I 2% 2% + Fe
I 7MODO=1IF.," .."CR
THEK F. .", »
PAUSE LOOP

CR ." ytach=[ "

STORELength ¢ DO
STORE2 I 2% 2% + Fg
I7MODO=IF ." .."CR
THEN F. . , "
PAUSE Logp

CR ." yacc=[ "
STORELength 0 DO
STORE3 T 2% 2% + Fd
I 7M0DO=IF ." .. " CR
THEN F. ., "
PAUSE LOOP

AGATN ;

¢ START

CHANNELO BOSS BUTLD { Initializes Terminal Task )
BOSS PRINT

WiIP ; ( Initializes Background Task )

TURNKEY START { Turn progranm into a TURNKEY application )

CR CR CR
.( Write protect STATIC memory and reset tha computer )

EDF
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P.3 Successive Loop Closure and Pitch Sensor

The FORTH code which implements the compensator designed by successive loop
closure (section 0.5) with a pitch angle sensor, is listed below. The particular
print-out is for balancing the robot at zero speed, but it can be modified to bal-

ance longitudinally at any wheel speed by changing the Omega0 constant.

Fixed point arithmetic had been used and wheel speed and control torque was !

scaled up by a factor of 10° while the accelerometer was scaled up by 10,

Comments in the program listing explains the operations in the algorithm.

( Longitudinal Contrel Turnkey Program w==s===========z )

( Program to test ucyc7/lgtdtach controller : Tsample = 25 milliseconds )

( Tight tach feedback loop closed first with integral error control)
{ Use LOHET pitch angle sensor ) ‘

0 VERIFY !
LOAD/TARGET ( Turn echoing off during dowmloading )

( dddkasakkinkdikrss DEFINE ADDRESSES AND CONSTANTS * ke FEAA KRR )

HEX

800000 CONSTANT LATDACADDR ( Set LAT DAC’s address )
800010 CONSTANT LGTDACADDR ( Set LGT DAC’s address )
800020 CONSTANT LATENCADDR  ( Set LAT Encoder’s address )
800030 CONSTANT t.GTENCADDR ( Set LGT Encoder’s address )
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800080 CONSTANT RCCOUNTERO ( Radio Receiver Interface )
800082 CONSTANT RCCOUNTER1 { Counter Adresses )

800084 CONSTANT RCCOUNTER2

800086 CONSTANT RCCONTROLWORD ( Counter Comtrolwerd address )

800090 CONSTANT RCTRIGGER ( Trigger address to RESET IRQ flip-flop )

68 CONSTANT LEVEL2 TR ( Level2 Autovector Address )

8000D0 CONSTANT S&HADDR ( Sample & Hold’s address )
8000FE0 CONSTANT MUXADDR ( Multiplexer’s address )}

8000F0 CONSTANT ADCADDR { Analog-to-Digital Converter’s address )

0 CONSTANT LATACCMUX ( MUXCode for Lateral Accelerometer )
1 CONSTANT LGTACCMUX ( MUXCode for Longitudinal Accelercmeter )

81000F CONSTANT RTCctrlADDR ( Set Real Time Clock’s Controlword addr., )
81000B CONSTANT RTCcounterl ( Set Real Time Clock’s Counter 1 address )
0 CONSTANT CHANNELCG ( Terminal task number ) '
DECIMAL

15 CONSTANT LGTEt ( Tach loop gain )
-40 CONSTANT LGTEKa { Acc loop gain )
0 CONSTANT Omega0 { nominal wheel epeed#10e3 )

320 CONSTANT STDRELength ( data storage array STOREL length )

1250 CONSTANT RTCperiodl ( Real Timer Clock Timer 1 imitial count )
( for 40 hz sampling freq )

VARTABLE LATPWM ( Lateral Radio Pulse Width )
VARIABLE LGTPWM ( Longit. Radic Pulse Width )

VARIABLE TICKSAVE ( Memory location to save tick count )

VARTABLE LgtEncCount { Counter for # wheel apeeds to average )
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VARTABLE SpeedUpCount ( # sample periods in SPEED_UP mode )
VARIABLE STORECount ( Counter for # numbers stored )
VARTABLE LGT¢md { LGT acceleration command *10ae6 )

VARTABLE LGTxak ( LGT accelerometer compens. state*10e6 )
VARTABLE LGTxtk { LGT tachometer compensator state*10e3 )
VARIABLE Ytach3d ( Tachometer measurement *10e3 )

VARIABLE YaccB { Accelerometer measurement * 10ef )
VARIABLE Qw3 ( Wheel Torque #i0e3 )

400 1000 BACKGROUND SLAVE

400 1000 TERMINAL BOSS

( sokdkkssesrsahinsrn REAL TIME CLOCK REPROGRAMMING WORDS sksskmbdkiikskn )
CODE RTCset ( Sets Real Time Clock Counter 1 to sample rate )

MOVE.L DO,-(A6) { saves contents of D0 on stack )

MOVE.B #3$74,RTCctrlADDR ( Rewrites Ctrlword for counter 1 )

MOVE.W #RTCperiodi,Do

MOVE.B DO,RTCcounteri ( Send low byte )

LSR.H #8,D0

MDVE.B DO,RTCcounterl ( Send high byte )

MOVE.L (A6)+,D0 ( Restores original walua of D0 )
RIS ( Returm to subroutine )

END-CODE
CR .{ Loaded RICset )

ALS0 MATH
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FP32 .
FVARTABLE STORE1 STORELength 2% 2% VALLOT ( Time history )
FVARIABLE STORE2 STORELength 2+ 2# VALLOT { storage arrays )
FVARTABLE STORE3 STORELength 2* 2% VALLOT

( *dopdokiokssnioress REAL TIME CLOCK READING WORDS * *wkE )

CODE ZEROtheTICES ( - ) { Zerocs the tick counter register )
CLR.L (a5)

RTS

END-CODE

CR .( Loaded ZEROtheTICKS )

CODE TICKStoSTACK ( - n ) ( Loads tick count on top of stack )
MOVE.L (A5),-(A8) ( Current tick counter value -> stack )

RTS

END-CUDE

CR .( Loaded TICKStoSTACK )

( *drkopisopaktxsimwks CONTROL SYSTEM ALGORITHM WORDS sk ksskdknapimd )

: § 2048 LATDACADDR W! 2048 LGTDACADDR W! ; ( Quick motors stop )

t TDACSATURATE ( n - n ) ( Check if DAC command Saturates )
DUP 4095 > ( check for positive saturation )

IF DROP 4095 ( drop large value & supply sat. value )

ELSE DUP 0 < ( check for negative saturation )

IF DROP 0 ( drop large value & supply sat. value )

THEN THEN ; { otherwise keep commanded DAC value )

: WAITAN ( n - ) ( S/¥W WALIT for n#*30 microseconds )
0 DO LOQP ;

: CHECKTSAMPLE ( ~ £ ) ( Check if sample time has expired )
TICKStaSTACK ( get tick count )

0 > ; ( sets true flag if di >= Tsample )

CR .( Loaded CHECKTSAMPLE )
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s

WORK ACTIVATE ( Activate Background task )
S ( Stop all motors )

0 LGTCmd ! ( Initial LGT reference input assumed = ¢ )
0 LGTxtk ! ( Initialize tach. comp. state to zero )

0 LGTxak ! ( Imitialize acc. comp. state to zaro )

0 SpeedUpCount ! ( Initialize SPEED_UP counter }

0 STORECount ! ( Initialize STOREi array emtry counter)
RTCset { Set Real Time clock to Tsample )

BEGIN
CHECETSAMPLE ( Check if sample time has expired )
IF ZEROtheTICKS ( If TRUE Remet counter to zero . . . )

( *kwknwwwxesrtx READ LGT TACHOMETER ARD ACCELEROMETER ###¥%kmkkns )

LGTENCADDR W0 ( read binary value from pos enc )
( Bt <- top of atack )

LGTACCMUX MUXADDR W! ( switch MUX to LGT accelerometer )
1" SZHADDR W! ( sample analog signal )

1 WAIT4N { wait 30 microsec for S&H mattle )

0 SEHADDR W! ( place S2H device in HOLD mode )

1 ADCADDR W! ( Starts A to D Converter )
1 WAIT4N ( wait for ADC to finish )

ADCADDR We¢ ( reads binary value from A4/D )
( Bt Ba <~ top of stack )

4095 - 48384 =* 10003660 + ( convert teo a voltage#i0e6 )
20435 1000000 */ ( scale by LGTACCGAIN => acc#10e6 )
( Bt Ya6 <- top of stack )
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DUP Yacc6é ! { save copy of accel to print )

{ Bt Ya6 <~ top of stack )

SpeedUpComut, € 0 > ( check if speed-up phase over )

( ##Fxxpkeeirx ACCELEROMETER LOOP COMPENSATION *%# )

IF ( if =0 , add accelerometer compensation )

LGTCmd @ { get acceleration command )

6 100 */ { mult. by Kr to get 10e6 #* accel. command )
SWAP - ( subtract Ya6 to get acc. error*i0e6 )

DUP ( save a copy for compensator update later )

( Bt Eab Ea6 <~ top of stack )

LGTxak € ( get LGT accelerometer compensator state )
( Bt Eab Ea6 Xa6<- top of ptack )

8 100 */ + ( multiply by pa-za and add to acc. erzor )

LGTEa 1000 »/ ( mult. by LGTKa, div. by 1000 -> da*10e3 )
( Bt Eaé das <- top of stack )

EISE ( during speed-up do tach loop compens. only )

DROF ( drop Ya6 from top of stack )

0 0 ( supply zeros for Ea6 and da3 )

( Bt 0 0 <= top of stack )

{ dokkdokkkrpickreks TACHOMETER LOOP COMPENSATION sdkdkakkkmsksnin )

THEN ( do tachometer compensation loop )

Omega0 + ( wheel speed + da3 )
( Bt Ea6 sum <~ top of stack )

ROT ( get binary tach reading )
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( Ea6 sum Bt <- top of stack )

DUP { make a copy to )

( determine sign later )

10471976 SWAP / { get abs(ytach)#10e3 )

SWAP 2 MOD 0= ( get sign of the wheel speed : )
IF NEGATE THEN ( 0 => even # => neg. speed )

( Ea6 sum Y43 <- top of stack )

DUP Ytach3 ! ( save a copy to print later )
{ Eaé sum Yt3 <~ top of stack )

{ get velocity error*i0e3 )
~ { Ea6 Et3 <- top of atack )

DUP ( Save copy for tachk comp update )
( Ea6 Et3 Et3<- top of stack )

LGTxtk @ ( Get LGT tach compensator state )
( Ea6 Et3 Et3 Xtk<- top of stack )

25 100 #/ + ( multiply by pt-zt and )

( add tach error )
LGTKt * ( multiply with tach loop gain to )
( Wheel torquex10e3 )

( Ea6 Et3 Qw3 <- top of stack )

DUP Qw3 ! ( make a copy to print later )
( Ea6 Et6 Qu3<- top of stack )}

16120 + 2048 15120 »/ ( get binary command for DAC )
TDACSATURATE ( check if DAC saturates )

LGTDACADDR W! ( output torque command )
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( Ea6 Et3<- top of stack )
{ *xminmokrsicokksss COMPENSATOR STATE UPDATE #s#wsoknskkbshik )

LGTxtk @ ( get LGT tach compens state )
( Ea6 Et3 Xt3 <~ tap of stack )

100 100 */ ( multiply by LGTpt )
+ LGTxtk ! ( add to the tach. error and save xhat(k+l) )
( Ea6 <- top of stack )

LGTxak € { get LGT accelerometer compensator state )
{ Ea6 XaB <- top of stack )

103 100 %/ ( multiply by LGTpa )
4+ LeTxak | ( add to the acc. error and save xhat(k+1) )

( stack empty <- top of stack )
1 SpeedUpCount +! ( increment speed~up counter )}

{ maddksukapkrpin STORE TIME HISTORY scdokamddiokkskibnknkdk )
STORECount @ STORELength <

IF

Qw3 € I>F 1000, F/ ( Scale back to normal )

STORE! STORECount € 2% 2% + F! { multiply index by )

( 4 to store 64 bit # ) '

Ytach3d @ I>F 1000. ¥/ ( Scale back to nmormal )
STORE2 STORECount @ 2% 2% + F!

Yacc6 € I>F 1000000, F/ { Scale back to normal )
STORE3 STORECount © 2% 2% + F!

1 STORECount +! { Iancrement # siored )
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THEN

THEN PAUSE ( Go do terminal task )
AGATN ;
{ s4» BUILDING OF TERMINAL & BACKGROUND TASKS FOR TURNKEY APPLICATIDN #ao¢ )

: WHIP ( Build and Activate Background task )
SLAVE BUILD
SLAVE WORK ;

: PKEY ( Check if key was depressed )
BEGIN

PAUSE

?TERMINAL

DUP

IF

KEY DROP

THEN

UNTIL ;

: PRINT ACTIVATE ( Activate Terminal task )

~1 INIT-DISK ( raeset all disk drives )

BECIN '

CR

-" Press any key to see BACKGROUND variable "
. TKEY

CR ." Quw=[."

STORELength 0 DO
STORE1 I 2* 2% + Fe
IBHMOD O=1IF ." .. " CR
THEN F. ,» ©
PAUSE LOoOP ." 1; " CR
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CR ." Ytach=[ "
STOHELength 0 DD
STORE2 I 2% 2= + Fe
I 8MODO=1IF." ., "
THEN F, . *
PAUSE  Loop ." 1; v

CR ." Yacc=[ "

STORELengtk 0 DO
STORE3 I 2+ 2% + F¢
I 8 MOD O=IF " .. "
THEN F. .»
PAUSE  LOGP ." I; "

CR

AGAIN ;

¢ START

FORTH CODES FOR LONGITUDINAL CONTROL

CR

CR

CR

CR

CHANRELO BOSS BUILD ( Initializes Terminal Task )

BOSS PRINT

WHIP ; ( Initializes Background Task )

TURNKEY START ( Turn program into a TURNEKEY applicatiom )

CR CR CR

. ( Write protect STATIC memory and reset the computer ).

EOF
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Appendix Q
Lateral Control System

Q.1 Lateral equations of motion

The lateral equations of motion can be found from derivations in Appendices A, B
and C. The lateral equations can be decoupled from the longitudinal equations of

motion under the same conditions mentioned in section N.1.

Equations A.90, A.91 and A.92 then simplify to:

(I + I = -1V Q0 - fod + frn—Qr (Q.1)

0+ I+ T+ mwrly + mp(rw + re)? + mz(rw + r1)%)é
= [BY + mwrl + mprw (rw + 77) + morw(rw + rr) Q0%

+ [mwrw + mpr(rw + rF) + mr(rw + r7)lgé - (Q.2)

T+ Ei=—-frn+Qr (Q3)

If the d.c. motor rotor inertia is non zero the additional terms due to the geared

drive system that should be included in the lateral dynamic equations of motion

355
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can be determined by inspection of equations G.13 and (.14 in Appendix G
[ + 15 + (1= ) + (1 - n) I
= —I'Qd - fe¥ + frn—-Qr Q9
(5 + I} + [ + 0’ Bl = ~frn+ Qr (Q-5)
Equations Q.2, Q.4 and Q.5 are the dynamic equations of motion of the lateral

system, where /3¢ is the moment of inertia of the rotor of the turntable drive motor

and 7 is the gear ratio of the turntable drive system.

Rewriting these equations into state space representation, they become:

[ 0 Li: Liz O 17 é 1T Juf ~fe fr O 17 ¢ 1 [-1]
In 0 0 0 0 Jor 0 Jaa 0
0 Lp Iss O i o o - fr 0 i 1 o
0 0 0 1]|¢é| [T o0 o0 0 ]|[é] [0
(Q.6)
Where:
hy = B+ +(1~nif . Q.7
Lz = n(l-n)f (Q.8)
In = V+If +IF.+mWT%V+mF(TW+TF)2+mT(?‘W+5"T)2
‘ | (Q9)
Ip = If +nif (Q.10)
Ls = IF 2% (Q.11)
Ju = I, (Q.12)
Jez = [ +mwrly + merw(rw + 77) + merw(rw + r7))%  (Q.13)
J2a = [mwrw + mp(rw + rr) + mo(rw + r7)lg (Q.14)

Multiplication of equation Q.6 by the inverse of the first matrix containing the

inertia terms, yields the standard state space form of the system of lateral dynamic




Q.2. LATERAL SENSORS ' 357

equations:

x=Fx+ Gu (Q.15)

where u=Qr and x= [§, ¢, 7 ¢[7.

Q.2 Lateral sensors

A tachometer and an accelerometer are used as the lateral sensors. A roll angle
sensor, for example a vertical gyro, is also considered as an alternative to the ac-

celerometer.

The tachometer’s operation is similar to that of the one in the longitudinal system,

but here it is mounted on the rotor shaft of the turntable drive motor. It reads

WLAT = RLAT 7 (Q.16)

where nr47 is the known gear ratio of the turntable drive system. The micropro-

cessor can scale the tachometer measurement so that the state 7 is measured:

Yyr=17 (Q.17)

The accelerometer is mounted on the unicycle frame so that its acceleration sensi-
tive axis is in the direction of the sideways motion of the unicycle, It is placed on
the vertical centerline of the unicycle, so that it will not measure the component

due to yaw acceleration,

The accelerometer is actually a pendulum with a servo feedback loop around it
to change it to an accelerometer, as described in Appendix H. The output of the
instrument is a signal proportional to an internal control torque. This is generated
to counter the effects of specific forces on the unicycle frame at the position where
the accelerometer is mounted. The component of the frame sideways acceleration

can be obtained from eguation A.76 and the acceleration due to gravity is —g¢ for
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small roll angles. Figure Q.1 shows how the sign of the accelerometer measurement

is determined.

Qu(z.aT) = ka[~(rw + 753)d + rw ot + 9] (Q.18)

where rg3 is the height above the wheel axle at which the accelerometer is mounted.

From equation Q.15

¢ = Fié + Fio¥h + Fian+ Fisé + G1Q7 (Q.19)

By scaling the accelerometer measurement in the microprocessor software and by
substituting equations Q.19 into Q.18, the lateral acceleration measurement can

be rewritten in terms of the states and control input:

Yo = —(rw+ "'S?.)an}.6 + [rw o — (rw + T‘Ss)Fm]’lZ’
— (rw +7rs3)Fan+ (g — (rw + rs3)F14]é ~ (rw + r53)G1QT
(Q-20)
The measurement obtained from an ideal roll angle sensor would be
Yyr=1¢ (Q.Ql)

Q.3 Lateral system characteristics

The lateral system dynamic behaviour is a function of the nominal wheel speed
0, as can be seen from equations Q.12 and Q.13. The results presented in sec-
tion Q.3.1 show the state transition input and output matrices for a typical wheel
speed of 3 rad/sec. The measured mechanical parameters used in these calcula-

tions are listed in Appendix M.
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Q.3.1 Lateral system characteristics calculation

UCYC12/LATCHAR. CTR

' LATERAL SYSTEM CHARACTERISTICS

ke dk Wekok sk sk kol ook ook sk ook ook s s o e
LATERAL STATES : .PHI.DUT; PST.DOT; ETA; PHI
CONTROL IHP-UT : TURNTABLE MOTOR TORQUE (QT)
MEASUREMENTS : TACHUMETER; ACCELEROMETER; ROLL ANGLE SENSOR

UNITS : METERS, RADIANS, SECONDS

el a6 e el ot o ol e 0 o o kel ek N kNN e e o ko o e ok e e e e e

NOMINAL WHEEL SPEED (RAD/SEC) :

OMEGAQ =

3.0

ACCELEROMETER HETGHT (METERS) :

Rs3 =

0.6500

OPENLOOP SYSTEM MATRICES:

a0 ok el o ool e el e e o ol e e ek e e e
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0.
~0,2240

0.1718

1.0000

GLAT

0.

-1.5415
2.6999
0.

MLAT

EIGVAL

-0.0260
~0.2384
-3.2890

3.2910

EIGVEC

0.0015

1.0000
0.2031

0.6575

-0.0492
0,0378
0.

0.
0.0294
0.

=-0.0094
=0.6515
1.0000

0.
0.1212

=0.2122
0.

1.0000
0.
0.

1.0000
0.0713

-0.0567
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10.971%

0.
0.
0.

0.
0.5387
1.0000

1.0000

-0.08653

0.0483
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-0.0599
CTR

0.1828
2.6792
0.1673
-0.1425

0BS
0.2031
-0.0028
-0.0599
RESTDU
0.0371

=0.0005
=0.0110

TRANSFER FUNCTION FROM TURNTABLE DRIVE TORGQUE TD TACHOMETER MEASUREMENT.

TACHZERDS

3.3000
-3.2938
-0.0279

TACHPDLES

3.2910

=3.2890

-0.2384

-0.0250

TACHGAIN

0.0392

1.0000
0.0020
0.0392

2.8792
0.0052
0.1051

=

-0.3040

-0.0567
-0.1617
-0.3040

=0.0095
-0.0271
=0.05609

0.3039

0.0483
0.1i618
0.3039

~0.0069
=0.0231
=-0.0433
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2.6999
TRANSFER FUNCTION FROM TURNTABLE DRIVE TORQUE TO ACCELERQMETER MEASUREMENT
ACCZEROS =
0.0000 + 1.0284i
0.0000 - 1.0284i
0.0000 + 0. i
ACCPDLES =
3.2910
-3.2890
-0.2384
-0.0250
ACCGAIN =
-0.0454

TRANSFER FUNCTION FROM TURNTABLE DRIVE TORQUE TD ROLL ANGLE MEASUREMENT

ROLLZERDS =

ROLLPOLES =

3.2910
~-3.2890
-0.2384
-0.0250

ROLLGAIN =
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=1.0135

Q.4 LQG control system design

In this section we will design an optimal continuous time linear quadratic gaussian

compensator for the lateral system.

The unicycle yaw rate will accurately follow a reference command if the regulator
uses integral error feedback of the measured plant yaw rate. This introduces an

extra state, e, to the lateral system matrices:

e 0 H € 0 -1
1 = + u 4+ T
X {0 F x G 0
€
v = —[C., O] (Q-22)
X

where H=[010 0]

The regular gains C; for an optimal linear quadratic regulator were calculated by

minimizing the cost function:
J= % / (ae? + bud)dt (Q.23)
0

A CTRL-C program ’lgtlgg.ctr’ was used to calculate the regulator gains and the
print-out is shown in section Q.4.1. The ratio § of the weighting factors were
chosen so that the step response (Figure Q.2) of the closed loop system reached
the commanded value in approximately 5 seconds. Figure Q.3 shows the closed
loop frequency of the lateral system. The closed loop system has a bandwidth of
approximately 0.3 Hz, which is comparable to that of the longitudinal system.
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A linear quadratic gaussion estimator was designed to estimate all the lateral states
from the tachometer and roll angle sensor measurement, The modified plant model

that includes the random disturbance effects on the plant and meé,surements, is:

g = Fz+Gu+ Guuw
Ym = Mz +ow (Q.24)

where:

w is a random disturbance vector with spectral density Q
UYm 18 a vector of the measured quantities

2 is a random measurement noise vector

G, is the process noise input distribution matrix,

The complete statistical nature of the measurement noise is not known because
the actual sensors have not been selected. For this reason we will assume the
same spectral densities for the tachometer (R;) and roll angle sensor (R,) as for

the longitudinal system (refer to section N.5).

R, 0.05 rad?/s

R, = 01 m?/s? (Q.25)

The process noise spectral density is also assumed to be similar to that of the
longitudinal system. The noise input distribution matrix G,, is assumed to be the

same as the control input distribution matrix.

Q 2 N2m?s

G, = @ (Q.26)

A Kalman-Bucy filter [Kalman] with filter gains L, can be designed to provide an
optimal estimate of the state vector & in the presence of the specified disturbance

inputs. The estimator state equation is

& = Fot + Gou + L(ym — M%) (Q.27)
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Ideally the plant model used in the estimator would have the same parameters as

the actual plant, i.e. Fy = F and Gp=G.

The Kalman filter gain matrix L is shown under ESTGAINS in the print-out listed
in section Q.4.1. Equations Q.22 and .24 can be combined to give the lateral

closed loop system matrices:

& F —GC, -GC z 0 Gn 0

éEl=1 o0 0 H e |+ -1 |r+| 0 of]"”

& LM —-GoC. Fy—GoC-LM & 0 0 L i
(Q.28)

The performance of the state estimator is simulated where the actual initial roll
angle ¢(0) = 2 degrees, while the estimated roll angle is ¢(0) = 0. Figure Q.4
shows that the roll error initially increases to approximately 2.4 degrees while the
state estimates are improved. In the absence of noise the estimated states track
the actual plant states and the roll error is reduced to zero in approximately 5

seconds,

Q.4.1 Calculation of LQG gains

UCYC12/LATLOG.CTR

CONTINUOUS TIME LATERAL CONTROL SYSTEM WITH FULL ORDER LQ ESTIMATOR

Li ] * ekl e S oot e ok o sl o o 0 o s o oo o ke

LATERAL STATES : PHI.DDT; PSI.DOT; ETA; PHI

CONTROL INPUT : TURNTAELE MOTOR TORQUE (QT)
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MEASUREMENTS : TACHOMETER; ROLL ANGLE SENSOR
UNITS : METERS, RADIANS, SECONDS
*aiokx  CONTINUGQUS TIME PLANT MATRICES & seackek
FLAT =
0.0000 0.8575 0.0000 10,9719
-0.2240 -0.0492 0.1212 0.0000
0.1718 0.0378 -0.2122 0.0000
1.0000 0.0000 0.0000 0.0000
GLAT =
0.0000
-1.5641b6
2.6999
0.0000
GNOISELAT =
0.0000
-1.5415
2.6989
0.0000

MLAT =

0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

NLAT =

0.0
0.0
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w#xks MATRICES FOR INTEGRAL ERROR FEEDBACK CONTROL

)

EXTENDED STATE VECTOR IS : PSIDOT.ERR; PHI.DOT; PSI.DOT; ETA; PHI

FINT

0.0000
0.0000
0.0000
0.0000
0.0000

GINT

0.0000
0.0000
-1.5415
2.6999

0.0000.

kol

0,0000
0.0000
-0.2240
0.1718
1.0000

REGULATOR DESIGN

1.0000
0.6575
-0.0492
10.0378
0.0000

0.0000
0.0000
0.1212
—0.21ﬁ2
0.0000

3ok

0.0000
10.9713
0.0000
0.0000
0, 0000

’

COST FUNCTION WEIGHTING FACTORS ON STATES AND CONTROL :

ADTAG

5.0

BDIAG

1.0

0.0 0.0

0.0

OPTIMAL INTEGRAL ERROR AND STATE FEEDBACK GATNS :

CERR

2,2361
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-45.4187

REGGATIN

~3.4468
REGZEROS

=-3.3124

3.3124

£ -0.0000

REGFPOLES

-0.0000
‘ -1.3237
i _ -1.3237

-3.2921
: -3.2921

-5.9571

0.00001

1.31801
1.31801
0.00641
0.0064i
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-0,0787 -150.9253

akpkk  ESTIMATOR DESIGN  #sksiks

QLAT

1.0

RLAT

0.0500
0.0000

P o it s e

0.0000
0.1000

PROCESS AND MEASUREMENT NOISE SPECTRAL DENSITIES :
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OPTIMAL ESTIMATOR GAINS AND ESTIMATOR POLES 1

ESTGATNS =
1.2390 21.7228
-6.8113 -0.9544
11.8559 0.2314
0.4528 6.5832
ESTPULES =
-0.0279 + 0,0000%
-3,3009 # 0.04173,
-3.3009 - 0.0417i
-12.0710 - 0.00001
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+ a4 (vertical)

for a positive roll angle
>0

pendulum control torque
Qp(LAT) >0

Pendulum position
if no control torgue

had been applied

S,

direction of
frame acceleration

t
I
|
1
LAS
|
1
1
- e E
|
i rw+-r83 for lateral acceleration
i _ of the frame of:
L -ty + 530§+ 5,0, 01,
f3 pendulum control torque
v ) Qp (LAT) > O
f2

he output signal from the servo accelerometer is proportional to

the total pendulum control torque

Q_(LAT)= k [~ (xy + rs3§$ trgQ @+ gdif,

Figure Q.1: Lateral Accelerometer Measurement
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Figure Q.2: Step Response of the Lateral System with Full State Feedback
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FREG. RESPUNSE WITH FULL STATE FEEDBACK

0.C

-5, <

-10. | \\

-15. — _ \

-20.

"2 01 1 | 1
frequency (Hz)
- INPUT = YAW RATE-C@MMAND : BUTPUT : YAW RATE

.00

Ep—
_.____‘____\

-100.

-200. ' - R |

.01 : .1 1

frequency (Hz)

Figure Q.3: Frequency Response of the Lateral Closed Loop System with Full State
Feedback
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RESPONSE WITH FULL URDER ESTIMATOR
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Figure Q.4: Response of the Lateral System with a Full Order Estimator and an Imt1a1
Roll Angle of 2 Degrees
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