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Abstract

Active stabilization of unstable :!light vehicles is an important research area at present.

It is rare:tY_l'ossible for graduate students to become involved in these research efforts,

othe!"tli;!J:L...JJILll,J~!gE!!Y theoretical basis. For this reason we chose to build aland ve­

hieIe with interesting unstable dynamics. A uuicyeIe robot has been constructed at a

reasonable cost, which facilitates the evaluation of the control strategies in a laboratory

environment.

This research investigates the stabilization of a one wheeled vehicle by means of

active feedback control. The control methods of a human riding a unicyeIe are investi­

gated first and a dynamic model which eIosely emulates the process is derived. A one

wheeled robot with mass and inertia properties similar to those of a young child was

constructed and used as an experimental vehicle for testing various control algorithms.

The research addresses aspects in the fields of robotics, artificial intelligence and modern

digital control, but rather than specializing in any of these fields, it strives to combine

these disciplines in a unique application where th.e interaction of these fields can be

studied. An underlying approach of this research was to not only design but also eval­

uate control system performance in a laboratory environment without incurring large

financial expenses. The robot has all its electrical and computational power on board,

with the ability to receive commands from a radio transmitter to change its direction

and forward speed. A linearized model was derived and optimal control systems to

stabilize the vehicle were designed and simulated.
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An investlgatlon into using accelerometers for detection of the deviation from verti­

cal by measuring the specific force on the robot frame, was conducted. We found that

this resulted in unacceptable closed loop system robustness. Theoretical and physical

explanations for this phenomenon are presented as weil as experimental results to con­

firm the extreme sensitivity of the design to these sensors.

We show that accurate sensor Information on the unicycle's orientation with respect

to vertical facilitates the design of closed loop control systems with good stability and

robustness characteristics. Such a control system for the longitudinal dynamics of the

unicycle robot was demonstrated experimentally.

The sensing, actuation and control abilities of a person riding a unicycle are com­

pared with those of a computerized robot performing a similar task. We propose that

this research and the test vehicle form the basis for theoretical and experimental studies

into the application of nonlinear, robust and adaptive control systems techniques for,

unstable systems.
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1/J =
</> =
(J =
fi =

'1/0 =
'1/ =
n =
110 =
11 =
p =
a =

List of Symbols

yawangle.

roll angle.

pitch angle.

'1/0 + '1/ = total angular velocity of the rotary

turntable T relative to the frame F.

constant component of turntable angular velocity.

small perturbation of turntable angular velocity.

total wheel angular velocity about the axle of the wheel.

constant component of wheel angular velocity..

small perturbation of wheel angular velocity.

angle of longitudinal sensor pendulum relative to the frame F.

angle of lateral sensor pendulum relative to the frame F.

Wheel mechanical parameters:

mw=

rw =

mass of the wheel W.

radius of the wheel.

Ir, Ir, Ir = moments of inertia of the wheel about 3 mutually

perpendicular axes originating at the center of mass

of the wheel. Ir is the inertia about the axis along

ix



the wheel axle.

Unicycle frame mechanical parameters:

mass of the frame, F, of the unicycle.

distance from the wheel axle to the center of mass, F*,

of the unicycle frame.

distance the center of mass F* is located in front

of the center line of the frame.

distance the center of mass F* is located to the side

of the center line.

Ir, If, If = moments of inertia of the frame about 3 mutuaJly

perpendicular axes originating at the center of mass

of the frame. If is the inertia ahout a verical axis,

and Ir ahout an axis pointing in the direction of normal

forward motion of the frame.

Turntable mechanical parameters:

mass of the rotary turntahle T on top of the unicycle.

distance from the wheel axle to the center of mass, T*,

of the turntable.

i[, IT,4' = moments of inertia of the turntable about 3 mutuaJly

m p =

Tp =

kp =

jp =

perpendicular axes originating at the center of mass

of the turntable. Ir is the inertia about a nominaJly

vertical axis along the axle of the turntable.

Sensor pendulum mechanical parameters:

mass of a sensor pendulum.

distance between the hinge point of a sensor pendulum,

and its center of mass.

spring constant of coil spring attached around the

pendulum hinge point.

viscous damping coefficient of the sensor pendulum.
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TR2 =

TR3 =

TS3 =

TSl =

moment of inertia of a sensor pendulum about an axis

passing through its center of mass, and perpendicular

to the pendulum's plane of oscillation.

distance from the wheel axIe to the hinge point of the

lateral motion sensor pendulum.

distance from the center of mass of the lateral

pendulum is located in front of the center line of the frame of the unicycle.

distance from the wheel axIe to the hinge point of the

longitudinal motion sensor pendulum.

distance from the center of mass of the longitudinal

pendulum is located to the side of the center line of

the frame of the unicycle.

Other parameters and symbols:

Ir = Ir- =

Ja =

Iw =

viscous friction coefficient at contact point of the

rubber tire to the ground.

viscous friction coefficient at the wheel axle where it

h =

is attached to the unicycle frame.

viscous friction coefficient at the rotary turntable axIe

where it is attached to the frame.

g =

Rw­1 -

Qf =

Qw=

gravity acceleration constant.

component of the internal reaction force along the Wl

unit vector. The W superscript indicates that the reaction

force is between the wheel, W, and the unicycle frame.

The subscript indicates along which unit vector the

reaction force is specified.

component of the internal reaction moment along the i2
unit vector. The meaning of the sub- and superscripts

are similar to the definition given for reaction forces.

control torque applied to the wheel and unicycle frame
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QT =

by the wheel drive motor.

control torque applied to the rotary turntable and

unicycle franie by the turntable drive motor.
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and apply the latest microprocessor and control systems technology in a laboratory en­

vironment in order to gain insight into the processes involved.

This research investigates the stabilization of a one wheeled vehicle by means of

active feedback control, The control methods of a human riding a unicycle are investi­

gated first and a dynamic model which closely emulates the process is derived. A one

wheeled robot with mass and inertia properties similar to those of a young child was

constructed and used as an experimental vehicle for testing various control algorithms.

The research addresses aspects in the fields of robotics, artificial intelligence and modern

digital control, but rather than specializing in any of these fields, it strives to combine

these disciplines in a unique application where the interaction of these fields can be

studied. An underlying approach of this research was to not only design but also eval­

uate control system performance in a laboratory environment without incurring large

financial expenses.

The unicycle problem that was investigated is similar to that of an inverted pendu­

lum with both longitudinal and lateral unstable open loop dynamics. Previous work on

active stabilization of a bicycle by sideways leaning of a robot body [Van Zytveld] was

undertaken where only lateral instability is present in the open loop dynamic system.

An autopilot for a motorbike was designed and demonstrated using a rate gyro sensor

and a steering actuator [Nashner], Research was also undertaken on the control of in­

verted pendulums on stable wheeled carts( [Higdon] and [SchaeferJ), but applications

did not address the problems associated with stabilizing the pendulum if the cart would

traverse inclined surfaces. A significant amount of research into stabilizing legged robots

has been performed. The work on the hopping pogo stick robots at Carnegie Mellon

University [Raibert] bears some relationship to the stabilization of a one wheeled robot.

The work most closely related to the topic of this thesis was performed by researchers

at the mechanical engineering departement of Waseda University, Tokyo [Iguchi]. In this

case a one wheeled robot was stabilized by means of a fast spinning control moment gyro
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mounted on the vehicle. H the unicycle leaned sideways, a torque was applied to the

control moment gyro by changing the speed of the wheel that rolls on the ground, These

investigations differ from the approach of this thesis where stabilization by means of a

control moment gyro was ruled out because it bears no relationship with the method

employed by humans in stabilizing a unicycle.

1.2 Organization of the thesis

This research employs techniques found in mechanical engineering, dynamics, control

system design, microprocessor technology as well as analog electronics. In order to make

clear the conceptual contributions of the thesis, the details of the application of these

disciplines in solving the problem at hand are documented in appendices. The main

text concentrates on motivating the conceptual principles used in solving the unicycle

stabilization problem and draws conclusions from the theoretical and experimental re­

sults,

Chapter 2 describes the control methods used by a human riding a unicycle and

motivates the choice of a dynamic model that represents a reasonable approxlmation of

the actual situation. It also addresses the issues considered in the mechanical design of

the one wheeled robot used in the experiments.

Chapter 3 describes the design of a control system for the longitudinal stabilization

of the unicycle robot. The advantages and disadvantages of control algorithms designed

by successive loop closure and linear quadratic cost function minimization techniques

are discnssed. Experimental results are presented and analysed. It concludes with an

explanation of why vertical stabilization with accelerometers as the primary sensors

cannot be obtained in practice,

Chapter 4 shows that a requirement for stabilization of the pitch instability of the

unicycle is a sensor which provides a good vertical reference to which the frame attitude
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can be compared. It proceeds to discuss the design of candidate longitudinal controllers

assuming that pitch attitude information is known, and shows how robustness is im­

proved. Experimental results which demonstrate how the unicyc!e robot was stabilized

longitudinally, are presented.

Chapter 5 discusses control systems to provide lateral stability for the unicyc!e.

After showing that sirnilar robustness problems exist in the lateral control system if ac­

celerometer sensors are used, stabilization methods using roll attitude information are

developed.

Chapter 6 summarizes the main findings of this research and proposes extensions of

this work.



Chapter 2

Dynamic Model for the Unicycle

Robot

2.1 Dynamics of a human riding a unicycle

The process of a human riding a unicycle is quite complex. Not only does a person use

a multitude of sensory inputs to monitor the process, but the control actions themselves

are nonlinear. As is the case with most skills learned by a human, many of the control

feedback loops are closed at a subconcious level. When we attempt to emulate the pro­

cess of a human riding a unicycle by a computer stabilized one wheeled robot, we first

have to simplify the human's actions into mathematical and mechanical models which

can be simulated and implemented in a laboratory.

A person on a unicycle maintains longitudinal stability by pedaling fast er or slower,

by leaning bis torso forward or backward and by moving his arms forward and back­

ward. Lateral stability is obtained by leaning his torso sideways, pulling an arm in or

stretching it out and by steering the wheel into the direction that he is falling by twisting

motions at the hip joints. Many of these control actions are rather jerky. For example,

when a person wants to change direction on a unicycle, he would use bis torso and out­

stretched arms as areaction inertia to suddenly twist the lower part of his body and the

5
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unicycle into the desired direction. He uses his knowledge (gained by experience) of the

nonlinear friction characteristics of the wheel on the ground to apply the correct torque

profile to end up in the desired direction. Simultaneously, the rider would lean into the

turn to counteract the effect of the ground reaction force and the inertia of his body,

which would tend to let the rider fall towards the direction that he had been travelling.

To emulate just one such a control action on a robot obviously would be prohibitively

complex. The goal is therefore to identify and emulate only the most important control

actions of a human rider.

The first and probably the most important simplification is that we assume that we

can model the human riding on a unicycle with a linear process. Thereby we choose

to represent the rider and unicycle by a finite number of connected rigid bodies and

assume that the relative angular position and rate motions are small, We also assume

that the control torques and other kinematic variables are continuous functions oftime.

The restriction to a linear system analysis can be changed later to include studies of

nonlinear control methods, but it is reasoned that for the Initial studies, we should deal

with a linear system model. This not only gives insight into the basic issues involved

in controlling a unicycle, but also gives access to the most powerful mathematical and

control sytems techniques available at present. The assumption of a linear system is also

not so unrealistic, because experienced unicycle riders do not execute large amplitude

motions when traveling in a straight line or while turning slowly.

We believe that the most basic configuration that will represent the major parts

and motions of a human on a unicycle consists of three rigid bodies. As shown in the

schematic diagram of Figure A.l it consists of a wheel, a frame to present the unicycle

frame and lower part of the rider's body and a rotary turntable which presents the rider's

twisting torso and arms. The most important way in which a human rider maintains

longitudinal stability is by nieans of the torques exerted on the pedals of the wheel. The

forward and backward leaning action of the rider is of lesser importance and was not

implemented in the robot in order to simplify the mechanical design.
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Observation of a human riding a unicycle shows that lateral stability is obtained

largely by continuously twisting the wheel in order to steer towards the direction that

he is falling. The ground reaction at the contact point between the wheel and the ground

applies a moment to the unicycle which rolls it back to vertical. A turntable mounted

on top of the robot with its axis of rotation along the centerline of the unicycle is used

to simulate the rider's torso and arms.

We show in Appendix F that the unicycle can be stabilized by sideways leaning

actions only, but that the yaw angular momentum is uncontrollable from the lean actu­

ator. We decided to exclude the sideways leaning action from the mechanical robot in

order to simplify the contruction.

A person uses several sensory systems to monitor the stabilization process while

riding a unicycle. The four major sensors used to determine orientation with respect

to vertical are the vestibular system, visual system, proprioceptive sensors and tactile

sensors [Borah] and [Ormsby]. The vestibular system is the primary orientation system

of the human and consists of the semicircular canals (which measure angular velocity of

the head) and the otolith organs (which respond to linear accelerations and to changes

in orientation with respect to the gravity vector). Proprioceptive cues are obtained from

limb position siguals and muscle length and tension afferents, from which the brain can

infer which dynamic forces are acting on the body, based on the person's experience

in coordination. A person can also determine his orientation with respect to vertical

from tactile pressure cues on the various parts of his body which are in contact with his

environment. Finally eye sight is used, which in combination with a person's experience

in deducing the direction of vertical from clues in his environment, gives an indication

of his lateral and longitudinal orientation. All these sensory inputs are combined in the

human brain to determine the spatial orientation of his body. It is obviously impossible

to use sensors on the robot with all the sophistication mentioned above.
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2.2 Mechanical design of the unicycle robot

The unicyele robot that was designed, consists of three parts: a wheel, a frame on which

the drive motors, sensors and electronics are mounted, and a battery pack on top of the

frame which can rotate ab out the vertical axis,

The robot was specificaJIy designed with mass and dimensional properties similar to

those of a human riding on a unicyele. This aJIowed interesting performance compar­

isons, since the open-loop time constants in the two cases are similar. Although these

dimensions and weight make the robot less transportable, it gives the designer more

freedom to select equipment without being too concerned about physical size. Enough

batteries could also be mounted on the robot to supply electrical power for extended

periods of up to two hours of continuous testing without recharging.

Consider a young person of about 50 kg (110 lb) mass. The mass can be roughly

divided equaJIy between the body above and below the hips, The upper part of the

body that performs the twisting motions will be approximated by a 25 kg cylinder of

0.2 m radius. The moment of inertia about the vertical axis is therefore approximately

1 Z Z
Itorso = 2MR = 0.5 kg - m

This compares weil with the turntable (battery pack) inertia of Ir = 0.5028 kg - mZ•

The rider's legs, which are usuaJIy slightly bent when resting on the pedals, are

approximated by two 12.5 kg cylinders of r = 8.5 cm in radius (r) and spaced a distance

(d) of 0.1 m apart. The moment of inertia about the vertical centerline between them

is given by
1

Ilegs = 2[2mrZ +md2
] = 0.34 kg - m2

This inertia is elose to the robot's frame plus electronics inertia of If = 0.3635 kg ­

m2 •
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The center of mass for the unicycle robot above the whee1 axle is given by

which would be located at approximately hip height for a rider sitting on a unicyc1e.

9

The mechanical parameters of the robot and the measurement methods are given

in Appendix M. The calculations above do not include all the inertia properties of the

unicyde plus rlder, and only serve asan indication that during the robot construction

an attempt was made to let the mechanical system approximate the reallife situation.

The reader may wonder why the heavy battery pack is placed at the top of the

unicycle robot. Placing the center of mass high not only emulates the real case of a

human on a unicycle, but is also advantageous from a control systems point of view. If

we consider the unicyc1e as a simple inverted pendulum, the higher the center of mass is,

the larger is the fall-down time constant of the open-loop system, This permits a slower

sampling frequency in the control microprocessor, so that it has more time to complete

the calculations ofthe balance algorithm. Furthermore. during balance recovery actions,

the wheel drive torque has to accelerate the wheel until its axle is below the center of

mass of the unicyc1e. As we show in section 1.2 the effeetive inertia that the torque has

to accelerate depends on the heigh.t of the center of mass of the superstructure (frame

and turntable). When the center of mass of the superstructure Is just above the wheel

axIe height, the control torque has to accelerate almost all of the superstructure's as

well as the wheel's inertia during stabilization actions. If, on the other hand, the super­

structure's center of mass is high above the wheel axle, only the wheel's inertia needs

to be accelerated (see equations LA and L.5).

The frame of the robot was made out of alurninum. All of the more complicated

parts were made on a numerically coded milling machine to provide a light but rigid

structure to which the motors, gear systems, servo amplifiers, computer rack, sensor

electronics and the rotary battery pack could be mounted. A drawing of the unicycle
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robot is shown in Figure 2.1 and more detailed drawings are contained in Appendix L.

The microprocessor rack is mounted in the middle of the frame between the two motors
"

and the two servo amplifiers on either side of it on the outside of the frame.

2.3 Dynamics of the unicycle robot

The unicycle robot may be modeled as three interconnected rigid bodies as shown in the

schematic diagram of Figure A.l. The various coordinate transformations required to

describe the relative angular motions of the three rigid bodies are defined in Figures A.2

and A.3.

In Appendix A the dynamic equations ofmotion are derived by using Newton-Euler

mechanics. Each part of the unicycle is considered as a free rigid body with gravity

forces, control torques and reaction forces and torques from adjoining bodies acting on

it. It also includes the dynamics of two sensor pendulums Rand S mounted to the

frame which can freely swing in the longitudinal and lateral directions respectively. The

derivations make provision for mounting the sensor pendulums anywhere on the unicy­

cle frame.

The equations are generalized to include the situation where the center of mass of

the frame is displaced away from the vertical centerline of the robot. Inclusion of the

products of inertia into the dynarnic equations of motion would significantly compli­

cate the mathematics. Therefore the robot was designed with its mass distribution as

symmetrical as possible about the longitudinal and lateral planes which intersect in

the vertical centerline. This would cause the products of inertia to be negligibly small

or zero (section 7-2, [Greenwood]). It is assumed that the wheel rolls on the ground

without slipping, which places a nonholomic constraint on the dynamic equations. The

dynamic equations are derived for a nonzero nominal tumtable speed, which produces

coupling between the longitudinal and lateral plant dynamics.
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The dynamic equations for the three parts of the unicycle with the two sensor pen­

dulums are obtained after eliminating all the internal reaction forces and moments. It

results in an eleventh order system with two forcing functions, the wheel torque and the

turntable torque. The equations are summarized in section A.12 and presented in state

space form in Appendix D.

As a means of checking the equations of motion, the derivation was repeated by

using Lagrange's equations in Appendix B. This method is based on the physical prin­

ciple that the time rate of change of the scalar generallzed momentum Pi is equal to the

generalized force Qi due to the applied forces plus an inertial generallzed force due to

motion in the other generallzed coordinates (section 6-6, [Greenwood]). Often the Qi'S

are derivable from a potential function, which is the potential energy of the unicyle in

the gravity field of earth, in the present case. This method avoids the need to elimi­

nate all the reaction forces as in Appendix A. The no-slip condition on the wheel is a

nonholomic constraint equation and is included into Lagrange's equation as shown in

section B.3.1.

In the Lagrange's method derivation, we did not include the sensor pendulums and

asymmetry of the frame since we only wanted to check the dynamic equations of motion.

The summary ofthe dynamic equations ofsection BA indeed confirms that the previous

equations are correct.

A third very useful method for checking the dynamic equations of motion is de­

scribed in Appendix C. It is based on D'Alembert's principle which states that the

laws of static equilibrium apply to a dynamical system if the inertial forces, as weIl as

the actual external forces, are considered as applied forces acting on the system (sec­

tion 1-5, [Greenwood]). After determining the D'Alembert forces, D'Alembert torques

and gravitational forces on the three parts of the unicycle, the following procedure

([Bryson 3] provides the dynamic equations of motion:

• set the two horizontal components of the moment about the ground contact point

/
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equal to zero for the whole unicycle.

• set the vertical component of the moment about the vertical centerline equal to

zero for the whole unicycle and include the applied ground friction torque.

• set the moment about the axle of the wheel equal to zero for the frame plus

turntable and include the applied torque Qw and wheel drive friction torque.

• set the moment about the axle of the turntable equal to zero for the turntable and

include the applied torque QT and the turntable drive friction torque.

The resulting equations in sections C.2 and C.3 serve as an additional confirmation

that the dynamic model for the system is derived correctly.

2.4 Selection of actuators and the drive system

One of the aims of this research project was to build a robot that can stabilize itself

without any connections to its environment other than the wheel touching the ground.

Therefore both its actuators and power source should be on-board. Direct current mo­

tors and batteries offer a convenient solution to this requirement.

The choice between direct drive or geared drive systems was dictated by cost. While

the former offers advantages of a simpler mechanical design and none of the nonlin­

earities associated with geared drive systems, these motors were too expensive for the

budget of the project. The direct current servo motors ( [Infranor]) that were selected

have low inertia armatures which aJlows high angular acceleration of the rotor and can

run at low speeds with full output torque and no cogging. A 316 watt motor was se­

lected for the wheel drive system because the robot is expected to atabilize itself while

continuously running at a forward speed as high as 3 meters per second (10 km/h).

A smaJler 151 watt motor was selected for the turntable drive system. The maximum

speeds for these motors are 7000 and 10 000 revolutions per minute for the large and

smal1 motor respectively.
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Aprecision cable and polyurethane chain drive system and aluminum gears were

used to reduce the motor speeds and increase the motor torques. This system requires

no lubrication and the gear ratios can easily be adjusted by using different belt and

gear sizes. An effort was made to select optimum gear ratios for the drive systems. For

the wheel drive system it is desireable to select a gear ratio which matches the motor

rotor inertia to the effective inertia of the longitudinal system dynamies, so that max­

imum wheel acceleration can be obtained. This will enab1e the quiekest recovery from

longitudinal balance disturbances, Appendix K show~ how the wheel acce1eration as a

function of the gear ratio canbe derived from the dynamic equations of motion. For

the robot parameters listed in Appendix M, a~gear reduction is near the optimum
'::::

value for the wheel drive system.

Lateral system stability is maintained by continuously steering into the direction

that the unicyc1e is falling. The optimal gear ratio for the turntable drive system would

therefore be the ratio that gives maximum yaw acceleration. Appendix G uses the lat­

eral system dynamic equations of motion and plant parameters to calculate that the

optimal gear ratio would be approximately 72:1. The practicallimitations of the three

stage gear reduction system that was constructed limited the gear ratiot~ but this

results in a maximum yaw acceleration that is 98% of the optimum.

Pulse width modulated amplifiers ([Galil Motion]) were used to drive the servo mo­

tors. The particular models that were used modulate the 48 V d.c, supp1y from the

batteries to supply a regulated current to the motors. They can continuously supply

10' A to each motor. The servo amplifier receives a reference voltage from the digital­

to-analog interface card in the on-board microprocessor, which commands a torque in

the motor. The digital computer interface electronics is described in more detail in

Appendix I.
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2.5 Selection and construction of sensors

The control system needs information on the angular rates of the wheel and'fhe turntable

relative to the frame. The turntable speed can be very low and tachometers give poor

results at low angular rates. It was therefore decided to use position encoders on the mo­

tor rotor shafts to obtain angular velocity information. This method, which is described

in detail in Appendix T, uses a high frequency clock to count the number of clock pulses

during each pulse from the position encoder as it rotates. The pulse count can then

be inverted in the microprocessor to obtain angular velocity information. This method

can provide high resolution angular rate information by the appropriate selection of the

counter clock frequency and counter register length.

Several balance sensors were considered. As we will show in a later chapter, the ideal

sensors would measure the pitch and roll angles of the unicyde with respect to vertical.

Instruments which can lndicate vertical in the presence of external accelerations other

than gravity on the instrument are quite complex [Wrigley]. Vertical gyros, free gyros

and optical vertical reference systems can provide this Information, but all of these were

too expensive for the budget of the project.

Passive sensor pendulums were considered as a means of obtaining vertical refer­

ence. All the modes of the unicycle dynamic system are theoretically available from

the measurement of the passive sensor pendulum angles relative to the unicycle frame.

Unfortunately the commercial instruments of this type do not have the required reso­

lution and some of their parameters (eg. damping factor) are temperature dependent.

Furthermore, it is shown in Appendix E that the inverted pendulum modes can be un­

observable if the passive sensor pendulums are mounted at the wrong heights.

Rate gyros can be used to measure roll and pitch rates. The inverted pendulum

modes are observable from these measurements, but unfortunately these instruments

are also fairly expensive.
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Analyses in section N.3 and Q.3 show that the inverted pendulum modes are observ­

able from measurements of accelerometers mounted on the unicycle frame. We decided

to use this type of sensor because it would allow the robot to ride on inclined terrain

and accelerometers of adequate sensitivity could be constructed at an affordable cost.

Simulations have shown (see later chapters) that the maximum lateral and longitudinal

accelerations are in the order of 0.1 m/82. Appendix H describes how servo accelerom­

eters with an accuracy of about 0.0033 m/82 were constructed by careful mechanical,

optical and electronic design.

If we are prepared to do tests on horizontal surfaces only, 'the unicycle can pull a

light carriage with position sensors to measure the roll and pitch angles directly. We

constructed such a sensor by means of a small magnet and a Hall effect transistor to

measure the unicycle frame's pitch angle relative to a horizontal floor surface, This

provided an inexpensive way to demonstrate experimentally that the unicycle robot

could be stabilized if the vertical orientation Information was available to the control

system.
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Figure 2.1: Unicycle Robot Dra.wing



Chapter 3

Longitudinal System with

Accelerometer Sensor

3.1 Introduction

A significant simplification of the control system design can be obtained if the lateral

and longitudinal system dynamics can be decoupled. Inspection ofthe system dynamic

equations presented at the end of Appendix A, shows that it is indeed possible to de­

couple the lateral and longitudinal dynamics if the nominal turntable angular rotation

speed 'f/o is zero and the unicycle frame has left-right symmetry about a vertical plane,

i.e. Tl = T2 = O. The first requirement implies that the turntable rotation speeds should

always be so slow that the gyroscopic effect of this rotating inertia does not significantly

couple lateral motions into the longitudinal dynamics. Previous research efforts [Iguchi]

have in fact used a fast rotating gyro on the unicycle to slow down the time constants

assoclated with the falling down of the unicycle. Since the purpose of this thesis is to

emulate the control method of a human riding a unicycle, where this form of gyroscopic

stabilization is absent, the requirement that 'f/o must be zero is compatible with the goal .

of this research.

The second requirement that the center of mass of the unicycle must be on the line

17
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of geometrie symmetry has been met by the mechanical design and construction of the

robot as discussed in the previous chapter.

The dynamic equations of motion for the decoupled longitudinal system are given in

Appendix N, equations N.3 and NA. The pitch angle 8, the wheel perturbation speed

n and the wheel drive torque Qw are the variables associated with the longitudinal

system dynamies.

3.2 Longitudinal system characteristics

After substituting the measured mechanical parameters into the dynamic equations,

we can determine the longitudinal system characteristics. As shown in section N.3 the

eigenvalues of the openloop system consist of two poles at approximately plus and mi­

nus 7 radis in the s-plane. The unstable pole is associated with the inverted pendulum

mode of the unicycle, when it falls forward or backward. The third eigenvalue near

the origin of the s-plane corresponds to the rigid body horizontal velocity mode for the

unicycle as a whole. The fourth mode associated with the wheel's angular position is

not shown because we do not intend to control the unicycle's position. Inspection of the

modal controllability matrix shows that all modes are controllable from the wheel torque.

A tachometer is mounted on the wheel drive motor shaft. We assume that drive

belt elasticity and backlash are negligible so that the tachometer measures the relative

speed between the wheel and the unieycle frame. The transfer function from the rnotor

torque to the tachometer measurement has two zeros at approximately plus and minus

2.8 radis. The physical meaning of the zero locations can be interpreted after a few

calculations:

Simplify equations N.3 and NA to

IllÖ + I12D. = J8 - Qw

112Ö+ I 22D. = Qw

(3.1)

(3.2)

I



3.2. LONGITUDINAL SYSTEM CHARACTERISTICS 19

The viscous friction constant f 10 has been ignored since it has no effect on the zero

locations.

Since the tachometer reading is

I
I -

Yt =n - 9

we can rewrite equations 3.1 and 3.2 to

(In +112 )Ö+ I1zYt = J(J - Qw

(I1Z + Izz)Ö + IzzYt = Qw

(3.3)

(3.4)

(3.5)

Take the Laplace transform of the above two equations, eliminate EI(8) and solve

1';(8) _ (In +2I1Z+122 )8Z- J
Qw( 8) - 8[(Inhz - I{z)8Z - J hz]

The zero locations are at

(3.6)

8 = ± J
In +2hz +hz

= ± (mprp+mTrT)g
Ir +mwr~ +If +mp(rw +rp)Z + I! +mT(rw + rT)Z

(3.7)

If we close a tachometer feedback loop with proportional feedback and command a

tachometer speed Yc

Qw =K(yc - Yt) (3.8)

the root Iod of two of the closed loop poles approach the zero locations and the other

closed loop pole moves to infinity as K becomes large. This implies that with the tight­

est feedback loop closed on the tachometer measurement, the time constant associated

with the instability of the longitudinal system can at best be lengthened to that at the

zero locations. With a tight feedback loop a command of Yc = 0 implies no relative

movement between the wheel and the frame. In this locked wheel situation the unicycle

falls over more slowly (longer time constant) than the free wheel condition (shorter time

constant assodated with the open loop pole positions). Notice that equation 3.7 gives

j
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exactly the eigenvalues associated with a unicyc1e pitching over with a locked wheel.

An accelerometer mounted on the unicycle frame measures the specific force at the

point where it is located, Its output is a signalgiven by equation N.16:

(3.9)

where rw is the whee1radius and rR3 Is the height above the wheel axle where the ac­

ce1erometer is located. The transfer function from the wheel torque to the accelerometer

output has an equal number of poles and zeros (3) due to the direct feedthrough term

from the wheel torque to the a.cce1erometer measurement (see equation N.16). One of

the zeros is at the origin of the s-plane and the locations of the other two zeros vary as a

function of the accelerometer height TR3. The locations of these zeros have a significant

effect on the closed loop system behaviour and we now proceed to determine these zero

locations.

The transfer functions Q~8l8) and Q~~). can be calculated from the longitudinal

system equations 3.1 and 3.2:

,0(8)
Qw(s)

8(8)
Qw(s)

8[(111122 - If2)82 - J122]
-(I22 +112)8

(3.10)

(3.11)

Laplace transform 3.9 and substitute 3.10 and 3.11 into it:

Ya(8) _ 8{[(112 +122)rR3 - (In +112)rw ]82+rwJ - 9(112 +h2)}
QW(8) - 8[(111122 - Ii2)S2 - JI2z]

(3.12)

For the case with nonzero friction, the pole will not be exactly at 8 = 0 and thus

will not be cance1ed by the zero at the origin.

The zeros of the accelerometer transfer function are given by

8 0

and 8
±j 9(112 + lzz) - TWJ

(In +I1Z)rw - (112 +I22)rR3
(3.13)
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By substitution of the parameters from Appendix M into the equation above we see

that the pair of zeros are at infinity for the accelerometer mounted at the critical height

of

(111 +I 12 )TW

(h2 +122 )

= 0.6675 m (3.14)

I

If an accelerometer were placed at TR3 = (TR3)"", it would have zero initial response

to an impulse on the wheel torque. With the accelerometer at this height the di­

reet feedthrough term from the control torque Qw to the accelerometer output Y. be­

comes zero. It is confirmed by equation N.16 where the coeflicient of Qw, namely

TR3G1 +TwG2, vanishes when TR3 = (TR3)"".

For TR3 < (TR3)"" the accelerometer transfer function has a pair of complex zeros

and for TR3 > (TR3)"" the zeros are on the positive and negative real axis. The location

of the zeros is thus very sensitive to small deviations in TR3 if TR3 is in the vicinity of

Another undesireable situation occurs when TR3 is such that the accelerometer zeros

cancel the inverted pendulum poles of the plant. These modes then become unob­

servable from the accelerometer measurement, which defeats the purpose for which the

accelerometer was used in the first place. We can solve for this critical height from

equation 3.12:

(TR3)unobs =
JI12TW +(111122 - Ii2)g

JI22

= 0.721 m (3.15)

The physical explanation for the existence of this point of unobservability is that, if

the unicyc1e was allowed to fall over in the plane of the wheel, this point would move

straight down, Le. it would have no horizontal acceleration. If we think of the spring­

mass analogy of the accelerometer, it is clear that such an instrument mounted at this

height, with its sensitive axis pointing along the direction of the unicyc1e travel, will
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have a zero output. An accelerometer mounted at this point on the unicycle is analagous

to the case where anaccelerometer is mounted on the bob of a simple pendulum.
\-.,
,j.

'pJ

A method to identify the longitudinal system dynamic model experimentally is de-

scribed in section N.3.2. One of the problems of identifying an unstable plant is that its

variables do not stay within small perturbation ranges for very long (in the order of one

second in this case). The small angles assumption is basic to deriving a valid linearized

model for the unicyc1e dynamics (Appendices A, Band C). A partial identification of

the system transfer functions was obtained by hanging the unicyc1e upside down by its

wheel. The dynamic model then changes from an inverted to an ordinary pendulum

to which we can apply sinusoidal test signals and measure frequency responses, In sec­

tion N.3.2 the conc1usion is drawn that the actual plant model is acceptably close to the

theoretical model because their frequency responses agree to within 2 dB in gain and 10

degrees in phase over the frequency spectrum of signals present in the dynamic system

during typical manuevers.

3.3 Compensator design by successive loop closure

3.3.1 Nominal design

Control systems designed by successive loop closure techniques can produce compen­

sators of low order. This is advantageous when the compensator is implemented in a

microprocessor, which takes a finite time to cslculate the control command, The shorter

this time is, the faster sampling rate can be used, which usually improves the quality of

the dynamic response. Several other considerations for the sampling rate selection are

discussed in section 0,1.

The longitudinal dynamics are modified to inc1ude the delay time between the in­

stant that the measurements are made and the time that the control command is issued

(see section N.3.2).
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!\c

Section 0.4 describes the design of the lowest order compensator that stabilizes

the plant. It consists of an inner loop with proportional feedback of the tachometer

measurement and an outer loop with a first order compensator on the accelerometer

feedback signal. Closing a tight tachometer feedback loop first has the advantage of

decreasing the effect of mechanical nonlinearities in the wheel drive system. The major

nonlinearity is Coulomb friction which could be removed by means of an offset torque

which depends on the sign of the wheel speed. Unfortunately the relatively inexpensive

belt and sprocket drive system used in the robot's wheel drive system also causes time

varying friction losses which depend on the angular positions of the gears. The most

effective way of minimizing the effects of these varying torque losses is by closing a tight

(high gain) tachometer feedback loop first.

An integral error feedback compensator on the tachometer feedback signal will in­

crease the low frequency gain in the inner loop and the block diagram of Figure 0.6

shows how this can be incorporated in the design. For the purpose of finding the mini­

mum order compensator, however, proportional feedback only will be used.

The nominal compensator design was obtained through an iterative process and in­

spection of the root loci and step responses as the loops were closed and the compensator

parameters adjusted. The root locus of Figure 0.5 shows that it is theoretically possi­

ble to find a compensator which stabilizes the unstable modes of the unicycle by using

an accelerometer sensor. The simulation results in Figure 3.1 show that the maximum

pitch angle from which the longitudinal control system can recover without exceeding

the maximum available motor torque «QW)ma" = 15.12 N - m) is about 5 degrees.

-lf) \0 A'I. 61~'I..\;2 i)\l"'IA 'I d-~ oe lS \7­
3.3.2 Robustness of the longitudinal controller

We have shown in section 3.2 that the zeros of the transfer function to the accelerometer

output change as a function of TJl3, the height above the wheel axis where it is mounted.

The plot of the zero locations in the z-plane (Figure 3.2) shows large changes of the zero

positions for small variations in the accelerometer height, especially in the vicinity of
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TRs = (TRs)"". For example for TRs changing from only 3.25 cm lower than (TRS)"" (I.e.

- 5%) to 3.25 cm higher than (rR3)"" (i.e. + 5%), the zero locations have changed all

the way from z = 1 ± jO.24 through z = ±oo to z =1 ± 0.24.

Since these zeros are points to which two of the root locus branches progress, the

closed loop system pole locations are also very sensitive to the choice of rR3. Even if

rRB is known exactly, equation 3.9 shows that the accelerometer signal is a function of

rRSÖ, so that differences between the real plant and the theoretical model which cause

the actual pitch acceleration (Ö) to differ more than ±5% from the theoretical pitch

acceleration, will cause the same dramatic shift in the accelerometer zero locations.

Figure 3.3 illustrates what happens to the root loci if the accelerometer is mounted

too low on the frame. In this case where TRS = 0.5 m the root loci from the unstable

region of the z-plane converge toward the two complex zeros outside the unit circle in-

. stead of toward the zero at z = 1 and the compensation zero as in the nominal design

shown in Figure 0.5. The accelerometer height, TRS, should therefore not be too low

because it creates a 'barrier' of zeros which makes lt difficult for the root loci from the

unstable region of the z-plane to slip through into the unit circle.

H the accelerometer is placed at the nominal design position, rR3 =

0.653 m the system can be stabilized. Inspection of the root locus of Figure 0.5 shows

that although we may stabilize the system, we will not necessarily obtain satisfactory

system performance. The damping on the low frequency branches of the root loci be­

comes better than e= 0.7 at fairly high loop gains(Ka > 20), at which point the

damping on the high frequency branches of the rootloci is rapidly decreasing to unac­

ceptably low values,

Placing the accelerometer near (TRS)oo = 0.6675 m would not be sensible because of

the great sensitivity of the accelerometer zero and closed loop pole positions described

earlier. Equation 3.13 shows that for TR3 > (rRB)oo the accelerometer zeros are on the
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real axis. The unstable pole will therefore always be destabilized as it is attracted to

the zero on the positive real axis for increasing loop gain,

A schematic diagram which summarizes the findings of the longitudinal successive

loop closure compensator studies is shown in Figure 3.4. Figure 3.5 shows a plot of

how the closed loop pole positions change as the accelerometer height deviates from the

nominal value of 0.653 m. It shows that the requirement for stability is

'0.54< TR3 < 0.6707 m

If the system is expected to be well damped (closed loop poles within the e= 0.5 curve

in the z-plane) the range of acceptable TR3 values is actually still more restricted.

3.3.3 Experimental Results

The successive loop closure compensator of seetion 0.4 was coded in the FORTH corn­

puter language and implemented in the on board microprocessor of the unicycle. The

computer code is given in section P.l. Mter executing an algorithm for 5 seconds to

bring the unicycle up to a nominal speed of flo = 3.0 rad/sec w.hile hand holding the

robot vertical, the accelerometer feedback loop was closed. Figure 3.6 shows the two

measurements during a typical experimental run. The system went unstable when the

accelerometer feedback loop was closed and the unicycle released at t = 5 seconds. At­

tempts to adjust the compensator parameters and accelerometer height experimentally

to obtain stability were unsuccessful.

Figure 3.7 shows a plot of the accelerometer signal measured during the period be­

tween 2.5 and 5.0 seconds of the previous experiment. Noise in the signal can be as high

as 0.25 m/82 peak to peak from one sample to the next. This noise is caused by high

frequency vibrations of the frame due to uneveness in the wheel drive system and the

ground surface,

Figure 3.8 shows the theoretical time response of the accelerometer measurement if
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the unicycle is initially pitched forward at an angle of 5 degrees. The maximum mag­

nitude of the accelerometer signal is just 0.15 m/s2 • Plots of the components of the

aeeelerometer signal, as expressed in equation 3.9 are also shown. It shows that while

some of the eomponents may be reasonably large, they add up in such a way that the

measured output of the aeeelerometer sensor is always small. This causes the pitch

attitude information that is essential for the control system to maintain balance to be

lost in the noise present in the praetical situation.

It seems logieal to attempt to low pass filter the aceelerometer signal before it is

read into the mieroprocessor. Suppose we add a first order filter on the aeeelerometer

output. This places an additional pole on the positive real z-axis in upper rlghthand

diagram of Fignre 3.4. The root loeus of the closed loop system now has a branch whieh

moves to -00 on the real axis. Without repeating the whole design process here, it can

be stated that the sensitivity problems dlscussed in the previous seetion are aggravated

by addition of low pass filtering. Physically it means that the phase lag of a low pass

filter eauses the attitude Information reqnired by the control system, to arrive later in

time. In an unstable system it is obviously advantageous to have attitude information

available to the controller as soon as possible.

We eonclude that, even though aeeeierometers can in theory be used as attitude sen­

sors, praetical applieations are unlikely to suceeed. The aecelerometers measure both

the pitch attitude and the frame acceleration at the position where they are mounted.

The transfer function to the aeeeierometer output eontains zeros whose locations are

not only highly sensitive to parameter variations, but also make it diffieult to design

low order compensators which will stabilize the unstable eigenvalues of the plant.

Furthermore, the component ofthe aecelerometer signal which contains the attitude

Information is small (maximum ~ 0.15m/s2 = 1.5% of the earth's gravity acceleration].

It is therefore required that the aceelerometers have high sensitivity, but the sensors then

beeome suseeptible to vibrations of the robot frame as it moves along uneven terrain.
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3.4 Longitudinal system LQG design

3.4.1 Motivation for using an LQG compensator

27

Compensators consistlng of an optimal regulator and estimator have several attractive

properties which we hoped would address some of the problems encountered with stabi­

lizing the longitudinal system. First of all, the design process is highly automated and it

usually results in a closed loop system with a good transient response. For the successive

loop closure compensator design descrihed in the previous section, an iterative process

was required to obtain a closed loop system in which all the modes were reasonably

weil damped (e < 0.5). Even with this simple longitudinal plant model, the choice of

which loops to close first, the posltions of compensator poles, zeros and loop gains is

a bit of an art, Compensators designed by minimizing linear quadratic cost functions

will make coordinated use of the measurements and can design state feedback gains for

closed loop systems that meet reasonable performance requirements. The designer can

specify the closed loop performance in terms of a cost function which weights the relative

importance of keeping state errors small and uslng reasonabls amounts of control energy.

The state estimator design can be optimized if the statistical nature of the process

and measurement noise isknown. Even if these characteristics are known only by ap­

proximation, the compensators designed by linear quadratic gaussian (LQG) techniques

provide good noise filtering as well as phase recovery. This is an important improvement

over the successive loop closure design where we would like to filter the noisy accelerom­

eter signal, but have difficulty in compensating for the phase loss associated with it.

Another advantage is that it is easy to solve the problem of long calculation dalays

in the microprocessor by designing a prediction estimator. It calculates the control

command at the end of the current sampling period, based on the measurements at the

beginning of the sample period, allowing a full sample period for the microprocessor to

perform the ca1culations.
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3.4.2 LQG design method

An optimal continuous time regulator was designed first, as described in section N.4.

We have included integral error feedback of the wheel speed so that we will be able

to accurately control the unicycle speed by means of an external command. The cost

function that was minimized to obtain the optimal state feedback gains, contained a

single factor for the relative weight between the integral error on the wheel speed and

the amount of control energy used. This weighting factor was varied to obtain a ratio

which provided good damping on the regulator eigenvaJues (Figure N.6) and a step re­

sponse which reached the commanded speed in approximately 5 seconds (Figure N.7).

Since we did not have an apriori knowledge of the process and measurement noise

characteristics, we assumed values for the accelerometer and tachometer measurement

noise spectral densities, based on a visual inspection of the relative amount of noise

present in these two signals during experiments. The process noise spectral density was

then varied until the eigenvalues of the' estimator were in the same s-plane region as the

regulator eigenvaJues. The optimal continuous time estimator gains that were obtained

are shown in section N.6 and the theoretical step response of the closed loop system

with noise inputs, is shown in Figure N.11.

Using the same sampling period as for the successiveloop closure compensator, a dis­

crete equivalent of the continuous time LQG compensator was designed in section 0.2.

The algorithm by Van Loan [Van Loan] was used to calculate the weighting matrices in

the discrete time performance index, which will produce the same performance as the

original continuous time system.

The discrete time estimator design was performed by first converting the process

noise spectral density to an equivalent process noise covariance matrix for the dis­

crete case, by the duality of the regulator performance index conversion (Appendix

D of [Bryson 1]). It is shown in the same reference that a measurement noise spectral
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density (R) can be converted to a measurement noise covariance matrix (V) by the

relationship

R=2VTc

as long as the measurement noise correlation time Tc is short compared to the shortest

time constant of the plant. The shortest time constant for the longitudinal system is

about 0.125 sec ( from eigenvalue at 8 ~ 8 r/s) so that a noise correlation time of Tc =

0.01 sec was assumed.

The discrete LQG compensator was designed and the closed loop system simulated.

Figure 0.3 shows the theoretical time responses of the control torque, wheel speed and

pitch angle during a balance recovery manuever.

3.4.3 Experimental results and conclusions

The LQG control system designed in section 0·.2 was coded in FORTH after performing

a transformation of the compensator matrices to modal form as described in section 0.3.

Implementing the compensator in modal form reduces the computationalload on the

on-board microprocessor. The FORTH code is shown in section P.2.

The closed loop system was unstable when tested experimentally. Experimental

adjustment of LQG compensator gains in order to stabilize the system is unlikely to

succeed because it has four regulator and six estimator gains which can be adjusted.

Studies have shown that LQG controllers have serious defects concerning closed-loop

robustness with respect to plant deviations [Doyle 1]. Many techniques are currently

suggested to improve system robustness [Doyle 2] and could be applied to the unicycle

stabilization problem. However, as we have shown before, the current problems with

stabilizing the unicycle reside more with the physical problems present when using an

accelerometer, than with the control system design method.
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Investigations into control methods which can circumvent the problerne associated

with accelerometer sensors, would be instructional. The approach of this thesis is,

however, to first find sensors which will provide the system information that will result

in simple, robust compensators.
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Chapter 4

Longitudinal System with

Vertical Sensor

4.1 Introduction

We have shown in the previous chapter that an accelerometer measures not only the

pitch attitude, but aJso accelerations proportional to the frame pitch acceleration and

wheel angular acceleration. These additional terms create zeros in the transfer function

to the accelerometer output, which makes the control system difficult to design and very

sensitive to plant parameter changes. In this chapter we will show that a sensor which

measures the pitch attitude only, will not have these undesireable zeros.

4.2 Control system design with pitch sensor

The compensator designed by successive loop closure is shown in section 0.5. The

tachometer feedback loop was closed first with a first order integral error compensator.

This provides a high low-frequency loop gain to decrease the nonlinear effects of the

drive system. The root locus of this inner loop ls shown in Figure 0.9.

The transfer function to the pitch sensor output has a zero at z = 1 and another

at z = -1.78, as shown in the listing of section 0.5.1. The outer loop compensation is

39
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much easier to deslgn due to the absence of the pair of complex zeros just outside the

unit circle, assodated with the acce1erometer transfer function.

In the acce1erometer case, the root locus (Figure 0.5) from the unstable region of

the z-plane had to pass through the 'barrier' of three zeros to enter the unit circle. In

the present case only one zero at z = 1 is present with a pitch sensor. With a simple

fust order compensator consisting of a pole at z = 1.03 and a zero at z = 0.95 the

longitudinal system can be stabilized. The root locus of Figure 0.11 shows that the

loop gain was adjusted until the dominant elosed loop poles were weIl damped.

The second problem which existed with the accelerometer sensor transfer function,

was that the pair of complex zeros just outside the unit circle strongly attracted the

high frequency branch of the root locus. It made it diflicult to obtain weil damped low

frequency elosed loop poles before the high fequency poles became too lightly damped

(Figure 0.5). It was also possible that the branches from the unstable openloop poles

went directly to these complex zeros outside the unit circle instead of into the stable

region of the z-plane (Figure 3.3). In the case of the pitch sensor, the transfer function

zeros (apart from the one at z = 1) are at z = -1.78 and z = -00. They therefore have

much less influence on the behaviour of the low frequency root loei. The high frequency

elosed loop poles remain weil damped (Figure 0.10) and become unstable only at high

loop gains of IKpl > 150.

Figure 0.12 shows a simulation of the time response of the elosed loop system to

a 1 rad/sec step command. It is weil damped and settles to the commanded speed in

approximately 5 seconds.

4.3 Experimental tests of the control system

A vertical gyro would be able to measure the frame pitch angle with respect to earth's

gravity vector irrespective of the inclination of the terrain over which the unicyele robot
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travels. A vertical gyro [Kayton] consists of a two degree-of-freedom gyro whose spin

axis is nominally vertical, with two nominally horizontal speclfic force sensors mounted

on the inner gimbal. Signals from these specific force sensors are filtered with a fairly

long time constant ( in the order of minutes) and used to torque the gyro gimbals to

correct for gyro drift effects. 'I'his technique of complimentary filtering combines a gyro

sensor with good short time response with the time average of the specific force sensor

to obtain a good measure of the vertical.

Inertial sensors of this type with good accuracy (say 5% of the maximum expected

unicycle pitch angle of 2 degrees) are quite expensive. If, however, we perform the ex­

periments on a reasonably horizontal floor, we can construct a simple device as shown

in Figure 4.1 to prove in principle that a compensator using a vertical reference input,

can stabilize the unicycle robot. It measures the frame angle relative to the floor surface

by nieans of a Hall-effect transducer and a small magnet, This sensor is linear for small

pitch angles between ± 5 degrees. Details on the electronic interface and calibration of

these tranducers are shown in Figures H.15 and H.16 in Appendix H.

The control algorithm was coded in FORTH for the on board microprocessor (sec­

tion P.3). It uses a sampling period of 25 ms (f••mpl. = 40 Hz) as before.

The closed loop system performed excellently during experimental tests. Figure 4.2

shows a plot of the actual pitch angle and wheel speed measurements during a stabi­

lization test at zero commanded wheel speed. Although only twenty seconds of data

are shown, the robot can balance until the batteries are run down. The maximum pitch

angle is about 0.5 degree and the robot slowly oscillates at aperiod of approximately

3 seconds while the wheel traverses a distance of ± 5 cm to keep the wheel axle below

the unicycle's center of mass.

The closed loop system has a dominant pole pair at z = 0.983 ±jO.0249 (see

PITCHLOOPP in section 0.5.1) which corresponds to s-plane poles at s = 1.2e±;2.15 for
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the 25 ms sample period. The dominant pole pair therefore has an undamped natural

frequency of wn = 1.2 rad/sec and a damping ratio of e= 0.54, for which the closed

loop bandwidth is approximately 1.5wn = 1.8 rad/sec = 0.29 hz, We notice that the

frequency of the oscillations in Figure 4.2 are approximately 0.3 hz which corresponds

to the closed loop system's bandwidth.

The controlled system has good disturbance rejection, An impulse applied to the

system by means of a fist blowat the turntable height, merely causes the robot to move

forward a few centimeters, after which it re-establishes balancing on the spot, The stiff­

ness of the system is illustrated by the fact that a person grabbing hold of the top of

the robot and shaking it longitudinally, cannot destabilize the control system as long as

the maximum control torque on the motor and the linear range of the pitch sensor (±

5 degrees) are not exceeded.

The performance of the closed loop system when the unicycle robot moves along

at a constant commanded wheel speed of 3 rad/sec (0.585 m/s), is illustrated by the

measurements shown in Figure 4.3. In this test the robot still stabilized well, although

the maximum pitch angle reached approximately 1 degree from vertical occasionally,

This greater error can be attributed to the fact that the linoleum tiled floor surface in

the hallway where the tests were performed, had a noticeable degree of uneveness.

4.4 Conclusion

These experimental results illustrate that the model for the unicycle longitudinal dy­

namics is accurate and that, given accurate pitch information, a digital control system

can perform the balancing function with good stiffness and robustness characteristics, [
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Chapter 5

Lateral Control System

5.1 Introduction

In this chapter the lateral system transfer functions for different sensors at different

wheel speeds, will be evaluated. A continuous time LQG compensator is designed and

the dependence of the compensator gains on the wheel speed is discussed.

5.2 Lateral System Characteristics

The dynamic equations of motion of the decoupled lateral system are given in Ap­

pendix Q, equation Q.6. The yaw angle ,p, the roll angle <p, the turntable speed 'TJ

relative to the frame and the turntable torque QT, are the variables associated with the

lateral system dynamies.

After substitution of the mechanical parameters from appendix M into the dynamic

equations, we can evaluate the plant eigenvalues. As shown in the listing of section Q.3.1,

the openloop system consists of two eigenvalues at approximately plus and minus 3.29

rad/sec in the s-plane, The unstable eigenvalue is associated with the lateral inverted

pendulum mode of the unicycle robot. Two other modes near s = 0 are shown in the

print-out, One is associated with the yaw rate of the unicycle and the other with the

turntable angular speed relative to the frame. The modes at s = 0 associated with the

46
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frame yawangle and turntable angular position are not shown, since we do not presently

intend to control these variables.

At nonzero wheel speeds, the gyroscopic effect of the wheel changes the eigenvalues

of the inverted pendulum modes. Figure 5.1 shows that, as the wheel speed increases,

the time constants ofthese modes become longer. The particular wheel drive motor used

in the robot can reach a maximum rotor speed of 7000 revolutions per minute. With

the 24:1 reduction gear system, this entails a maximum wheel speed of approximately

30 rad/sec. Figure 5.1 shows that at this speed the inverted pendulum modes have

changed from real eigenvalues to a pair of stable complex eigenvalues in the s-plane. It

is evident that the lateral control system will have to adjust its compensator gains as

the wheel speed changes,

The system characteristics listed in section Q.3.1 are for a nominal wheel speed of

flo = 3 rad/sec. The controllability vector CTR shows that all modes are controllable

from the turntable torque.

The output distribution matrix is shown for three possible sensors:

• a tachometer measuring the turntable speed relative to the frame

• an accelerometer mounted on the frame with its sensitive axis in the lateral direc­

tion

• a roll angle sensor, which could consist of a vertical gyro or a device for measuring

the frame angle relative to a horizontal surface, as described for the longitudinal

system in the previous chapter.

The transfer function from the turntable torque to the tachometer output shows

that three of the four eigenvalues are nearly cancelled by zeros and that conse­

quently only the residue ofthe mode at s = 0.238 rad/sec is not small, This makes

physical sense since we cannot expect to see much of the inverted pendulum and
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unicycle yaw modes in the measurement of the tumtable speed relative to the

frame.

The transfer function to the accelerometer measurement has three zeros: one at

s = 0 and two at ± 1.0284 rad/sec on the imaginary axis of the s-plane. The

position of the two zeros which are not at the origin, is a function of the height

TSS of the accelerometer above the wheel axle, but not a function of the wheel

speed, as we will show later.

If an accelerometer is used as a balance sensor the control system designer is con­

fronted with the same problems encountered in the longitudinal control system

design. First of all, the three zeros on the imaginary axis cause a 'barrier' of zeros

which makes it difficult to design a compensator which will bring the root loci

from the unstable poles in the right half of the s-plane to the left half plane.

We will now proceed to calculate the accelerometer zero positions analytically and

show that their locations are very sensitive to changes in TSS and plant parameter

changes:

The lateral plant dynamics from equation Q.6 are:

I12.(f; +I1sTt = J11 ~ - fG'if; - QT

I 21~ = J22'if; +J24tP

IS2.(f; +IssTt = QT

(5.1)

(5.2)

(5.3)

where the coefficients of the state variables are defined in equations Q.7 through Q.14.

The viscous friction constant fT has been ignored in the equations above since it

has no effect on the zero locations,
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Taking the Laplace transform of the equations above and eliminating q, we obtain

the transfer functions to the roll angle and yaw rate:

where

~(8)

QT(8) -

s"!P'(s)
=QT(8)

(12182 - J24)(As +Ja) - J22J111338
-B(12182 - J24)

(5.4)

(5.5)

B (5.6)

From equation Q.18 the acce1erometer measurement is

Taking the Laplace transform. 5.7 becomes:

Ya(S) = [g - (rw +rsa)s2]!p(s) +rwno8"!P'(.s)

Substitute equations 5.4 and 5.5 into 5.8 to obtain the transfer function:

Ya(S) h2B[(rw +TS3)s2 - g] - Tw!1oB (h l S2 - 124)
QT(S) = (1218 2 - J24)(As + JG) - J22J111338

if we deflne

(5.7)

(5.8)

(5.9)

- W 2
J22 = 12 +mWTw +mFrw(rw +TF) +mTTw(rw +rT) (5.10)

we notice from equation Q.13 that

(5.11)

and the accelerometer transfer function can be rewritten as

Ya(8) BnO{J22[(rw +rS3)82 - g] - rw(121S
2 - 124)} (5.12)

QT(S) = (h182 - h4)(As + JG) - h2J11Ia38
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Two of the acce1erometer transfer function zeros are at

.9 = ± 9J22 - rw J24
(h2 - 121)rw +J22rsa

(5.13)

The third acce1erometer zero at s = 0 does not appear in equation 5.12 because

it is cance1led by the pole at s = 0 due to the zero turntable friction assumption,

Equation 5.13 shows that the locations ofthe accelerometer zeros are independent

of the wheel speed 0 0 •

By substitution of the parameters from appendix M into equation5.13 we see that

the pair of zeros are at infinity for the accelerometer mounted at the critical height

of

(121 - J22)rw
J22

= 0.695 m (5.14)

For rss < (rs3)oo the accelerometer transfer function has a pair of complex ze­

ros on the imaginary axis. An impulse torque on the turntable motor will cause

the frame acce1eration to increase initially and then recede back to zero. For

rS3 > (rs3)oo the acce1erometer zeros are on the positive and negative real axis.

The frame acce1eration at this height will therefore have a nonminimum phase

behaviour to an impulsive turntable torque. The physlcal meaning of the zeros at

±joo when rS3 = (rs3)oo is therefore that the frame will have no initial accelera­

tion at this height, for an impulsive controltorque, The point on the frame acts

as a virtual pivot point during motions, with points above and below (rsa)oo on

the frame acce1erating in opposite directions.

TheoreticaJIy the best place to locate the accelerometer would be at (rs3)oo. From

the print-out in section Q.3.1 we notice that, for a nominal wheel speed of no = 3

rad/sec, the lateral plant eigenvaluesare at approximate1y 3.29 rad/sec. We can

use equation 5.13 to solve for the height (rsa)unobs when the acce1erometer zeros
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coincide with the plant poles at 3.29 rad/sec, at which point the inverted pendulum

modes would become unobservable through the accelerometer measurement.

(rS3)unob8 = 0.699 m

The point of unobservability is just 4 mm removed from the 'ideal' accelerometer

height, which shows that the closed loop design will be very sensitive to plant pa­

rameter changes if an accelerometer is used as a balance sensor, Futhermore, the

point of unobservability will also change as a function of the wheel speed because

the inverted pendulum time constants change as shown in Figure 5.1.

It is concluded that it would not be advisable to use an accelerometer as the

lateral balance sensor. A roll angle sensor has only one zero at s = 0 in its transfer

function from the control torque. The unobservability matrix shows that the two

inverted pendulum modes are observable from a roll angle sensor (see the third

row of the OBS matrix in the print-out of section Q.3.1). A lateral compensator

using a roll angle sensor will be used to design a balance control system.

5.3 Lateral system LQG design

A linear quadratic gaussian (LQG) compensator is designed by minimizing the

expected value of a quadratic cost function which weighs the relative importance

of keeping state errors small and uslng reasonable amounts of control torque. We

will use the same performance index in designing optimal compensators for the

range of wheel speeds at which the unicycle robot is likely to traveI.

An optimal continuous time regulator was designed as described in section Q.4.

We included integral error feedback of yaw rate so that the unicycle robot may

be steered by an external command. The cost function that was minimized to

obtain the optimal feedback gains weighed the integral of yaw rate error against
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the amount of control torque used. The ratio of these two weighting factors was

varied to obtain a closed loop response which would let the yaw rate reach the

commanded value in approximately 5 seconds (Figure Q.2).

A full order state estimator was designed by assuming the same noise spectral

densities as for the longitudinal system design. Section Q.4 shows the optimal

regulator and estimator gains as well as the regulator and estimator poles.

The design above was for a nominal wheel speed of Uo = 3 rad/sec. All the

closed loop poles are weil damped (e :2: 0.7) and the real parts of the estimator

eigenvalues are comparable to those of the regulator eigenvalues. If we use the

compensator gains for the nominal wheel speed of-3 rad/sec, but vary the wheel

speed, the closed loop eigenvalues of the system change as shown in Fignre 5.2.

Since the lateral plant eigenvalues change as a function of wheel speed, the closed

loop system will remain stable for

2.7 < Uo < 3.6 rad/sec

The range for acceptable closed loop response is probably even smaller ( in the

order of Uo± 5%) so that gain scheduling will be required for the lateral control

system. If we use the same cost function, but the different lateral plant models

for the range of possible wheel speeds, the optimal regulator feedback gains as a

function of the wheel speed, can be calculated. The regulator gain on the integral

error of the yaw rate (e) and the feedback gain on the turntable speed (7/) remain

constant for all wheel speed values. Figure 5.3 shows how the other regulator gains

should be varied to minimize the cost function at different wheel speeds. The yaw

rate feedback gain remains relatively constant, but the feedback gains on the roll

angle and rate changes significantly, especially at lower wheel speeds.

It is evident that if some form of a compensator gain scheduling technique is used,

the regulator gains will have to be changed rapidly with wheel speed at low wheel
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speeds. At zero wheel speed, the roll gains become infinitely largs, since it is ob­

viously impossible to stabilize the unicycle robot by twisting the frame about the

vertical axis, However, a scheme where the wheel is turned towards the direction

that the robot is falling and then using the longitudinal control system to erect

the unicycle, can work at low wheel speeds.

Plots of the estimator gains on the tachometer and roll angle measurements are

shown in Figures 5.4 and 5.5 respectively. It is evident that gain scheduling on the

estimator gains will also be required as the wheel speed changes. It is interesting

to note that none of the estimator gains become excessively large at any speed as

the regulator gains did. Also notice that at zero wheel speed, measurement of the

turntable tachometer speed n is used to improve the estimate of the yaw rate and

turntable speed only (Llat(l,l) = Llat(1,4) = 0 ) while the measurement of the

roll angle sensor is used to improve the roll angle and roll rate estimate (Llat(2,2)

= Llat(2,3) = 0).

From the investigations in this chapter it is concluded that the lateral system

can be stabilized at nonzero wheel speeds by twisting the turntable. Appropriate

sensors would be a tachometer to measure the turntable speed and a roll angle

sensor. If the unicycle is to operate over a wide range of forward speeds, some

form of scheduling of the compensator gains with wheel speed will be required.
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Chapter 6

Summary of Contributions

and Recommendations

In this chapter we summarize the main contributions of this research and propose

recommendations for future research into active stabilization of unstable vehicles.

6.1 Contributions

- Research topic

The automatic stabilization of a unicycle was made possible by means of

a unique combination of state of the art computer hardware and modern

control systems analysis and design tools. Since this research commenced,

several sources mentioned that the idea of a computer stabilized unicycle

has appeared elsewhere. Only one reference of a practical application could

be found in the literature [Iguchi], but the control method there does not

bear any relationship to the way a human controls a unicycle. Using new,

compact, and powerful rnicroprocessors, the research in this thesis resulted

in a one wheeled robot with all its computational and electrical power on

board, to emulate the longitudinal stabilization used by a human riding a

59
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unicycle. The result is a robot with interesting unstable open loop dynamics,

which can serve as a test bed for modern control system techniques.

- Emulation of a human riding a unicycle

The actuation methods and sensor Information used by a human riding a uni­

cycle were evaluated in Chapter 2. Observations of a human's control actions

and calculations of a person's mass and inertia properties were combined to

propose a mechanical robot configuration which could emulate the impor­

tant features. We constructed such a one wheeled robot with an on-board

power supply, actuators, sensors and microprocessors to perform the active

stabilization task,

- Dynamic model for a unicycle robot

The linearized dynamic equations of motion that describe the lateral and

longitudinal model of a one wheeled robot were derived. It was shown that

the lateral and longitudinal dynamics decouple under certain reasonable con- .

ditions and that the lateral dynamics vary with the unicycle speed due to

the gyroscopic effect of the rotating wheel. Physical explanations for the dy­

namic system modes and the zeros of transfer functions from the actuators

to the various sensors, were presented.

- Evaluation of balance sensors

We tried first to use accelerometers on the unicycle robot to determine the

deviation of the frame from vertical.This choice was motivated by the desire

to emulate the balance sensing capability of the human ear, and on consid­

erations of cost. Furthermore, theoretical analysis showed that we should

be able to determine the vertical directly by placing the accelerometer at a

particular verticallocation.

However, in practice, we were unable to stabilize the longitudinal motions

of the unicycle using an accelerometer. We believe the reason for this is as

follows. The longitudinal accelerometer signal in response to an impulse in



6.1. CONTRIBUTIONS

wheel torque has three components:

61

1. The forward acceleration of the center of the wheel.

2. The backward acceleration of the point on the frame where the ac­

celerometer is mounted.

3. g(J, where 9 = gravitational force per unit mass, and (J is the deviation

of the frame from vertical.

The first two signals are large and of opposite sign. The third signal, the

one of interest to us, never becomes very large for a successful stabilization

scheme (the maximum value of (J observed using the trailer sensor was about

.5 degrees). Thus we were looking for a very small signal in the presense of

the difference of two other large signals. A little additive random noise in

the accelerometer signal obscures the difference between the two large signals

and makes estimation of the small signal g(J almost impossible.

Theoretically, there is a point on the frame where the first two signals exactly

cancel each other. However a change in verticallocation of only a millimeter

or two causes the difference in these two signals to be larger than g(J with

(J = 0.5 degrees, i.e. the total signal is very sensitive to the location to the

location of the transfer function zeros (from wheel torque to accelerometer

signal) to verticallocation of the accelerometer.

Optical or inertial sensors which could be mounted on the unicycle to pro­

vide vertical information of the required accuracy were too expensive for the

financial resources available for this research. Instead we built a simple me­

chanical device which measured the robot frame's angle with respect to the

ground, This allowed experimental testing of balance control algorithms on

smooth horizontal floor surfaces.

- Longitudinal control system design and tests
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Candidate longitudinal control sytems were designed using an accelerometer

as the balance sensor. Since these sensors do not measure the attitude alone,

(see section above), the pitch attitude information required by the control

system, depends heavily on the accuracy of the plant dynamic model. We

have shown that the transfer function to the accelerometer output has zeros

which make it difficult to design arobust control system. These zeros can be

relocated to more convenient positions in the s-plane by changing the location

of the accelerometer on the robot frame, but the resulting zero positions are

extremely sensitive to small changes in the sensor location. The maximum

acceleration of the unicycle frame is on the order of only 3% of gravity ac­

celeration during typical manuevers. The accelerometers were designed with

adequate resolution to measure signals in this range, but during experimen­

tal tests it was found that frame vibration noise due to the roughness of the

terrain over which the robot traveled was of the same order of magnitude as

the desired signal.

For these reasons above, none of the candidate control systems described in

Chapter 3 could stabilize the unicycle robot by means of a single accelerom­

eter as the main balance sensor. An important contribution of this research,

however, is the investigation of the theoretical and experimental reasons why

accelerometers have limited capabilities as attitude sensors.

Chapter 4 shows that if a vertical sensor is available, a robust longitudinal

control system can be designed. The control system is based on a direct

measurement of the kinematic variable which indicates the attitude, instead

of relying on an indirect measurement and the accuracy of the plant model.

By performing experiments on a horizontal surface and measuring the robot

frame angle with respect to the ground, we experimentally demonstrated

the performance of a robust control system with good stiffness to stabilize a

unicycle longitudinally.
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- Lateral control system design

Chapter 5 points out that if an accelerometer is used as the lateral attitude

sensor, similar problems exist in designing a robust control system as in the

longitudinal case. An LQG controller using a measurement of the turntable

angular velocity and the frame roll angle, was proposed. We showed that this

controller wou1d provide acceptable performance for wheel speeds in the range

of approximately ±5 % of the nominal design speed and that compensator

gain scheduling shou1d be used if the unicycle is to be operated over a wide

speed range. The design was not tested experimentally, but we expect it to

perform satisfactorily if good roll attitude information is available and an

effective gain schedu1ing scheme is implemented.

6.2 Recommendations for future research

- Test lateral control system

A roll angle sensor using a trailer wheel which extends sideways from the

frame should be constructed. It can be used to test a lateral stabilization

algorithm using linear control at a constant wheel speed and on a horizontal

floor, A gain scheduling algorithm can be developed to control the robot

over a range of wheel speeds for which the lateral plant dynamics change

significantly.

- Inertial vertical sensor or additional sensors

A vertical gyro shou1d be mounted on the unicycle robot, so that frame roll

and pitch angles relative to vertical can be measured. This wou1d permit the

vehicle to travel on surfaces which are inclined and rough,

It is possible that another non ground contact sensor in addition to the single

accelerometer, might relieve the sensitivity of the closed loop system design.

If we have a measurement of the pitch rate or pitch acceleration, we can per­

form a single or double integration on these measurements respectively, to
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obtain the pitch angle. The measurement of the original accelerometer signal

can then be filtered with a long time constant to correct for drift errors.

This so called complimentary filtering technique is essentially the same as that

used in a vertical gyro. A rate gyro which measures the pitch rate, combined

with the current accelerometer, will probably be a eheaper solution to the

sensor problem than using a vertical gyro.

- Stabilize near zero speed

The lateral motions are uncontrollable at zero speed by twisting the wheel

through small angles. Preliminary simulations have shown that the unicy­

cle can be stabilized near zero speed if it is commanded to perform small

forward-backward oscillations about a fixed point. This conjecture should be

investigated because it can produce interesting results on controlling a dy­

namic system which oscillates between a controllable and an uncontrollable

state. An alternative way of controlling the unicycle at low speeds, would be

by turning the wheel into the roll direction and then using the longitudinal

control system to erect the unicycle.

- Nonlinear lateral control system

The twisting motions performed by a unicycle rider's body at very low speeds

are large amplitude ( ± 30 degrees), which leads us to expect that a nonlinear

on-off type controller on the turntable torque might provide stabilization,

6.3 Conclusion

The investigation into computer stabilization of a unicycle robot has yielded valu­

able insights into the dynamics, control and sensing aspects involved in the process.

A major part of our time resources had to be devoted to selecting the equipment,
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performing the mechanical and electrical designs and constructing the robot. How­

.ever, during this research a few interesting and satisfying control systems aspects

could be tested experimentally with the vehicle. As the partial list of recommen­

dations indicate, future researchers are in a good position to concentrate their

efforts on investigating and testing several more interesting control aspects.

This research casts one of the human's fascinating control capabilities into the

terms of the control system engineer's language. The process illustrates both the

inadequacies and the power of modern control theory.

The shortcomings are evident when we recognize the multitude of sensory Inputs

that a person uses aa we1l as the effortless application of nonlinear and multiple

control actions, Adaptive control and model reference control is part of a person's

everyday living. All of these topics are intensive research areas in modern control

theory.

The strength of modern control is illustrated by this research which shows that we

have the mathematical, theoretical and computational power in hand to start em­

ulating some of the human's more advanced control abilities in a machine. It also

illustrates the Importance of obtaining sufficient physical insight into the process

and identifying the principal configurational, sensory and control aspects, before

we can effectively apply control system theory in practice.

This research is an illustration of how control system techniques can be applied to

assist normal persons in tasks which require unusual skills or to help disabled per­

sons perform normal tasks. Apart from these, the research has a wider application

in provlding artificial stability for inherently unstable physical systems.



Appendix A

EOMs by Newton-Euler

Mechanics

A.l Definition of variables

In this appendix we will derive the dynamic equations of motion (ab breviated

EOMs) [for the unicycle robot] by using Newton-Euler mechanies. A schematic

diagram of the unicycle model is shown in Figura A.l and the coordinate frames

for the various parts are given in Figures A.2 and A.8. The symbols used in the

thesis are given in the table at the beginning of this document.
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A.2. TRANSLATIONAL EQUATIONS OF MOTION OF WHEEL

A.2 Translational equations of motion of wheel

A.2.1 Linear acceleration of point 0

Refering to Figure A.2 the absolute angular velocity of the wheel is

[J' = 'if;bs+~Wl +n'Ül2

= 'if;(S<!>W2 +c<!>ws) +~Wl +nW2

Linearization assumptions made throughout the analysis are:

67

1. Angles and perturbation angular rates are small compared to I radian and

Uo respectfully.

2. sin <!> ~ <!> and C08 <!> ~ I

3. Products of small angles and angular rates are negligible.

where:

Uo = constant component of wheel angular velocity; it can be large,

U = small perturbation of wheel angular velocity.

with these assumptions, [J' can be appraximated by:

(A.I)

Assuming no slip at the ground contact point, P, the velocity of the center of mass

of the wheel, 0, is :

v = w' X rwws

acceleration of 0 is :

äo = (ii)r+wx v

where w = absolute angular velocity of w- frame.. ,frbs+~Wl ~ ~Wl +,frws'l.Ir =

(A.2)

(A.3)

(AA)
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Wl 'l1I2 wa

iiixv ~ 0 "p

rw(no+n) -rw~ 0

= rwnO"pw2

(A.5)

A.2.2 Forces aeting on W

Refer to Figure A.4 for the whee1 freebody diagram:

1. Reaction forces at 0 :

Rw ~ +RW ~ +RW ~1 Wl 2 W2 a Wa

2. Reaction forces at P :

R p ~ R P ~ R P ~lWl+ 2'W2+ aWa

3. Gravity:

A.2.3 Translational equations of motion of wheel

(A.6)

(A.7)

(A,B)

By application of Newton's laws of motion, the three components of the forces

acting on the wheel are equated to the wheel mass multipliedby the appropriate

acceleration component:

Rf +Rr' +0 = mwTwll (A.9)

Rf +R!! - mw9cjJ mwTw(Oo-tb -~) (A.10)

Rf +R'f -mw9 = 0 (A.ll)

I

I {
"I



A.3. ROTATIONAL EQUATIONS OF MOTION OF WHEEL:

A.3 Rotational equations of motion of wheel:

A.3.1 Applied moments about 0

Refering to Figure A.4:

1. The applied moments at the center of mass are:

where:

Qw wheel drive torque

Jw viscous wheel axle friction

Ja assumed viscous friction at ground

2. Moments due to reaction forces at ground contact P:

M = rOP x iiP

= -rww3 X (RiWl +RfW2 +RfW3)

+ R P .· RP,= rw 2Wl-rW lW2

A.3.2 Absolute angular velocity of the w-frame
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(A.12)

(A.13)

Au;W = ~Wl + ,pb3

= ~Wl + ,p(St/>W2 +Ct/>W3)

"" ~Wt + ,pW3 (A.14)
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A.3.3 Angular momentum of the wheel

the angular momentum of the wheel is:

H = HIWI +R2~ +Rawa

- Ir ~Wr + if (no + H)W2 + tf-JnDa (A.l5)

Since the components cf the angular ve10city are taken along the principal axes of

the wheel, the angular momentum is given by:

R I• = I!VW', ,

Wi - component of wheel speed

fi - (no +n) = wheel rotational speed

Using Euler's Law for rotational motion of rigid bodies, equate the total applied

moment about the center ofmass ofthe wheel to the change of angular momentum:

(A.l6)

(A.17)

Ur1 W2 wa
AüjW x il = r/> 0 ,p =-IJVnO,pWI + IJVno~w3 (A.l8)

If~ 1f(00+0) Ir~

./



A.3. ROTATIONAL EQUATIONS OF MOTION OF WHEEL:

A.3.4 Rotational equations of motion of the wheel

Q~+rwRf w" w . (A.19)= 11 </> - 12 flo?/J
• p

1rl1 (A.20)Qw - fw(fl o+ fl -IJ) - rwR1 =
w . w" w . (A.21)Q3 - fG?/J = 13 ?/J +12 flo</>

71
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A.4 Translational equations of motion of frame

A.4.1 Forces acting on F

REifer to Figure A.6

1. Reaction forces from wheel,W:

RW • RW. RW•
lWl- 2 W2- aWa

w· . w· W • •
= -R1 (/I+(Jfa)-R2 h-Ra (-(J/I+fa)

W w· w· W w·= (Ra (J - R1 )/I - R2 h - (R1 (J +Ra )Ja

(A.22)

2. Reaction forces from turntable,T:

3. Gravity:

-mFgäa = -mFg(q,w2 +wa)

= -mFg[q>i2 - (JA +Al
= mFgOA - mFgq,]2 - mFg]a

A.4.2 Absolute translational acceleration of P*

Refering to Figure A.2, the absolute angular velocity of the F frame is:

A F .• •• . •w ~q,/I+(Jh+.pfa

The acceleration of the center of mass of the unicycle frame, F, is:

where äo is known from equation A.5

(A.23)

(A.24)

(A.25)

(A.26)
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A.5 Rotational equations of motion of frame F

A.5.1 Applied moments about F*

Refer to Figure A.6

1. From wheel:

w.... "'" - - .. -"'" w ... ..
= -Q1 (h +013) - [Qw - fw(n - 0)]12 - Q3 (-Oh + 13)

w w~ . ~ w w~= (Q3 0 - Q1 )11 +fwno + fwn - fwO- Qw)h - (Q1 0 +Q3 )13

(A.35)

2. From turntable:

3. Due to reaction forces at 0:

M = ;F'O x Jiw

A
= -TF

Rfo - RF -R'f -(RfO +Rr')
w w w ft= [T2R1 0 + T2Ra - rFR2 Jh

+ [TFRr - TFRl[e - rlRfe - TIRr]i2
w w w ~+ [TI R2 - 1'2R1 +1'2Ra OJiJ

4. Due to rea.ction forces at T:

A j2 ja

= -1'1 -1'2 (rT - 1'F)

-R[ -Rf -RI

(A.37)
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TT A= [T2 Ra +{TT - Tp )R2 ]ft
T T A+ [(Tp - rT)R1 - TIRa]h

T T A+ [TI R2 - T2 R l ]/a

A.5.2 Rotational equations of motion for F

from equation A.25 :

Using Euler's equations of motion:

MI = 11WI + (la - 12)w2wa

M 2 12~ + (11 - l a ) WI Wa

M a Iawa +(12 - I1 )WIw2

where:

Mi = applied moments

Wl = ~ and Wl =~,

W2 = iJ and W2 = li I

Wa = ~ and w=;}

Note that all products WiWj 9:! 0 in Euler's Equation.

A.5.3 Rotational equations of motion of frame F

Q"fo- QF -Q[

+T2Rr'B+T2R~ - TFRr' +T2RI +(rr - rF)Rf

75

CA.38)

(A.39)

(AAO)
. T w

fwfto +fw ft - fwO- Qw - Q2 +TpR1

-TFR"f0-TIRrB-T1R';' +(TF-TT)R[ -T1RI = I{li
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(AAl)

-Qr'9 - Qr +fT"lo + fTTJ - QT

+rlRr' - T2Rr' + T2R:' () + TIRf - T2R[ ::: I[ ij; .

(A.42)
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A.6 Translational equations of motion of turntable

A.6.1 Forces acting on T

Refer to Figure A.5

1. Reaction forces from frame, F:

2. gravity:

A.6.2 Absolute acceleration of T*

(A.43)

(A.44)

The acceleration of T* can be obtained from equation A.31 by letting rr +- rr,

rl = r2 = 0
T* • .. • • .. A

ä = (rwÜ + rT())h + [rwüo'$- (rw +rT)<p]h

A.6.3 Translational equations of motion of T

(A.4S)

Ri +mTg() - mT(rwU + rTÖ) (A.46)

Rf - mTU<P - mT[rwüo~ - (rw +TT)~] (A,47)

Rr - mTg = 0 (AAS)
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A.7 Rotational equations of motion of turntable

A.7.1 Angular momentum of turntable T

Refer to Figure A.5

Absolute angular velocity of the j-frame from equation A.25:

A F .~ 'A 'A

üj =4Jh+Bh+?/J1s

Angular momentum of T:

where:

H1 = f{~

T'H 2 = 12 ()

H 3 = II(.,),+1i)=IIc.,),+TJo+TJ)

Note: TJ is measured in relation to frame F

. .
- - - A -F -M =H = (H)r + w X H

A 12 J3
AüjF X H= ~ iJ .,),

T • ~ T' A=13 TJoBh - 13 Tlo<ph

Il~ J,TiJ Il(,j, + Tlo +TJ)2

A.7.2 Applied moments to T

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)
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A.7.3 Rotational equations of motion of T
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Q[ T" T . (A.55)= 11 </> +13 "Io lJ

Qf = i[# - if"lo~ (A.56)

QT-h"lo-h"l = i[(-if; + i]) (A.57)
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A.8 Translational EOMs of longit. sensor pendulum

The dynamic equations of motion of two small passive sensor pendulums are in­

cluded in the unicycle model. The purpose is to investigate the possibility of

determining the unicycle attitude information from measurements of the angles

that the lateral and longitudinal sensor pendulums make with respect to the uni­

cycle frame.

A.8.1 Absolute angular velocity of the r-frame

Refer to Figure A.7 and Figure A.3.

It is assumed that the sensor pendulums have negligible mass and inertia com­

pared to the rest of the unicycle. In deriving the equations of motion, only forces

exerted by the unicycle frame on the pendulums are taken into account. Forces

and moments exerted by the sensor pendulums on the rest of the unicycle are

small and are therefore neglected in the analysis.

\

\.

(A.58)

A.8.2 Absolute translational acceleration of R·

äR can be obtained from equation A.31 by appropriate substitution.

äR = (rw l1 + rmÖ - rR2,p)rl

+ [rRl,p - (rw +rm)~ +rWnO~]r2

+ (rR2~ - rRIÖ)rS

A,]R X pm' _ [~rd (Ö + ,ö)rd ,pTS] X (-rpTs)

= -rp(Ö +,ö)Tl +rp~T2

(A.59)

(A.60)

(A.61)
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AäR- = [1'wf2 +(1'R3 - 1'p)9 - TR2;j; - Tpplrl

+[rRl;j; +1'wUo-if; +(1'p - rw - 1'R3)~]r2

+(1'R2~ - TRl 9)f3

A.8.3 Forces acting on R

1. Gravity force;

-mp ga3 = -mpg(sr/diJ2 + wa) .

= -mpg[r/>!2 - (JA +Ja]

= -mpg[r/>f2 - (Jrl - prl +Ta]

= mpg(O +p)fl - mpgr/>f2 - mpgfs

2. Reaction forces at R:

A.8.4 Translational equations of motion of R

81

(A.62)

(A.63)

(A.64)

(A.65)

R~ +mpg(O +p) = mp[1'wn+(rR3 - rp)Ö - rpp - TR2~] CA.66)

Rf' - mpgr/> = mp[rwOo-if; + (rp - rw - TR3)~ + rRl-$]

(A.67)

R:- - mpg = mpfTR2~ - TRliJ] CA.68)
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A.9 Rotational EOMs of longit. sensor pendulum

A.9.1 Applied moments about R*

Refer to Figure A.7

1. Reaction, spring and damping moments:

\

2. Moment due to reaction forces at hinge point R:

M rR- R x ii.R

= TpTa X (R~r1 +Rfr2 +R§r3)

R RA + RRA= - TP 2 Tl TP 1 TZ

A.9.2 Rotationalequations of motion of R

(A.69)

(A.70)

Qf-TpR~
R" (A.71)= 11 4J

- jpp ~ kpp +TpRf = If(Ö +p) (A.72)

Q§ R" (A.73)= 13 1/J
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A.I0 Translational EOMs of lateral sensor pendulum

A.I0.1 Absolute angular velocity of the s-frame

Refer to Figure A.8 and Figure A.3

A.I0.2 Absolute translational acceleration of S'

äS can be obtained from equation A.31 by appropriate substitution:

S ... ..
ä = (rwn + rS31J - rS21{;)sl

+ [rS1;P - (rw +rS3)~ +rwno,J,]s2

+ (rs2~ - rSlÖ)s3

AüiS X ;pSs' = [(~ +&)Sl +ÖS2+ ,ps3l x (-rps3)

= -ris1 +rp(~ +&)S2

AäS' = [rwn +(rss - rp)Ö - rS2,p]sl

+ [rwno,J, +(rp - rw - rS3)~ +rp& +rSl,p]s2

+ [rs2~ - rS1Ö]s3

(A.74)

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)
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A.I0.3 Forces acting on S

1. Gravity force:

-mpgä3 = -mpg[</JJ2 - eA +Ja]

mpgOsl - mpg</J(s2 - uSa) - mpg(us2 - 8a)

mpgOsl - mpg(</J +0")82 - mpgsa

2. Reaction forces at S:

A.I0.4 Translational equations of motion of S

(A.SO)

(A.S1)

Rf + mpgO = mp[TwQ+(rss - rp)Ö - rS2~] (A..82)

R~ - mpg(</J +u) = mp[rwnotP +(rp - TW - Tsa)4>

+ TpÖ" +rSl~] (A.83)

s mp[rs24> - rS19] (A.84)Ra - mp9 =
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A.ll Rotational EOMs of lateral sensor pendulum

A.ll.l Applied moments about S*

Refer to Figure A.8

1. Reaction, spring and damping moments:
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2. Moment due to reaction forces at hinge point S:

M = pS·s X iis

= Tp83X(Rfsl+R~S2+Rgs3)

Rs ~ + RSA= -rp 2 81 Tp 1 82

A.l1.2 Rotational equations of motion of S

(A.85)

(A.86)

- fpu - kpO" - rpR~ 1f(~+ er) (A.S7)

Qi +TpRf S" (A.S8)128

Q~
S" CA.S9)= 13 ?j;
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A.12 Summary of the system dynamic equations

The 30 equations of motion for the 5 rigid bodies contain Interaal reaction forces

and moments, which can be eliminated to obtain the dynamic equations of motion

for the unicycle.

The algebra for eliminating the internal reaction forces and moments will not be

shown here.

The equations of motion for the unicycle lateral and longitudinal dynamies are:

A.12.1 Lateral system

Wheel and Frame Yaw Dynamies:

mFTFT2Ö - mFTwTil
W • .= -12 Uo</> - [fG+mFTWT1UO]..p + fTTJ

mFTlg</> - mFT2g() + fTlJo - QT

Gyroscopic Coupling Dynamies:

[Ir'+ Ir -l-i[ + (mw +mF+ mT)r?v +mTrT(2rw +TT)
2 .. .....

+ mFrF(2Tw +rF) +mFr21</>+mFrl(rw +rF)..p +mFrlT2()

w 2 .= -[12 +(mw+mF+mT)rW+(mFrF+mTrT)rw]Uo..p
T .

[(mw +mF +mT)rw +mrrr +mTrT]g</> + IslJo() +mFr2g

Turntable Rotational Dynamies :

(A.90)

(A.91)

I

J
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Lateral Sensor Pendulum Dynamies:

S .. S 2 .. .•+ [lI +mpTp(Tp - TS3 - Tw)]4> + [lI +mpT1']0' +mpTpTSl 'ljJ

= -mpTpTWnO~ - fpÜ - m pTpg4> - (kp+ mpTpg)O'

A.12.2 Longitudinal system

Frame Pitch Dynamies:

.. .• F T 2 2 2"
- mFTtT2tP - mFTFT2'l/J + [12 +12 +mFTF +mTTT + mFTrJB

+ (mFTF +mTTT)Twn

T • •= 13 1JorP + fw ft ...,.. fw 8 +(mFTF +mTTT )g8

+ mFTI9 + fwfto - Qw

Wheel Rotational Dynamies:

mFTwT2;P +(mTTT +mFTF)rw ii

+ [Ir +(mw +mF +mT)T\\r]n

-fwn + fwÖ- fwflo +Qw

Longitudinal Sensor Pendulum Dynamics:
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(A.92)

(A.93)

(A.94)

(A.95)

(A.96)
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\

Lateral State Vector :

Longitudinal State Vector:

Lateral Control Variable:

. . T
rtP,?jJ, 1], er, <P, 0']

. T
[0, n,p,8,p]

.
I

Longitudinal Control Variable: Qw

The 7 degrees of freedom are: <f>, 'IjJ,6, n,1], cr.:.~)YiJ'/1 lu..---

I
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-... ... ----_... rv turntable.. _ \::.J
"'- ..

r
.... '.

...... ··,..x:-:~.. .::;
.... ,-.. ...

... , .....

r
R3

"'---1 F frame
f
-- 11III----11-----..( R longitudinal

r F --'--- "-'--"$ F * pendulum

------lI-------4. S 1ateral
pendulum

.....-.. ... -.....
"..-I------f W wheel

Figure A.l: Unicyc1e Sehemarle Diagram
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Figure A.2: Coordinate Frame Translation Definitions 1
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LONGITUpINAL PENPULUM

A
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2

LATERAL PENPOLOM

A A A
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1
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A
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Figure A.3: Coordina.te Frame Tra.nsla.tion Definitions 2
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WHEEL:
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A

W
3

WA _. A

Ql W
1
+ [QW- fW(O-e)] W 2

W • A

+ (Q 3 - fG'I') W3

A

whe~ angular velQcity oW 2 =
0=00+0

pA PA pA
+(R W + R W + R

3
W

3
)

1 1 2 2

inertia matrix about center of rnass

Figure A.4: Whee1 Free Body Diagram

I



A.12. SUMMARY OF THE SYSTEM DYNAMIC EQUATIONS

TURNTABLE:

A

t 3

A

-m ga
w 3

A

93

inertia matrix about
center of mass =

d
' W W W
a aq [ I 1 r I 2 r I 3 ]

turntable angular velocity

relative to frame F :

Figure A.5: Turntable Free Body Diagram



94 APPENDIX A. EOMS BY NEWTON·EULER MECHANICS

TA TA TA
- (R 1 f 1+R 2 f 2 +R 3 f 3 )

A

-m ga
w 3

A

W A WA W"
- (R w +R w + R w )

1 1 2 2 3 3

TA T A

- [ Q1 f 1 + Q2 f 2
1\

+ (Q - f 11) f ]
T T 3

inertia matrix

about center of

mass at F* =

A

w . ~

- [Q W+ (Q - f (0-8)) w
1 1 W W 2· "+ (Q ~ - f G 'Jf ) W 3 ]

Figure A.6: Unicycle Frame Free Body Diagram

/
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LONGITUDINAL PENDULU~

.95

r
1

inertia matrix

about center ·of

mass at R* =

diag [ I~' I~ r I ~

r
p

A

-ffi ga
p 3

Figure A.7: Longitudinal Sensor Pendulum Fra.me Free Body Dia.gra.m
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LATERAL PENDULUM:

A

inertia matrix

about center of
mass at S* =

di ag [ I~' I~ , I ~ ]

A

~:;...... ...... f
2

-m ga
p 3

Figure A.8: Lateral Sensor Pendulum Frame Free Body Diagram
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Appendix B

EOMs by using Lagrange's

Method

Refer to Figures in Appendix A.

Let (x,y) be the coordinates of theground contact point P of the wheel, in the

inertial reference frame ä1 , ä2 , ä3 •

Let wbe the rotational speed of the wheel about its axle.

The velocity of the ground contact point P is then:

v = TWiiJ

The no slip condition of the rolling of the wheel implies

:i: = vc'lj; = rwiIJc'lj;

iI = vs'lj; = rwws'lj;

or rewritten in the differential form:

l.dx - rwc'lj; diiJ - 0

l.dy - rws'lj; diiJ = 0

97

(B.I)

(B.2)

(B.3)

(BA)



98 APPENDIX B. EOMS BY USING LAGRANGE'S METHOD

These are the two nonholonomic constraint equations for the unicycle motion.

Choose the generalized coordinates to describe the position of the unicycle in in-

ertial space to b e:

ql =x 'iI =x
q2 =y q2 =x
q3 =w q3 =w

=f!

q4 =</> q4 =~

qs ='IjJ qS =~

qs =f) qS =8

q7 =v q7 =v
=fi

Because the unicycle is usually close to vertical the coordinates

</>, f) and their derivatives are smail

x, y, w, 'IjJ, tr are not necessarily small

Calculate the kinetic and potential energy of the unicycle:

B.I Wheel

(B.5)

(B.6)

1. Translational kinetic energy of the wheel:

The position vector from the origin of the inertial reference frame to the

center of mass of the wheel is:

= (x + rws</>s'IjJ)ä1 +(y - rws</>c'IjJ)ä2 +Twc</>ä3 (B.7)

Ta = (x + rw~c</>s'IjJ +Tws</>~c'IjJ)äl

+ (il - rw~c'IjJc'IjJ + Tws</>~s'IjJ)ä2

(B.8)
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The translatlonal kinetic energy of the wheel is:

99

T(i;
1 ..= -mwTo' Ta
2

~mw[x2 + il + rfv~2 + rty,p2 s2</>
2

+ 2rw 5::(~c</>s'ljJ + ~s</>c'ljJ) - 2rw iI(~seps1/; - ~cepc1/;)]

2. Rotational kinetic energy of the wheel:

absolute angular velocity of the wheel is:

AWW = ~ä3 +~bl + ffiW2

= ~'IiJJ +(ffi+ ~sep )W2 + tPCepW3

The rotational kinetic energy of the wheel is:

3. Potential energy of the wheel:

Vw = mwgzo

- mwgrwcep

B.2Frame

(B.9)

(B.IO)

(B.ll)

1. Translational kinetic energy cf the frame:

The position vector from the origin of the inertial reference frame to the

center of mass of the frame is:

TF = Ta + rFh

= [x+ (rw + rFcO)seps1/; + rFsOqbJäl

+ [y - (rw + rFcO)sepc1/; + TFsOs1/;]a2

+ [(rw + rFcO)cep]ä3 (B.12)

fp = XFu'l + YFä2 + ZFCt3 (B.13)
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where:

:i:F = IX +TW(~ccf;s,p +obs<Pc,p)

+ TF[O(COC,p - sOscf;s,p) +ob(cOscf;c,p - sOs,p) + ~cOccf;s,pJ

(B.14)

YF = Y+TW( obscf;s,p - ~ccf;c,p)

+ TF[O(sOscf;c,p +cOs,p) +ob(sOc,p + cOscf;s,p) - ~cOccf;c,pl

(B.15)

(B.16)

The translational kinetic energy of the frame is

(B.17)

2. Rotational kinetic energy of the frame:

the absolute angular velocity of the frame is:

AijjF = obas +~bl +012

= (~cO - obccf;sO)A +(0+ obscf;)12 + (~sO +obccf;cO)1s

(B.18)

The rotational kinetic energy of the frame iso

Tpo
t = ~Irc~cO -obccf;sO? + ~I{(O +obscf;?

+ ~In~sO + ,j,ccf;cO?

3. Potential energy of the frame:

B.3 Turntable

1. Translational kinetic energy of the turntable:

(B.19)

(B.20)
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The translational kinetic energy of the turntable can be found by simply sub­

stituting TH for TF in equations B.13 through B.17:

XT = x+TW (~ct/)5'I/J + tbscjJc1j;)

+ TT[9(clJc1j; - slJscjJs1j;) + tb(clJscjJc1j; - slJs1j;) + ~cOccjJc1j;]

(B.21)

YT = Y +TW(tbscjJs1j; - ~ccjJc1j;)

+ TT[9( slJscjJc1j; +clJs1j;) + tb(slJc1j; + cOscjJs1j;) - ~clJccjJc1j;]

(B.22)

ZT = -TW~ScjJ - TT(9slJccjJ +~clJscjJ) (B.23)

The translational kinetic energy of the turntable is

(B.24)

2. Rotational kinetic energy of the turntable:

the absolute angular velocity of the turntable iso

= (tbclJ - tbcc/>sO)A + (9+ tbScjJ)J2 +(~sO + tbccjJcO + v)Js

(B.25)

The rotational kinetic energy of the turntable iso

TTot = ~If(~cO - lpcc/>sO)2 + ~Irc9 + lpsc/»2

+ ~In~sO + lpcc/>cO +v? (B.26)

3. Potential energy of the turntable:

The potential kinetic energy of the turntable can be found by substituting

TT for TF in equation B.20:

(B.27)
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B.3.! The Lagrangian and Lagrange's equation

The Lagranglau is

L = Ttot - vtot (B.28)

and 1agrange's equation for a system with n generalized coordinates, qi, and m

nonholonomic constraint equations, <Pj, is:

d(81) 81 m
dt 8' , - 8( ') = ~ Ajaji +Qiq, q. 3=1

(for i = 1,2, ... ,n)

(B.29)

where Qi are the generalized forces which are not derivable from a potentional

function (the applied torques from the motors and friction in this case)

8""_ '1'3

aji = 8(q;) (B.30)

where <Pj are the constraint equations of the system.

See [Greenwood] chapter 6, [Pars] chapters 6 through 8, [Rosenberg] chapter 15

and [Whittaker] chapter 2 for details.

Note:

It would be tempting to substitute x and iJ from the constraint equations B.2 into

the kinetic energy terms, in order to eliminate two of the generalized coordinates

(x and y) and simplify the system of equations.

As pointed out in [Rosenberg], chapter14, this will lead to the wrang answer since

the constraint equations are nonholonomic (not integrable). Embedding of con­

straint equations are only possible with holonomic constraint equations. Trying to

embed nonholonomic constraint equations to eliminate the use of Lagrange mul­

tipliers violates the dynamical principles on which the derivation of Lagrange's

equations are based (the principle of work done during virtual displacements).
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Simplify the expressions for the total translational kinetic energy by defining:

103

A", - :i: +rw( ~Ct/>s,p+ ~st/>c,p)

B", - !J(c{}c,p - s{}st/>s,p)

+ ~(c{}st/>c,p - s{}s,p) + ~c{}ct/>s,p

Ay - iJ +rw( ~st/>s,p+ ~ct/>c,p)

By - !J(s{}st/>c,p - c{}s,p)

+ ~(s{}c,p + c{}st/>s,p) - ~c{}ct/>c,p

A. - rw~st/>

B. - -(!Js{}ct/> + ~c{}st/>

The total translational kinetic energy then becomes:

Ti;t = Tty +Tl! +T:F'
1

= 2"(mw +mF +mT)(A; +A; +A~)

+ (mFTF +mTTT)(A",B", +AyBy+A.B.)

+ ~(mFr} +mTTf)(B; +B; +B~)

The total rotational kinetic energy is:

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

1',rot
tot = ~Ir~2 +~If (in+ ~st/>? + ~If -if,2c2t/>

2 2 2

+ ~(Ir +f[)(~c{) - ~ct/>S{})2 + ~(I:f +II)(iJ + -if,st/>?

+ ~(I[ +IJ)(~s8+ ~ct/>c{})2

+ ~In2';'(~s{} + -if,ct/>c{}) + ,;,2j (B.38)

The negative of the total potential energy is

(B.39)
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define:

mtot = mw+mF+mT

ml = mFTF +mTTT

m2 = mFT} +mTT}

The Lagrangian then becomes:

L = tr: +T r ot V;tot tot - tot

1 2 2 2 ( )= 2"mtot(A., +A y+Az ) +ml A.,Bz +A~By +s,»,
1 2 2 2)+ 2"m2(B.,+By+Bz

+ ~Ir (~2 + ~Ir(,j; + 'if,s4>? + ~I:r',jh24>

+ ~(Ir +i[)(~cO - 'if,c4>sO? + ~(I: + I?')(Ö + 'if,s4»2

+ ~(If+IJ)(~sO + 'if,c4>cO)2 + ~IJ[2zi(~SO + 'if,c4>cO) + zi2]

mtotTWyc4> - mlycOc4>

(B.40)

(B.41)

(B.42)

(B.43)

Substitute the Lagrangian into 1agrange's equation for each of the generalized

coordinates.

Under stabilized conditions, the angles 0 and 4> and their derivatives are small,

The small angle approximations sin 4> ~ 4>, cos 4> ~ 1, 04> ~ 0 etc. are used to

simplify the equations.

81
=86:
~ mtot[6: +TW(~S,p + 'if,4>c,p)] +ml [Öc,p + 'if,(4)c,p - Os,p) +~s,p]

(B.44)
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where the assumption ,p, ~ <: 1 has been used to simplify the equation.

81 = 0
8x

from equations B.3 and BA

an = 1

substitute 'into Lagrange's equation:

(BA6)

(BA7)

(BA8)

2. q2 = y:

81
=

8i!
~ mt.t[i! + rw(,p,ps'lj; + ~c'lj;)] + mdÖs'lj; + ,p(Bc'lj; - ,ps'lj;) - ~c'lj;J

(Bo50)

81 =0
8y

substitute into Lagrange's equation:

(B.52)

(Bo53)

(B.54)
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3. q3 = w:
8L w' .
8ill = 12 (w+ 'l/Jsif»

:t (;~) ~ Ir' (ili+~sH <iJ~cif»
~ Ir' ili

8L =0
8w

Q3 = Qw

substitute into Lagrange's equation:

(B.56)

(B.57)

(B.5S)

(B.59)

(B.60)

(B.61)

(B.62)

8L
8~ = mtot(A"rws'l/J - Ayrwc'l/J)

~ (mtotrw +ml)(A"s'l/J - Ayc'l/J) + (mlrw +m2)(B"s'l/J - Byc'l/J)

+ Ir'~ +(li +IJ)(~ - <iJO) +(If +Ill<iJo+IIvsO (B.63)

(B.64)

(B.65)
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(B.66)

(B.67)

(B.68)

substitute into Lagrange's equation:

(mtotTW +md(xs7/> - ye7/» + Iiot +mtotT?v +2mlTW +m2)qi +IIJiO
w· .= 12 w7/> +(mtotTW +ml)g<jJ (B.69)

5. qs = 7/>:

8~ ~ (mtotTw +md<jJ( xc7/> + ys7/» +Ir iJJ<jJ +4,ot,p +IIJi
87/>

(B.70)

(B.71)

(B.72)

alS = 0 (B.73)

a2S = 0 (B.74)

Qs = 0 (B.75)

Notiee that Qs 'I -QT beeause the torque QT does not act around the axis

about which the eoordinate under eonsideration (7/» rotates.

Substitute into Lagrange's equation:

I
I

(B.76)
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6. qs = (J:

:~ ~ ml (xc,p + iJs,p +rw-if;t/»

+ (I[ +1I +m2)(8 + -if;t/»

d(81) ~ [U .,. U.,.] (rF J,T)(J"dt 88 = ml XCI" + ysl" + '2 + 2 +m2

81~J,T';' (J
8(J = 3 VI" +mI9

Qs = -Qw

Substituteinto 1agrange's equation:

(B.77)

(B.78)

(B.79)

(B.80)

(B.8!)

(B.82)

7. q7 = v: 81 T' .
8i1 = 13 [t/>s(J + ,pct/>c(J) + iI]

.! (81) = [T(." U)dt 8i1 3 I" + V

81 =0
8v

(B.84)

(B.85)

(B.86)

aI7 = 0 (B.87)

a27 = 0 (B.88)

Q7 = QT (B.89)
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Substitute into Lagrange's equation:

iJ({; + ii) = QT

Eliminate x and y coordinates from the dynamic equations:

109

(B.90)

from B.2:

:i; = rwwc'if; (B.91)

y = rwws'if; (B.92)

ii: = rw( ffic'if; - w"j;s'if;) (B.93)

jj = rw( ffis'if; +w"j;c'if;) (B.94)

Eliminate ii: from B.49:

Eliminate jj from B.55:

Eliminate Al and A2 from B.62:

Eliminate x, y, ii: and jj from B.69:

Eliminate ii: and jj from B.76:

(B.95)

(B.96)

(B.97)

(B.98)
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but from B.90:

IJ('if, + ii) = QT

(Ir +I{')'if, +Irw~ = -QT

Elirninate x and jj from B.83:

BA Summary of unicycle dynamic equations

Note that:

v - 1]0+1]

B.4.1 Lateral system dynamic equations

Wheel and Frame Yaw Dynamies:

W F" W •(Ia + I a )'I/J + I 2 not/> = -QT

Gyroscopic Coupling Dynamies:

(B.99)

(B.IOO)

(B.IOI)

(B.I02)

(B.103)

[Ir +I{ +i{ +(mw+mF+mTHv+2Tw(mFTF+mTTT)
2 2" T •+ (mFTF +mTTT)]t/> + Ia1]oll

w 2 •= [I2 +(mw+mF+mT)Tw+(mFTF+mTTT)Tw]f!o'I/J

+ [(mw + mF + mT)Tw + (mFTF + mTTT)]gt/>

(B.I04)

Turntable Rotational Dynamies:

(B.I05)
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BA.2 Longitudinal system dynamic equations

Frame Pitch Dynamies:

[I[ +Il +mFT} +mTTtlÖ + (mFTF +mTTT)Twl1

T .
= I a 1Jo<p + (mFTF + mTTT)gB- Qw

Wheel Rotational Dynamies:

111

(B.106)

(B.107)

These are the same dynamic equations as those obtained in Appendix A where

Newtonian mechanics were used to derive the equation of motion.

The cross coupling terms are absent in the results of the Lagrangian derivation

because they were not taken into account.



Appendix C

EOMs by using D'Alembert's

Principle

C.l Procedure

The following procedure aviods finding internal forces and torques in deriving the

equations of motion. It is based on D'Alembert's principle which states that the

laws of static equilibrium apply to a dynamical system if the inertial forces, as weil

as the actual external forces, are considered as applied forces acting on the system.

- Determine the following torques and forces:

(1) D'Alembert torques acting on wheel, frame and turntable.

(2) D'Alembert forces acting on wheel, frame and turntable.

(3) Gravitational forces acting on wheel, frame and turntable.

- Determine five equations of motion:

112
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(1) - (2) Set the two quasi-horizontal components of moment ab out P (wheel

contact point with ground) equal to zero for whole unicycle,

(3) Set the vertical components of moment about P (wheel contact point with

ground) equal to zero for whole unicycle, and include the external friction

torque - fG~'

(4) Set moment about axle of wheel equal to zero for frame plus turntable

and include applied and friction torques -Qw - fw(fi - 0).
(5) Set moment about axle of turntable to zero for turntable, and include

applied and friction torques QT - fTf].

D'Alembert Torque:

- Wheel:

- Frame:

(C.2)

- Turntable:

D'Alembert Forces:

- Wheel:

(CA)

- Frame:

- Turntable:

Gravitational Forces:
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- Wheel:

(c.r)

- Frame:

(c.s)

- Turntable:

(C.9)

Wl Component of Moment about P for Whole Cycle

W" W . • ••o - -(11 rP - 12 Oo1P) +mwrw[g4> +TW(001P - rP)]

Ir4> +mF(rw +TF)[9rP - (rw + rF)4> + rwOo~]

T" T' .• •
(114)+ 131]oB) +mT(rw + TT)[94> - (TW + rT)rP + rwOo1/J]

(C.lO)

W2 Component of Moment about P for Whole Cycle

W· 2 "o = -12 n -mwrwO
F"" • .•

12 B+mF(rw +TF)[-rwO - TF8] +mFTFgf)
T" T . • ..

(120 - 13 TJo4» +mT(rw +TT)[-rwO - TTf)] +mTTTgf) (C.11)

Wa Component of Moment about P for Whole Cyde

(C.12)

J2 Component of Moment about 0 for Frame and Turntable

F" .. ..o = -128+ mFTF[g8 - rwO - rFB]
T" T . ... _.

(12 B- 1a TJorP) +mTrT[gf) - rwO - rTB] + fw(O - 8)- Qw

(C.l3)

Ja Component of Moment about Q for Turntable

(C.14)



C.2. LATERAL EQUATIONS OF MOTION

Subtraet equation C.14 from C.12:
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w.. w . F" - .
0= -(13 ,p +12 flo<!» - 13 ,p + fT"J - QT - fG,p (C.15)

Subtraet equation C.13 from C.11:

W 2 • ••o = -[12 + (mw +mF +mT)Tw]fl - (mFTF - mTTT)Twll

- fw(fi - 8) +Qw

C.2 Lateral equations of motion

from C.15:

from C.10:

(C.16)

(C.17)

[Ir +Ir +Ir +mWTW +mF(Tw +TF? +mT(Tw +Td]~

W 2 •
= [12 +mWTw+mFTw(Tw +TF) +mTTw(Tw +TT)]flo,p

T .
+ [mwTw +mF(Tw +TF) +mT(Tw+TT)]9<!> - 13 "Joll (C.18)

from C.14:
T ..

13 (,p + i]) = - fT'iJ +QT

C.3 Longitudinal equations of motion

from C.13:

(C.19)

from C.16:

I

\

(mFTF+ mTTT)Twii+ [Ir + (mw +mF +mT)TW]l1

= - fw(fi - 8) +Qw (C.2l)
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These last 5 equations, derived by using generaJized D'Alembert forces and sum­

ming moments about fixed points, are the same as the dynamic equations of

motion derived in Appendix A and B. In Appendix A Newton's equations were

used to derive the equations of motion and in Appendix B an energy approach

and Lagrange's equation was used.
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Appendix D

State Space Form of the EOMs

The system dynamic equations from Appendix A can be written in matrix form

as:

Ix = Fx +Cu+Kw

The matrix equation can be converted to the standard state space form:

------------------;;X~=-;I;=1-1Fx +rau +I 1 I(w

= Fx+Gu+Kw

The dynamic equations in matrix form are shown on the next page:

117

(D.I)

(D.2)
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11,1 11,2 0 0 0 0 11,7 11,8 0 0 0 ~

12,1 12,2 0 0 0 0 0 0 0 0 ~

0 Pa 4' 0 0 0 0 0 0 0 0 fJ
14,1 14,2 0 14,4 0 0 0 0 0 0 0 a-

0 0 0 0 1 0 0 0 0 0 0 ~

0 0 0 0 0 1 0 0 0 0 0 Ü

17,1 17,2 0 0 0 0 17,7 17,8 0 0 0 Ö

0 18,2 0 0 0 0 18,7 18,8 0 0 0 n
0 19,2 0 0 0 0 19,7 19,8 19,9 0 0 p

0 0 0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0\ 0 0 0 0 1 P

Ei,l Ei,2 Ir 0 Eh 0 0 0 0 F1,10 0 ~

0 F2,2 0 0 F2,5 0 F2 ,7 0 0 0 0 ~

0 0 -fT 0 0 0 0 0 0 0 0 'TI

0 F4,2 0 -fp F4,5 F4,6 0 0 0 0 0 Ü

1 0 0 0 0 0 0 0 0 0 0 <P

= 0 0 0 1 0 0 0 0 0 (T

"-
F7,1 0 0 0 0 0 -fw fw 0 F7,l O 0 9

0 0 0 0 0 0 fw -fw 0 0 0 f!

0 0 0 0 0 0 0 9 -fp F9,l O F9,1l P
0 0 0 0 0 0 1 0 0 0 0 ()

0 0 0 1 0 0 0 0 1 0 0 p
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I
-1 0 0 fT 0

I 0 0 K2,l 0 0

1 0 0 -IT 0

! 0 0 0 0 0

0 0

[~: ] +

0 0 0

[i: ]+ 0 0 0 0 0
.~-~""-'-'-"-'-'.. '--'.--..---_# -....-;.:-------

0 -1 K7,l 0 fw

0 1 0 ·0 -lw
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

where the coefficients of the matrices are:

11,1 = -[mF(rw + rF)r1]

11,2 [Ir' +If +mF(r~ +T~)]

11,7 = -mFTFT2 ,-)11 ,8 = -mFTW T2

Fu - -IrOo

F1,2 = -[fa +mFTw T1 ü O]

F1,s = -mFT19

Fbo -mFT29

12,1 = -[Ir' +Ir +Ir +(mw +mF +mT)T~ +mTTT(2Tw +TT)

+ mFTF(2Tw +TF) +mFr~]

12,2 = mFT1(r w +TF)
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F2,2 = -[rJv +(mw+mF+mT)r~+(mFTF+mTTT)Twlno

F2,5 = -[(mw+ mF+mT)rw+ mFTF+mTTT]9

F2,7 = Ir'70

K2,1 = mFT2

14,1 = [Ir +mpTp(rp - TS3 - TW)]

14,2 = m pTpTS1

14,4 = [Ir +mpT;]

F4,2 = -mpTpTwnO

F4,5 = -mpTp9

F4,6 = -(kp+m pTp9)



I
I

I
I
I
I

17,1 = -mFTIT2

17,2 = -mFTFT2

17,7 [F J,T 2 2 2J= 12 + 2 +mFTF +mTTT +mFTl

17,8 = (mFTF +mTTT)TW

F7,1 = If?JO

F 7,10 = (mFTF +ffiTTT)9

[(7,1 = mFTl

121

I
18,2 = -mFTWT2

I 18,7 = (mTTT +mFTF)TW

.18,8 = [Ir' + (mW+mF+mT)T?v]

!
I 19 ,2 = mpTpTm

19,7 = [Ir +mpTp(Tp - Tm)]

19,8 = -mpTpTw

19,9 = [Ir +mpT~]

F9,l o = -mpTpg

F9,l1 = -[kp +mpTpg]

-,
\



Appendix E

Attitude by Means of a Sensor

Pendulum

The purpese of this investigation is to determine whether the modes of an inverted

pendulum in a gravity field are observable from a measurement of the de:fl.eetion

angle of a smaJl sensor pendulum mounted on the inverted pendulum. The modal

observabilityas a funetion on the sensor pendulum location is calculated. A phys­

ical explanation for the unobservablility of the inverted pendulum modes in the

sensor pendulum measurement when the sensors are mounted at a certain height

on the unieycle frame, is presented,

E.l Dynamic equations of motion

1. Inverted pendulum dynamies:

Refer to Figure E.1:

Description of parameters:

mr = mass of inverted pendulum.

J1 = moment of inertia of inverted pendulum about an axis passing through

the center of mass, 1*, of the inverted pendulum, and parallel to the i2 unit
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vector.

m p = mass of sensor pendulum.

J[ = moment of inertia of sensor pendulum about an axis passing through

the center of mass, P*, of the sensor pendulum, and parallel to the i2 unit

vector.

TI = distance from the inverted pendulum support point to it's center of

mass, P.

TB = distance from the inverted pendulum support point to the sensor pen­

dulum's hinge point,

Tp = distance from the sensor pendulum's hinge point to it's center of mass,

P*.

Acceleration of c.m, P of inverted pendulum: rr9i1

moment balance about 0:

where the last term in tue brackets above is tue D'Alembert force,

Equation of Motion of Inverted Pendulum:

(E.!)

(E.2)

Laplace transform.

0(8) = s8(0)+ B(o)
8 2 - W]

2 mrTIg
where Wr = """'"""l"----"~JI +mlrl

so that the time response is an unstable exponentially growing function:

O(t) =O(o)coshwrt+ 8(0) sinh wrr
wr

(E.3)
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2. Sensor pendulum dynamicse

Refer to Figure E.2:

angular velocity of p frame:

acceleration of hinge point H:

äH = THÖi1

~ THÖh

acceleration of P* of the sensor pendulum:

THÖh + (Ö + .y)fu X (-Tpfu) + 0

= [(TH - Tp)Ö - Tp1'].fu

moment balance about hinge point H:

(EA)

(E.5)

(E.6)

Equation of Motion of Sensor Pendulum:

define:

C = J[ +mpTp(Tp - TH)

D - JP+ m T2
- 2 p p

E = -mpTpg

rewrite E.7 as :

C9+D7=E«(J+,) (E.8)
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Transfer function from inverted pendulum angle to angle measured by sensor pen­

dulum:

Laplace transform for equation E.7

A(s) (cs
2

- E)
0(s) =- Ds2_E

Notes:

1.

!im A =-1
8-+0 (J

=> 11'=00 = -/11'=00

(E.9)

so the measured angle is the negative of the attitude angle in steady state,

as it should be.

2. For this case with no damping on the pendulum, there are two poles at :

where: Jp '" J{

3. The zeros for the transfer function are at :



I
I
f

[

!
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~ 2 complex zeros at

See Figure E.3.

(b) If Jp +mpTp(Tp - TH) < 0; i.e. when TH > Tp +:~ :
p p

=} 2 real zeros at

See Figure E.4.

A non minimum phase behaviour of the sensor pendulum will occur due

to the right half plane zero.

4. It is evident from Figure E.4 that the sensor pendulum could he mounted at

a critical height, (TH)CTit, where the zeros will cancel the inverted pendulum

poles. This is the situation where unobervability of the inverted pendulum

modes occur. Several methods for calculating the condition for unobservabil­

ity will now be presented.

E.2 Observability matrix

jj = m/TrD 8
J1 +m/T1

l' - - pmpTpg 2(8+1)
J2 +mpTp

[Jf +mpTp(Tp - TH)]mpTp9 8

ot +mpT~)(J1 +m/T])



E.2. OBSERVABILITY MATRIX

define: .

The state space representation of the system is: .

jj 0 0 p 0

;y 0 0 H Q
=

iJ 1 0 0 0

1 0 1 0 0

or:

:i:=Fx

if f only is measured ~ output matrix:

M=[OOOl]

Observability matrix is

e
1
o

127

(E.10)

(E.ll)

I

I

I

M

MF
0

MF2

MF3

0 0 0 1

0 1 0 0
= (E.12)

0 0 H Q

H Q 0 0
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010 o 0·0

det 0 = o 0 H -Q 0 1 0

H Q 0

= _H2

system will become unobservable when:

det 0 = 0 = _H2

i.e. when:

H Q 0

(E.13)

(E.14)

The critical height for the Iocation of the sensor pendulum when unobservability

of the inverted pendulum modes occurs, is:

(TH)crit

(E.15)

E.3 Physical explanation for modal unobservability

rewrite the dynamie equations for the sensor pendulum Equation E.7 as:

(E.16)
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define:

Term! : [Jr +mpTp(Tp - TH)]8

Term 2: mpTpg8

129

The terms on the rlght hand side can be considered to be the forcing funetions

on the motion of the sensor pendulum. If the right hand side becomes zero, the

behavior of O(t) does not influenee the motion of 1( t), and this is when the unstable

modes associated with O(t) eannot be sensed by the measurement of I(t).

Term 1 is dependent on the loeation ofthe sensor pendulum hinge point, and is the

moment on the sensor pendulum due to the acceleration of the inverted pendulum

1.

Term 2 is the moment on the sensor pendulum due ot the effeet of gravity vector

change as 8 changes.

From the dynamic equations of motion of the inverted pendulum I, we have:

8= mjTIg 0
Pi +mIT1)

Substitute in equation above and set right hand side = 0:

[Ji + mpTp(Tp - TH)] (JImITj9 2)0+ m pTpg8 =0
2 +mITI

solve for the critical TH where unobservability oecurs:

which is the same result as obtained in equation E.2.

E.4 Unobservability by pole-zero cancellation

(E.17)

(E.18)

The modal unobservability condition can be predicted by calculating the TH where

the zeros of ~i:? cancel the poles of the inverted pendulum: from equation E.9 the



130 APPENDIX E. ATTITUDE BY MEANS OF A SENSOR PENDULUM

zeros of ~~ are where:

(E.19)

the poles of the inverted pendulum are at :

(E.20)2 mITr9
s --..-~":::'

- J{ +mrTJ

pole-zero cancellation occurs when above two equations are set equal. Solve for

m pTp9 _ mITr9

- Jf +mpTp(Tp - TH) - JJ +mrT}

(E.21)

E.5 Unobservability by inspection of the F matrix

(E.22)

l' =

The point of unobservability can be found by inspection of the dynamics matrix

in the state space representation of the inverted and sensor pendulum: From the

F matrix in equation E.l!

9 {m T + mrTI[J! +mpTp(Tp - TH)]} e
Jr +mpT~ P p JJ +m]TJ
m pT p9

JP +m 1'2/2 P p

Note that if the coefficient of (} above becomes zero, the dynamies of l' is not af­

fected by the motions of 0, which indicates unobservability of the unstable modes

associated with (} by sensing 'Y only.

Solve for the value of THwhere the coefficient of (} becomes = O.
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Conclusion:

131

(E.23)

Several approaches to solve for the critical Iocation of the sensor pendulum in this

simple two body system, were presented. Wh.en the critical location for a sensor

pendulum in more complex dynamic systems is sought, it will be evident that

some approaches may provide the critical sensor position easier than others.
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Figure E.3: Locus of Imaginary Axis Zeros as a Function of Sensor Pendulum Height
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Appendix F

Unicycle Robot Steered by

Sideways Leaning

The unicycle robot can be stabilized and steered by means of a sideways leaning

of the rider's body. Figure F.1 shows a schematic diagram of a wheel arid a body

of which the upper part can lean out of the plane of the wheel, The lower part

(L) simulates the rider's legs and the upper part (B) the sideways leaning part

of a person's torso. The dynamic equations of motion for this configuration are

derived and the lateral system characteristics are evaluated in this appendix.

F.1 Dynamic Equations

The following procedure avoids finding internal forces and torques in deriving the

equations of motlon.

- Determine the foUowing torques and forces:

(1) D'Alembert torques acting on wheel, legs and body.

(2) D'Alembert forces acting on wheel, legs and body.
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(3) Gravitational forces acting on wheel, legs and body.

- Determine five equations of motion:

135

(1) - (2) Set the two horizontal components of the moment ab out P (wheel

contact point with ground) equal to zero for the whole unicycle.

(3) Set the vertical component of the moment about P equal to zero for the

whole unicycle, and include the external friction torque - fa,(p.

(4) Set the moment about the axle of the wheel equal to zero for the legs and

body and include the applied torque Qw.

(5) Set the moment about the sideways lean axle of the body equal to zero

and include the applied lean torque QB.

D'Alembert Torque:

- Wheel:

- Legs:

- Body:

(F.2)

B.... B" B"
- 11 (<p +ß)fh - 12 (J!h - 1a ,pga

D'Alembert Forces:

- Wheel:

- Legs:

(F.3)

(FA)

- Body:
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Gravitational Forces:

- Wheel:

(F.7)

- Legs:

(F.8)

- Body:

(F.9)

Wl Component of Moment about P for Whole Unicycle

w·· w . . "o = -(11 t/J - 12 no,p) +mwrw[gt/J +rw(no,p - t/J)]
L " . B""

11 + mL(rw + rL)[gt/J - (rw + rL)t/J +rwno,p] - 11 (t/J +ß)

+ mB(rw +rH + rB)[gt/J - (rw + rH +rB)~ - rBß +rwno,p] +mBrBgt/J

(F.10)

W2 Component of Moment about P for Whole Unicycle

W 2'o = -[12 + mwrw]n
L" " .

12 () +mL(rw +rL)[g() - (rL() +rwn)J
B" •..

12 () +mB(rw + rH +rB)[g() - rwn - (rH +rB)()] (F.1l)

W3 Component of Moment about P for Whole Unicycle

w" w . L" B" .0=-(13 ,p +12 not/J) - 13,p - 13 ,p - fG,p

j2 Component about 0 for Legs and Body

(F.12)

L" ".o = -12 () +mLrL[g() - rLfl - rwn]
B- .' "- 12 (/ +mB(rH +rB)[g() - rwn - (rH +rB)()]- Qw (F.13)

!Jl Component about H for Body

+ g(t/J+ß)]-QB (F.14)



F.2. LATERAL EQUATIONS OF MOTION

F.2 Lateral equations of motion

from F.12:

W L B" W' •
(Ja +I a +I a )1/; = -12 flo</> - Ja1/;

from F.10:

137

(F.15)

W 2 L 2 B 2"[lI +mwrw +11 +mL(rw +rL) +11 +mB(rw + rn + rB) ]</>

+ [If +mBrB(rw +ru + rB)]ß

= [Ir +mwr~ +mLrw(rw + rL) +mBrw(rw +ru +rB)]flooP

+ [mwrw +mL(rw +rL) +mB(rw + ru + rB)]9</> +mBrB9ß

(F.16)

from F.14:

[If +mBrB(rw +ru +rB)]~ +[If +mBr1]ß

= mBrwrBflooP +mBrB9(</> +ß) - QB

F.3 Longitudinal equations of motion

from r.n.

L B "[12 +mLTL(rw +rz) +12 +mB(rH +rB)(rw + rH + rB)]1I

W 2 •+ [12 +mwrw +mLrw(rw + rL) +mBrw(rw +ru +rB)]fl

from F.13:

(F.17)

(F.1a)

(F.19)
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F .4 Lateral system characteristics

For the purposes of the present study, let the turntable be solidly fixed to the

frame. Assurne that there is a rotational joint and motor somewhere along the

frame at a distance rH from the wheel a.xle. The mass and inertia of the original

frame is therefore divided in two, with the lower part of the frame simulating

the rider's legs (L) and the upper part of the franie together with the turntable

simulating the Ieaning part of the rider's body (B).

In order to divide the frame's mass and inertia, consider the original frame as a

reetangular body ofwidth wand height 2rF. Its mass is mF and the inertia about

the A unit vector passing through its center of mass is

so that

] F mF( 22)
1 = 12 w +4rF (F.20)

w=
12I{ 2
-·--4TF
mF

(F.21)

With the hinge point H a distance TH from the bottom of the frame where it

connects to the whee1 ax1e, the mass of the lower part of the frame is

mu =

The center of mass is at

TB
TL = -.-

2

The inertia of the lower part of the frame ia

Likewise, the upper part of the frame has mass properties:

2TF - TB
---·mF

2TF

(F.22)

(F.23)

(F.24)

(F.25)
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2rF - rH

2
u mu( 2 2)

I1 = 12 w +4ru
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(F.26)

(F.27)

Now we can combine the mass properties of the upper part of the frame with that

of the turntable to find the mass properties of the leaning part of the body (B):

mB = mU+mT (F.28)

rB =
muru +mT(rT - rH)

(F.29)
mU+mT

If = If +mu(rB - ru? +Ir +mT(rT - ru - rB)2 (F.30)

By calculatlng the inertia properties in this manner the eigenvalues associated

with the sideways faJling of the leanlng configuration unicycle as a whole, will be

the same as the corresponding eigenvalues of the twisting configuration unlcycle.

The lateral system dynamic equations ofmotion F.15, F.16 and F.17 can be written

in state space form if we define the state vector

(F.31)
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h3 = In (F.36)

132 = if +lf+lf (F.37)

112 = mBrBrwÜo (F.38)

J14 = J15 = mBrBg (F.39)

J22
w . 2

= [12 + mwrw + mLrw(rw + rz) + mBrw(rw + rH + rB)]Üo (FAO)

J24 = [mwrw + mL(rw + TL) + mB(rw + ru + rB)]g (FA1)

J25 = J14 (F.42)

J31 = -Ifüo (F.43)

J32 = -fa (FA4)

Multiplication of equation F.32 by the inverse of the first matrix containing the

inertia terms, yields the standard state space form of the lateral system dynamic

equations;

x=Fx+Gu (FA5)

An analysis of the lateral system characteristics is shown in the listing of sec­

tion FA.!. There is one eigenvalue near 8 = 0 which is the yaw rate mode of

the robot. The other eigenvalue at 8 = 0 for the yaw angular position mode is

not shown. Two pairs of eigenvalues reside on the real axis on either side of the

imaginaryaxis. The eigenvalues at 8 = ±3.29 rad/sec are for the sideways un­

stable pendulum modes of the unicycle as a whole. These modes are at the same

frequencyas those in the twisting configuration ( section Q.3.1), because we have

chosen to use the same robot parameters of Appendix M. Two other inverted

pendulum modes are at 8 = ± 9.89 rad/sec due to the leaning part of the body.

The location of these eigenvalues change as a function of the hinge height, rn-

The modal controllability matrix eTR in the print-out shows that the yaw rate

mode is uncontrollable from the lean motor torque. Physically it means that if

yawangular momentum is present in the system, it cannot be controlled with the
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lean actuator. Fortunately this yaw mode is stable due to the friction losses at

the ground contact point of the wheel.

The eTR matrix also indicates limited controllability of the main inverted pendu­

lum modes ( at 8 = ± 3.29 rad/sec) from the lean motor torque. It is possible to

stabilize the unicycle by leaning the body, but accurate control of the yaw motions

(i.e. steering) cannot be achieved by this control method.

FA.! Lateral system analysis

UCYC12/LEANCHAR.CTR

LATERAL SYSTEII CONTROLLED BY LEANING

**•••••••••••••**••••••••**••••••••••••••••••••••••••••••••

LATERAL STATES PHI.OOT; PSI.DOT; BETA. DOT; PHI; BETA

CONTROL INPUT LEAN MOTOR TORQUE (QB)

UNITS METERS, RADIANS, SECONDS

••**••••••••*•••••••••••••••••••••••••••••••••••••**•••••••

LEAN HINGE IlEIGHT ASOVE WIlEEL AXLE ( METERS )

RH

0.7000

NOMINAL l/HEEL SPEED (RAD/SEC)

OMEGAO
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3.0

OPEIlLOOP SYSTEII MATRICES:

*************************

FUT •

0.0000 0.7783 0.0000 12.9442 -7.6666

-0.1259 -0.0277 0.0000 0.0000 0.0000

0.0000 -1.3688 0.0000 -22.3357 95.8731

1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000

GUT •

0.3308

0.0000

-3.7467

0.0000

0.0000

EIGVAL

-0.0279

-3.2935

3.2937

-9.8930

9.8930

EIGVEC =

0.0017 1.0000 1.0000 -0.0902 -0.0902

1.0000 0.0386 -0.0379 -0.0012 0.0011

-0.0000 0.2606 0.2607 1.0000 1.0000

-0.0600 -0.3036 0.3036 0.0091 -0.0091
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0.0003 -0.0791 0.0792 -0.1011 0.1011

cm •

-0.0000

-0.0034

-0.0034

-1.8725

-1. 8725
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LEGS L ----I....

A

HEAP-QN VIEW

LEGS L ----.Jl\\1r-i

WHEEL W ----11"',
A

p

"tIf--WHEEL W

VIEW Ta WftEEL

p

Figura F.1: Steering by Leaning



Appendix G

Gear Ratio for Maximum Yaw

Acceleration

G.I Motivation for the optimal gear ratio

The turntable ls used as a null momentum reaction wheel to steer the body of

the unicycle. A direct current motor mounted on the unicycle frame drives the

turntable through a gear train.

The unicycle control system will compensate for lateral disturbances by steering

the vehicle towards the direction that it is falling over. It would therefore be

advantageous to calculate the optimal gear ratio of the turntable drive train, that

would give maxiraum yaw acceleration of the frame of the unicycle. The relevant

parameters are shown in Figure G.1
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G.2 Yaw dynamics with a geared drive system

The total kinetic energy of the system is:

the derivatives of the generaJized coordinates are

Obtaining the dynamic equations from Lagranga's method:

Let the generaJized coordinates of the lateral system be:I
[

I
!

I

ql =.p
q2 =w
qs =ij

= yaw angle of the frame

= angle of motor rotor relative to the frame

= angle of turntable relative to the frame

tiJ. =,p

1/2 =w

I/s =7]

T = ~[JF,p2 + JR(,p +w? +JT(,p+7])2]

= ~[JFg +JR(I/l +1/2? +h(l/l +I/s?l

The constraint equation of the system is

(G.l)

w = n7] (G.2)

where n is the gear ratio of the turntable drive system.

The nonholonomic constraint equation is augmented to the Lagrange's equation

to give

~ (B:) _BT = Aa, +Q,
dt Bq, Bq,

where Q, is a generalized force.
B</>a, =Bq,

where </> is the constraint equation of the system

</> = w - n7] = 0

(G.3)

(GA)

(G.5)
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rewritten in differential form:

1 . dw - 7) • dfi = D

We can readily identify the ai coeflicients:

apply Lagrange's equation for each generalized coordinate:
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(G.ß)

(G.7)

(G.8)

where TR is the torque developed between the rotor and it's stator which is fixed

to the unicycle frame.

h(ib +qa) = -nA

Elirninate the Lagrange multipliers by substituting G.9 into G.1D:

(G.9)

(G.1D)

(G.n)

use the constraint equation to eliminate q2 from equations G.8 and G.n to yield

the two dynamic equations of motion:

or in items of the system coordinates:

(G.12)
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and

or in terms of the system coordinates:

(G.13)

we can use equation G.13 to e1iminate JT from equation G.12j which then becomes

[JF+(1 - n)JR]-0 +n(l- n)JR~= -(n + l)TR (G.14)

Equations G.13 and G.14 are now in a form whieh can be compared with equations

of the lateral system derived in Appendices A, Band C where the motor rotor

Inertlas were assumed to be zero.

As we will see later, n is a fairly large number (approximately 70) for the acual

unicyc1e parameters, We can therefore approximate the right hand side of equa­

tion G.14 by -nTR.

Eliminate i] between equations G.13 and G.14:

Toget maximum acceleration as a function of n let ~ =0

(G.15)

JF+JR
nopt = JT + JF +2JR + (G.16)

Notice that if JT ---+ 00 i.e, load is held fixed
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Also notice that equation G.16 can be approximated as follows:

149

small compared to /

+

if JR <::: JT,JF the optimal gear ratio is by good approximation:

G.3 Yaw acceleration as a function of gear ratio

(G.17)

Since the standard gear sizes ailowa discrete number of gear ratios only, it is useful

to plot equation G.15 as a function of the gear ratio, n. The CTRL-C program

latnopt.ctr is used to calculate this function and the resulting plot is shown in

Figure G.2.

I
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'-.41-0--- TURNTABLE

J = moment of inertia of
T the turntable about

its rotation axis

1lII-- GEAR TRAIN: total
gear ratio = n:l

w............---(j)= motor rotor angular rate
&-~~ relative to the frame

........--MOTOR STATOR fixed to frame

4-!f---i!l---- MOTOR ROTOR:

J R = moment of inertia of motor
about its rotation axis

FRAME
J = moment o f inertia of

F frame and wheel about
its vertical axis

I WHEEL
I
I
I
I
I
I
I
I
I
I •J)" 'I' = frame yaw rate

Figure G.I: Turntable Gear Drive Sehemarie
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Figure G.2: Normalized Yaw Acceleration as a Function of the Turntable Drive System
Gear Ratio



Appendix H

Servo Accelerometer Design

H.l Introduction

Simulations of the unicycle and control system have shown that the attitude of

the vehicle will deviate less than 1 degree from vertical during normal maneuvers,

Peak linear acceleration of the frame is expected to be on the order of O.lmj82• To

obtain good attitude and acceleration Information, the accelerometer sensor should

have an accuracy of approximately one twentieth of the maxiraum expected value,

i.e, O.005mj 82• (2~O of the earth's gravity acceleration). Commercial servo ac­

celerometers which measure to these accuracies are prohibitively expensive and a

custom made accelerometer was designed for the unicyc1e robot.

H.2 Mechanical design of servo accelerometer

A drawing of the mechanical part of the accelerometer is shown in Figure H.1. It

consists of a pendulum suspended by nieans of a beryllium-copper f1exure. Op­

tical pick-off of the position of the pendulum is accomplished by an infra-red

light-emitting diode on the pendulum which illuminates a set of photodiodes fixed

152
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to the accelerometer housing.

153

Electromagnetic actuation of the pendulum is provided by a set of coils on the

pendulum and a pair of permanent magnets pressed into the walls of the hous­

ing. The physical size and weight of the pendulum was minimized to keep the

undamped natural frequency of the pendulum much higher than the bandwidth

of the unicycle robot (unicycle bandwidth is less than 1 Hz).

H.3 Feedback control system design

Figure H.2 shows the block diagram of the feedback control system. The pur­

pose of the control system is to generate a current in the actuator coils which

will reposition the light beam to the null position on the photo detectors during

accelerations. lf integral error feedback control is used as shown in the analysis in

Figure H.2, the current in the coil is proportional to the acceleration experienced

by the accelerometer as long as the frequency content of the acceleration motion

is much lower than the closed loop bandwidth of the servo accelerometer.

HA Optical pick-off considerations

A Siemens SFH405-2(Table H.1) infra-red light-emitting diode (LED) was used

as a light source. The pendulum arm was specially designed to allow the LED to

shine through a narrow slit of 75 pm (0.003 inches) in the bottom of the pendu­

lum. The photo detector is a Siemens SFH204 four-quadrant silicon photodiode

(Table H.2). The active units are only 12 pm apart and 100 pm wide and were

connected in pairs to sense the beam deviation along one axis only.

An important consideration for the choice of this detector as 'opposed to two sep­

arate phototransistors, is the fact that all the active areas are on the same piece

J
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of silicon substrate, which provides the most similar behaviour of the differential

active areas under temperature variations.

The choice of a light beam width of 75 psx: for the 100 fJom wide active area of

the detector results in a maximum to minimum variation of the detector output

current for a pendulum motion of only 75 ps»:

By taking the difference between the output currents from the two active areas,

a reasonably linear relatlonship between pendulum position and detector output

signal can be obtained, as shown in figure H.3. The output currents from the

photodiodes are in the order of tenths of a fJoA and the light beamwidth should be

chosen wide enough to generate enough photo current without flooding the whole

active area, The dlstance from the light source to the detector was minimized by

mechanical design for the same reason,

Temperature drift and other forms of process noise cause errors in the servo ac­

celerometer outputs which cannot be distinguished from actual accelerations, It

is shown in the analysis of figure HA that the errors due to detector drift can

be minimized by maximizing the sensitivity of the photo detector to pendulum

position changes. Since one of the few parameters available to the designer to

increase this sensitivity is by decreasing the light beamwidth, it is a conflicting

requirement to that stated in the previous paragraph, A compromise of making

the light beam approximately half as wide as the detector active area was chosen.

In order to compensate for the non-uniformity of the light source and detector

sensitivity, the total light received by all the active areas ofthe detector is regulated

to be constant as described in the next section.
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H.5 Detector electronics and servo amplifier design

Figure H.5 depicts the electronic circuit diagram for the servo accelerometer. A

voltage proportional to the total light received by the photodiode detectors, is

compared with a well stabilized 8V reference signal. The difference is used to

regulate the current to the LED in order to keep the total received light constant.

A differential amplifier stage converts the difference in the photo currents to a volt­

age which is propotional to the pendulum displacement. The photodiode package

is mounted on aseparate printed circuit board which can be repositioned mechani­

cally to receive the light beam in the middle of the detector under zero acceleration

conditions. Any remalning offset is corrected for electronically.

The small signals from the photodiodes are susceptible to interference from stray

electromagnetics (e.g. 60Hz hum, switching amplifier noise, D.C. motor commu­

tator noise, etc.). All the photodetector electronics are mounted on aminature

circuitboard (Figure H.6) which is positioned on the side of the accelerometer as

close to the photodiodes as possible. The whole unit is packaged in a metal box

at ground potential, which effectively eliminates any stray environmental electro­

magnetic influences.

The actuator coll has a 25 n resistance and requires approximately 160 mA to

reposition the pendulum to its original position when the accelerometer is turned

on its side. A dass A servo amplifier is induded with feedback to provide the

driving current without cross over distortion.

H.6 Openloop frequency response and plant model

The frequency response from the coil current control voltage to the differential

photodiode output was measured. The gain and phase responses are plotted in
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Figure H.7 and it is seen that the plant response compares weil to that of a lightly

damped second order system with:

J(p = 0.684

W n = 46.6Hz

e = 0.01

low frequency gain

undamped natural frequency

damping factor

The coil inductance measured 22 mH and together with the 25[2 coil resistance

and 30[2 series resistor, it forms another plant pole at

R 55
wp = L = 0.022 = 2500 rad/sec

This pole is at a much higher frequency than the control bandwidth of approxi­

mately 200 rad/sec and is therefore ignored in the plant dynamte model.

H.7 Compensation design

The compensator is designed to increase the damping on the lightly damped plant

poles and it also adds a pure Integrator into the loop to provide zero error to

contant acceleration inputs. Two additional zeros are required to draw the closed

loop root locus far enough into the left half of the s-plane to provide an acceptably

short settling time.

The second order electronic compensator that was selected is shown in Figure H.8.

For unity feedback, the closed loop characteristic polynomial is:

1 +Gp(s)Gc(s) = 0, i.e.
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(H.l)

The desired closed loop poles were chosen to be at the 4th order ITAE positions,

therefore the desired closed loop polynomial is:

[(..!.. +0.424)2 + (1.263)2][(..!.. +0.626? + (0.4141)2] = 0 (H.2)
Wo Wo

where Wo is the desired bandwidth of the compensated closed loop system,

Simplifying equation H.2 gives:

(H.3)

Solve for Ri by comparing thecoefficients of the powers of s in equation H.l and

equation H.3.

Rt
J(pw~

(HA)-
C2R4W6

R 2 = Rt [3.4~5 _ 1] (H.5)s, w n

R3 =
RtR4W~J(P (H.6)

wa[(R2 +R4)](p + Rt] - 2.7w5CRtR4

R4
1

(H.7)- 2.1woC

A condition that sterns from the fact that the resistor values must al1 be positive,

1S:

(WO)min > 0.5423w n (H.8)

A CTRL-C program, 'lgtitae.ctr' calculates the required resistor values, The re·

sulting print-out in Section H.8 shows that the compensator results in a pole at

s=O, one more on the negative real axis and a pair of complex zeros in the left

half of the s-plane.



158 APPENDIX H. SERVO ACCELEROMETER DESIGN

A root locus of the closed loop poles versus the overall loop gain, K, is shown

in Figure H.9. The poles are at the ITAE positions for K=l. The compensated

openloop system frequency response in Figure H.10 shows a 30 degrees phase

margin. A low pass filter is added on the output to reduce the output oscillations

during impulsive disturbanees. The step response in Figure H.l! shows that the

closed loop system is reasonably weil damped with a settling time of approximately

30 ms,

H.B ITAE compensator calculation program

PLANT PARAJIETERS

KP •

0.6840

FH •

46.6000

ZETA

0.0100

WH

292.7964

PLANTPOLES •

1.0d+02 *

-0.0293 + 2.9278i



H.B. ITAE COMPENSATOR CALCULATION PROGRAM

-0.0293 - 2.9278i

ITAE COMPEllSATOR PARAMETERS: 1I0=DESlRED C.L. BAllDli C=CAPACITCR VALUE

159

110

351.3557

C

=

=

1.0000d-07

EXACT RESISTCR VALUES

R1

R2

R3

=

2.8390d+04

1.6171d+05

2.7499d+03

R4 •

1.3553d+04

llEAREST AVAILAELE RESISTCR VALUES I; CAPACITCR SHUllT RESISTCR R5

R1

28700.0
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R2

Ra

R4

R5

=

162000.0

2870.0

14000.0

3300000.0

APPENDIX H. SERVO ACCELEROMETER DESIGN

f
j
(

COIIPGAIli

115.7491

COIIPZEROS

1.0d+02 *

-0.8088 + 1.9454i

-0.8088 - 1.9454i

COIIPPOLES =

-714.2857

-3.0303

CLOSED LOOP SYSTEH PARAIIETERS

eUEReS =
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1.0d+02 •

-0.8088 + 1.9454i

-0.8088 - 1.9454i

CLPOLES

1.0d+02 •

-1.5542 + 4.5407i

-1.5542 - 4.5407i

-2.0617 + 1.4861i

-2.0617 - 1.4861i

LOW PASS FILTER OR OUTPUT ( WC = CUT-OFF FREQ. IR RAD/SEC )

WC

212.8000

161

H.9 Servo accelerometer calibration

The servo accelerometers were mounted on a dividing head for calibration, using

the gravity acceleration and tilt angle relationship to calculate the acceleration

input. The dividing head has a 0.1 degree accuracy.

First the servo loop was opened by disconnecting the actuator coil and the ac­

celerometer was positioned vertically (0 m/s2 acceleration input). The optical

detector screws were loosened and the detector was shifted until the differential

current in the two halves of the detector was zero. The dividing head Was then

tilted from -180 degrees to +180 degrees and the differential output voltage of the
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optical detector stage was recorded. Figure H.12 shows a reasonably linear range

with a steep slope for tilt angles between ±20 degrees.

Thereafter the servo loop on the lateral accelerometer was closed and the sensor

was mounted verically on the dividing head, The offset on the output voltage

was trimmed to the minimum value by means of the potentiometer on the sensor.

Figure H.13 shows a plot of the sensor ouput voltage as a function of the tilt angle.

A very linear relationship is obtained for a range of ±20 degrees. A least squares

fit to the data point for the linear region yields:

vo~tT = -0.3114> volt

where 4> is the roll angle in degrees. Since a +90 degree tilt angle corresponds to

19 acceleration, the transfer function can be rewritten as:

latacc = 0.35048Vo~tT m/82

where latacc is the lateral acceleration.

The longitudinal accelerometer is calihrated in the same manner and its transfer

function is shown in Figure H.14. A least squares fit for the data points gives:

v.,I;,rT = -0.3452 X 0

where 0 is the pitch angle in degrees.

(volt)

where lqiacc is the longitudinal acceleration.

The sensor output voltage drift due to temperature effects measured less than

±10mV. This is equivalent to ±3~0 of gravity acceleration or an uncertainty of

± io degree in the measured tilt angle.
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H.I0 Hall-effect frame angle sensor design

163

A device to measure the unicycle frame pitch angle was designed by using a trailer

wheel that touches the ground, as shown in Figure 4.1. A Hall-effect transducer

(918812-2 LOHET by MICRO 8WITCH, a Honeywell Division) is attached to the

unicycle frame, separated from the magnet at the end of the alumirrum rod from

the trailer wheel by a 2 mm air gap,

The analog electronic Interface to the LOHETis shown in Figure H.15. The output

of the fourth oparational a.mplifier is connected to the analog-tc-digital Interface

card described in Appendix J.

The sensor was ca.librated to determlne the output voltage as a function of the

pitch angle. The calibration curve is shown in Figure H.16. The sensor is linear

over a range of -5 degrees to +5 degrees with a gain of 0.8541 volt/degree.
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1--.......... X = beam displacement

,
B = beam width
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Figure H.3: Relationship between Differential Photodiode Output and Light Beam Po­
sition
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••x = linear acceleration

x = displacement approximately proportional

to deviation angle e for small angles

Qi = torques on pendulum arm

\
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pendulum

spring constant

D (detector drift)

+ Av
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••x
D

=

••• to get the apparent acceleration due to drift
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Figure H.4: Sensitivity to Process Noise Analysis
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SIEMENS SFH 405 SERIES
INFRARED EMITIER

Pacl<age Dimensions in Inches (mm)

Radiant Inl.Mlt)' I. In A.1II1 Dlnoc1lon M...u..cl .It • Solid "'~.. 0111• 0.01 ...

T -~O 10 -SO "C

T. 230 "C
Ts 300 'C
T, BO ·C
V. 5 V

"
40 mA

I,. 16 A
P". 6S mW

Rl:I"'~ 950 K!W
R, .... B50 K!W

'"
I~ "I

G~I
==1=::.

J

Charaeteristlcs (Tomb = 25°C)

Waw!iength (IF - 40 mA, I. - 20 rns] 9501:20 nm
Speclrol Banctwldlh

(IF - 40 mA, I. a 20 rns] ,ll, 5S nm
Half Angle '" 1:16 Oeg,
Acti-..t Area A 025 mm'
ActMl Oie Aree per O<e L. W 0.5 • 0.5 mm
Oislance Oie Sur/ace

10Peckage Sur1aca H 13101.9 mm
SWllching Time II~ 10% 10

!lO% ond from 10 10%
01I,. 40mA) I" ~ 1 1"

ColJ'lCilance"'. - 0 \I) Co ~O pF
Forward Voltage

(IF • ~O mAl V, 1.251.:$1.41 V
Breakdown IIoltage (I. - 10I'Ä) VIlA 30 (;!:51 V
R8Yll1S8 Currenl"'•• S \I) f. 0011.:$10J pA
Temperelure Coe"iclent cf I. or +. TC, -0 SS %IK
Temperalure Coe"icient or V, TC. • 15 mVIK
Temperaiule Coeflicienl 01~poak Tc.. .03 nmiK

.828[8.51

.8161841

""I' T~I
lfii
Oll

Maximum Ratings

Graul' SFH 405-2 SFH 405-3

Radieni Inlensilv
(I, • 40 mA, 1r.- 20 msl I. S3.2 :/:2:5 mWI5r

RadienI PoIoer ( F - 40 mA
1•• 20 ms) •• 2.5 4 mW

OperalJng and Sll)l'age Temperalure
Soldering Temperalure

(Oi&lance rrom soldering /O'n1
10 paclcllge ~2 mm
O'p soIdering lime t :!: 3 •
Iron soIdeMg lime I .:$3 'l

Junchon Temperature
Reverse VO/Iage
Forward Current
Surge Current (I - 101'5, 0 ~ 01
Power Di...pation
Thlllmal Resislonce

FEATURES
• Mlnlature Plastle Package
• 1/10" (2.54 mm) Lead Spaeing

• EmItter far SFH-305
Phototranslstar Detectar

• D.slgned for Maximum Spaclng
of 10 111m Between Emltt.r end
Detector

• Three Radiant Intllt'lsity GfQUPS

DESCRIPTION
The SFH 405 Is a GaAs I"frare<! diode
whIch emlts radlallon at a wavelength
In lhe near Infrared. The radiation
emitted ls excited by currenl IIowlng
In lhe forward dlrectlon.
The case Is transparent plaslle wlth a
lens shaped light oulput. The plastle Is
slightlY smoke eolored In order to
dlflerenllate belween phototransistors
of the same type (SFH 305), The
terminals are solder plns In 1/10· (2.54
mmllead spaelng. The Infrared
emlttlng dlodes are grouped according
to radiation lntenslty. SFH 405 Is
suitable for use es emitter wllhthe
phototrensrstor SFH 305 to e!feel
mlnlature light barrlers wlth eiose
spaelng belween sender and receiver
up 10 10 mm maximum. The calhode 15
marked wlth a eolored dot.

Table H.I: Siemens SFH405-2
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SFH 204
SILICON FOUR QUADRANT PHOTODIODE

Ü::·:.~i'i,::'~~
, ''r--- ,. ,,"']~ ~... I ..... •

•. ,.- • I ',.

CONNECTOA SCHEllE

5Ül
, 1

DlOOE 5'fS1-UI "MTH
UGHr SEHSll\YE SUAFlCE

Packege Dlmanslol'la In Inch•• \mm)
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.11~,11

.1I14,~1

.l714,31

uEASUAUIEHr 111 ,.m

p~

pf

12 V
BI) 'I:

-20 ... +lIlI 'I:
40 mW

12 c;o 101

BliO ..
0.11 c;o 0.011 ~.

>0.35 A/W
0.01 CO: 21 ....

:LS
I.S

T,

"...

e,C,.

MaI",,,mAai"ll
A.II'.rM,wg~'l9

Juncdan tempulture
So••rint tMnr-tl'Cl,lN In • :bnrn diflitnrOll

fram""'OB< bc>hom 41 0:3 ,I
POliiIIt/ diUip,luon

_IT..... 25'1:1
W••,.m of IN rnlX:.Slnti .....lr; ~ ....
~..l .-mitil'ity S
So>ocwI IOml'"I'" II • BliO Nm'l s"
DI'" CI.t"."t iV... IDv, Tim." 2S't; E • 01 114

JunctiDl1ClDlC:i~
lVft""OV;I-. MHI_~E·OI
IV. -10V:'-1 MH.:~-Ol

Ri.~ f"~ timtoof thI phatDCIUmnl
ftDl'n los. to ;OS IM
IrM'l i(PI, to 10'10ot 1'1\1 'in..1•••UI
IRL -1\0: V. -OV: l-SSO.ml
IR&. ,. lU1: \1',. • 10 V: X. eo nml

Rad~tMr'ltJ'!i"""1
CiUlnc:I bltwIIn radiant Mnlitin ar••,

tn.ICIlh a.' th. CfOII·d'lIoIDId ftCINIt,.,
Piluimum dlI"finion 01thlapK:lr" IInlitIYtry

of thI taur lYIuml·'romtbt ml.. t.S <20

SpecUlcallonB subjecl 10change wilhoul nollce.

DESCRJPTION
The SFH 204Ii1icon planar mil'llatura four
quadrant photodiode has applicniol'l in
edge drivt, positioning, and path and
eerner sc:annlngcontrol devic:es. The ac:tive
L1l'1iu ara spaced at only 12 /im apart from
indMdual contacU. It is there1or. possibie
te glt IXlct positlonlng with high definition.

• Minia11lre 1111

• FoLlr qLllldrant IICtiva sactions

• ClO$llfP"ing of contlletl. 12 JUlI

• Can dllürmlna 11 ud by how much a
light lour. hu dniated

FEATURES

Table H.2: Siemens SFH204



Appendix I

Position Encoder and Servo

Amplifier Interface

1.1 Introduction

This computer card extracts velocity information from the position encoders mounted

on the axles of the turntable and wheel drive motors, and interfaces these signals

to the G64 bus of the GESPAC computer. It also takes digital motor current

command signals from the computer bus and outputs it as analog signals to the

servo amplifiers.

1.2 Position encoder interface

The Datametrics K3DO-200-5SE-4A optical encoder outputs two 0 - 5V square

waves in quadrature at 200 pulses per revolution of the motor shaft. On the state

transition of one of these signals, a counter is started. It is docked with a high

frequency dock derived from the microprocessor system dock. When the next

encoder state transition occurs, the counter's contents is stored in a register, the

counter deared and the process repeated. The number stored in the register can be

read by the microprocessor and inverted to obtain motors haft speed. A schematic

181
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diagram of the positlon encoder digital logic is shown in Figure 1.1 and Figure 1.2.

The layout of the components on the Interface card is shown in Figure 1.3.

1.3 Operation of the logic circuitry

A master clock, SCLK, controls the timing of alt the logic transitions of the po­

sition encoder interface card, as shown in the tlmlng diagram of Figure 1.4. The

frequency of SCLK is jumper selectable, and is chosen from considerations dis­

cussed in the next section. The two quadrature signals from the position encoder

are synchronized with SCLK and the direction of rotation Is deterrnined and indi­

cated by the U/ jj. The logic level of this signal is written to the data bus bit zero

to indicate the direction of motor rotatlon to the microprocessor, When the mo- .

tor stands still or reverses direction hexadecimal FFFF is written to the counter

buffer register in the 741.S699 ICs by means ofthe CLGAD strobe,

One clock cycle after the low to high transition of the second phase aignal of the

position encoder, the upper 15 bits of the counter are loaded into the buffer regis­

ter(by the RLD strobe) and are available to the upper 15 bits ofthe data bus. One

clock cyde later, the counter is oleared (CCLR strobe) and it starts countlag the

number of clock pulses until the next low to high transition of the second phase

of the position encoder OCCUIS.

The lower 5 bits of the address bus is decoded to place the lateral position encoder

rate data at peripheral address hexadecimal 800020 and the longitudinal encoder

rate data at 800030.



JA. SELECTION OF THE INTERFACE CLOCK FREQUENCIES

1.4 Selection of the interface clock frequencies

Define:

183

c = the number of clock pulses counted during one complete cyde of the second

phase of the position encoder.

f = the frequency(in Hz) of the master clock of the position encoder logic circuitry.

w = motor axle angular velocity in rad/sec.

For the encoders which generate 200 pulses per revolution, the motor speed is

given by:
2rrf

W= 200c rad]sec (U)

From the lateral control system simulations, the maximum turntable speed is

expected to be 1]m.", = .12 rad/sec. With the turntable drive gear ratio of 60:1

the maximum lateral drive motor shaftspeed will be 60 x 0.12 = 7.2 rad/sec.

Let the .counter on the interface card reach its maximum count of (215 - 1) at

1% of this speed. The lateral encoder interface dock frequency is calculated from

equation 1.1 as:

f = 200wc
2rr

200 x 0.072 X (215 - 1)
=

2rr

= 75.096kHz (1.2)

since the clock is derived from a subdivision of the 8MHz microprocessor system

clock, a convenient value is

8MHz .
LATCL!( = 2s = 31.25kHz (1.3)

The typical nominal wheel speed is no =3 rad/sec. The typical maximum per­

turbation of the nominal wheel speed is li = 0.12 rad/sec.
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The gear ratio for the wheel drive system is 24:1, so the motor speed at 3 rad/sec

wheel speed is:
211'1

Wo = 3 X 24=-­
200c

(1.4)

If the accuracy of the motor speed should be measured to 1% of the maximum

perturbation speed, then:

w
(wo + 100) =

( .12)
3+ 100 X 24 =

21r1
200(c - 1)

211'1
200(c - 1)

(1.5)

(1.6)

1 -

eliminate c between equation 1.4·~d 1.6 to get the optimum clock frequency

200wo(100wo +w)
21rW

= 5.732MHz"

(1.7)

(1.8)

. Let the master clock frequency for the longitudinal encoder rate Interface be the

same a.s the microprocessor clock frequency:

LGTCLK =8MHz

1.5 Servo amplifler interface

(1.9)

The two DC motors are driven with pulse width modulated (PWM) servo ampli­

fiers. These amplifiers have internal current feedback and are adjusted so that a

-IQV to +lOV input signal commands an output current of -lOA to +lOA to the

servo motors,

12 bit Digital-to-Analog Converters(DAC) are used on the computer Interface card

to convert the digital current command on the microprocessor bus to an analog

voltage for the servo amplifiers, as shown in Figure 1.5.



I.5. SERVO AMPLIFIER INTERFACE

Define:

D ;: digital number supplied to the DAC

B ;: digital number appearing on the microprocessor bus

Vout ;: output voltage of the DAC

Vre, ;: reference voltage for the DAC output

;: 10V

For the DAC and operational amplifiers as configured in Figure 1.5,

D - 2048
Vout ;: Vre' ( 2048 )

185

(UO)

where 0 s D s 4095

Because of the negative logic of the G64 data bus, a binary value of B written to

the DAC will give an output voltage of

where 0 s B s 2048

2048- B
Vout ;: Vre, ( 2048 ) Volt (1.11)

The lower 5 bits of the address bus is decoded to place the lateral DAC at. periph­

eral address hexadecimal 800000 and the longitudinal DAC at 800010.



,
D

/if

,.
"C

L
Q

ij
)

--
-,

C
C

L
R

i5
j"

1511 11

R
L

D

7
tL

B
2

4
0

1
4

•
•

•
•

•
•

•
1

DI
tJ

20
I

'A
I'

I
·

I
"

1
11

"'
,1

i:
ii

:i
i

n1l 11

7
4

L
U

tO
1

3

2.
I
1
1
.
1
J
J
u
T
~

H

...
1l

III
I

'lI
lm

l
C

D
[

~~
.

l!
lI

7t
L8

61
11

1
•

74
LS

61
11

1
..

7
tL

.n
ll

U~I
I!

•
•

1
74

1L
s6

11
11

11
1

0
ll

!I
'

II
!'

1
1

1I
IlIl

"
II

!'
1

2
1D

T
14

1.

C.
..

C
.

C
.

C
.

•t
u

11
•

I'%
j ..... oq P "'l tD -;.... t:-
I

-"
.-

"'
Ii

~
:

1.
1

..
:

!I
n- tD

'q
c
g

t
e.

, , I
t:o

:j
,

Ir
"

•
=

I

~
=

n
, I

0
I

I:l
.o

, ,
tD

I
>

;

·
l:d

• I I

E
"

·
i:

ii
ii

i
~

•
GI

•
,

..,
,'

•
tD

• •
•

t:o
:j

I •
~

, I I
>

;

·
~

n~
.

tt
..

..
.

~
0

'
,

~
:

..
..

t
•

&
1

.,
.

t:
-I

:
I

o
•

10
0(

ca.
:w

r
!

n
:

•..
:

u
,

8
t::

I
,M

I
•

I
..

..
..

I
•

~
:.

.
1

.1
--

--
-=

.1
c

~
:

D
'
:
.
u
'
~
.

13
.

~
1

~
»
S
"
~
A

I
:

'
-
~
.
_

..
G

64
-b

ll$



I-
'

0
0 .....,.., ?
'

tI:
l ~ ~ 0 :..- ~ t-<

--
I;;J ~ ~ ~ s

""
IQ

t.>:
l

...~
15

l"
11

In

I"
u

~
.

•
1

1
11

3
b

1
I
.t

l

u0
a

0
.

0
c

0
.

C
C

L
R

RL
D

?4
L

IO
f. -

i:i
iii

i
'I

"'"
~

~.
'1

ii
i'

7
.f

L
S

U
'

i
a
i
~
1
I
!
"

3
2

u

T"
U

.2
-,

~

11
5

11o

13
la

u7
.f

L
ln

.
31­...
~

0.
..

0
.

Cl
o:

G
II

1.
~ .. •

H·
,

...
...

.. ..

'..
1.1

11
.

' ...

15
I"

u
la

11
11

'
"

0
a

0
.

0
c

0l
l

K
'

....
..

...
,
~

&
J

"
lt

L
IC

I.

••
"

~
I

I
I

I
~
i
)
~

r
,-

,-
.

I

im
F

~
...

T"
1.

1
,2

-'

I
111

n
la

II.
-

ti
ii
ii

T
.

"'"
=.

.. ?
4

L
II

•
•

2
•

..
r-

;:'
,

1
•.

•
G

...
G

.
G

o:
11

•
•

11
1

i u
11

-
~

t
I

-
1I

I
~

I
1

I
1

i
I
~

..~ b
..

..
.'

-f
-.

..
l:

.-
I:

.-
--

--
-,

,,
I

.
13

n

7
.f

L
1

2
4

0
15

?
f.

L
8

2
4

0
~'

2'
_

_
-
'

3
3

3
4

11
11

F'
I
'

I
i

14
11

•
'r

..
-1

,"
-.

""
"-

-.
'T

,,
-r

l,
.
-
-
-
-
~
~
-
~
-
-
_
.
_
-
~
-
-

--
--

--
-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
_.

.
-
~

-
•

D
A

T
A

B
U

S
.2

!.
-
~
~
~
~

~
~
~
~

~
~'

&.
!!

.&
~
.
~

.!!
!'
~

.!
!'

t_
_~

~
~
~

__
!_

_~
__

~
__

1_
_~

_
.
~
_
~
~

~
~

.
~
~
~
_
~

__
~
~
.
~
~
_
~
~
_
~
~
_
~
~
_
~
~
:

--

7
.f

L
8

1
7

.f

", • I • • • • • ·• • · : • •

G
84

·b
ul

1
~
-
-
1

•
•

:t
l

:
• ·

.
:"

SL
J

·.
';·

r--
---

---
---

~~:
~'~

~:.
'"

•
•

•
•

·..fGr
IDf

'
6

:
~
1

~11
..

l'C
LO

.I.
D

,
"

"
0

•
-
-

,
.

~
'

:
u

-
-

u
u

:.
'

..---
--
--
==
--
~-
--
-~
~

_
_

_
_

I

o
I

."
_

_
I

n

.,...
.....

,...-

>
rj ~. .....
.
~ t"

' s lJ9
. ... g. S" e, ~ a ~ ~ l1> M
.

><
. ...' ,,' ~i .... -".O. .

~
:

u
.

•
t-

t:1
R

I
0

'
•

·
.

<[9
.:

:
n

.
•

·
.

t:
'I

U
.

-':
'ii

i'
.:

'"
I

•
O

Q
I

.
.

....
..

.
lP

:
A

I
:

S
:

••:
.
U

I

·
.

I
•
•

1
I

I
.
n

I
I

•
•

•
•

1
:,11

1
:

'
-
~
-
-
'



188 APPENDIX 1. POSITION ENCODER AND SERVO AMPLIFlER INTERFACE

..!< ..!<
r-l r-l

+J tilt7l
r-l r-l

GG
CI)

+Jc
N .... "lI' IV.... .... .... c:

0

§

ß[j
1

j 0
[~]

0 CI\ C"').... ....
[~]GG

0 0
E-t U
(!) ~
~ ~

N .... ..
CW1 CW1 CW1

~ EJ >IH
Oa,t.... ~ E-t U

CD ..a: .<

° CI\ (I') H CI
CW1 N CW1

Figure 1.3: Position Encoder and Servo Amplifier Interface Card La.yout



\,\1 I ....1' \ I 0 0 ") f)

\)1J.:I\\) 0 0 0 0 I , i
r •

\ ,

I5. SERVO AMPLIFIER INTERFACE
POSITIVE ROTATION' NEGATIVE ROTATION

189

8CLK

L

L

___11'---__

'---__11 _

I

D1 I
I

D2 U
I I.

Q1 n I
I
I

Q2 I
I

Xl

X2

CNT

SCLK

CLK2

Q3 : 1 _
I

I IU/D :I L...- _

1

CCLR i tJ tJ .tJ tJ
I

82 LJl n n n
I ---

SCLK

RLD
+-0-......, I 1 It__

Figure 1.4: Position Encoder Interfa.ce Timing Diagram



190 APPENDIX 1. POSITION ENCODER AND SERVO AMPLIFLER INTERFACE
+5 V

1'f

1

7 LATAMI?

V
yoltall_

'1
+12 V

11

11

.lid!:... of

lOk

reference

14

L.--. LGTAMP

L- LATAMP

V ref !""4l----------!
10

[DAC1208LCD)

+5

+12 V...
r
I,,,, ..
:-12 V
1,,,
'17.

30. -r--+

!Ob

R/W

24 11

Vc c Rfb
23 __

- - - - - i Byt e l / B yt e2,
R/W ,r;.!1.7.;..;. ,2 -1- loutl 1 !

I

D C2 3 ~,---"""'!4
D 12........_--...:.f
D 22!S. ' -'-1

D3u.I_---~

D 423b ..'--_......:i!.t

D =2"!I r-'---~~
D E2!Sb Ir----~4

D 721ib~,---...t..l4
D E1lla '"- ~

I
D g20.-----=~

D121_---:II.L,l
D1122__--""""""4

,
D 023 .:,..1 ~

D 12.. :l-----~
D 22S.~ ...:..t

r ,
D32'.'"- ~

D 423b~I __=:.t

D :2 .. b ...' - __--:l!..J

D E2 !Sb'i-----LI'"
D 7Ubj-1---~~

D ElII· =-:--_..:.::~

D S2 O. '-I----*-I...
Dl21.....---~,
Dl122------:~,

r_____ 1

G64 BUS

Figure 1.5: Digital to Analog Converter Interface to Servo Amplifiers



Appendix J

Analog-tc-Digital, Radio and

FPP Interface

J.l Analog-ta-Digital interface design

J.1.1 Hardware design

Figure J.1 shows the AD574AJD 12 bit analog-tc-digital converter(ADC) from

Analog Devices Inc, and its interfacing to the G64 bus, Its peripheral address

is $8000FO (where the $ sign implies a hexadecimal number). Up to 8 analog

signals with magnitudes between ±10V can be muliplexed (by the multiplexer

at address $8000EO) and connected to the sample-and-hold device at peripheral

address $8000DO.

J.1.2 Software for controlling the ADe interface

To read and digitize one analog input channel, the microprocessor executes the

following commands:

1. writes the code for the analog channel to be discretized to the multiplexer

address $8000EO. A binary number of 000 on the data bus will correspond to

191
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the first analog lnput which is the lateral accelerometer signal. The binary

number 001 corresponds to the second analog input which is the longitudinal

accelerometer signal.

2. executes a software wait state for 1.SJLs to allow the analog switches in the

multiplexers to complete the switching process.

3. writes a '1' on data bus bit 0 to address $SOOODO to start the sampling process

of the LF39SA sample and hold device.

4. enters a software wait state for 25JLs which is the required acquisitlon time

for the LF39SA to reach within 0.1% of its steady state value,

5. writes a '0' to $SOOODO to place the sampie and hold device into hold mode.

6. writes any number to the ADC address at $SOOOFO to start the analog to

digital conversion,

7. enters a software wait state for 35JLS for the ADC to complete the conversion.

S. reads the digitized value of the analog input.

9. repeats steps (1) through (S) to read the other analog input signals.

The FORTH program code to implement this algorithm is shown in section J.1.4

J.1.3 Binary values of the analog input voltage

The 12 output data lines of the ADC are connected to the 12 least significant

bits (LSB) of the microprocessor bus. The 4 most significant bits (MSB) of the

databus are masked out in software, because they are meaningless. Because of

the negative logic of the G-64 databus the value read from the databus should be

subtracted from 4095 to obtain the actual digital output of the ADC.

The ADC null offset is trimmed so that the major carry operation (binary 0111

1111 1111 to 1000 0000 0000 ) should occur at an analog value of t LSB below

analog common i.e. - 1.221mV. The full scale calibration is set so that the last
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transition (from 1111 1111 1110 to 1111 1111 1111) should occur for an analog

value 1~ LSB below the nominal full (9.9963 volts for 10.000 volts full scale).

Fitting a straight line through the above two pairs of coordinates gives the analog

reading:

Ain = 10.00366 - 4.884 X 10-3(4095 - Dbus)

where Dbus is the 12 bit value read on the databus.

J.1.4 FORTH Program to drive the ADe converter

( _1II Analog to Digital ConverterDriver -= )
CR

oBLY FORTH DEFINITIONS

IlEX 800000 CoNST,\IIT LATDACADDR ( Set LAT DAC'. addre•• )

800010 CoNSTAHT LGTDACADDR ( Set LGT DAC '. addreee )

800020 CoNSTAHT LATENCADDR (Set LAT" Encoder'. addre•• )

800030 CONSTAHT LGTENCADDR (Set LGT Encoder'. addre•• )

800000 CoNSTAHT StHADDR

8000EO CoNSTAHT KUXADDR

BOOOFO CONSTAHT ADCADDR

o CONSTAHT LATACCKUX

1 CoRSTAHT LGTACCKUX

CR

DECIHAL

( SampIe t Hold'. addre•• )

( MultiplexerJs address )

( Analog-to-Digital Converter's addresB )

( MUXCode for Lateral Accelerometer )

( MUXCode for Longitudinal Accelerometer )

• ( Loading LATDAC "ord ccde) CR

LATDAC 10000 SllAP - 2048 * 10000 / ( get 12 bit equiv. for output to DAC )

LATDACADDR V! ; ( vrite 16 bit "ord to DAC1 )
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lIAIT411 ( 11 - ) (sill 1/AIT tor n*4 microssconds )

o lXl LOOP ;

•( Loading MUXS1/ITCH word code ) CR

: MUXSWITCH (channel# - ) ( Blilitches KUX to specified input channel )

IlUXADOR 1/!

1 VAIT4N j (vaits 4 microsec. for MUX to settle )

.e Loading SAllPLEtHOLD word cods ) CR

SAIIPLEtHOLO (-) ( SAIlPLE and HOLO command )

1 StHADOR 1/! (sample analog signal )

7 VAIT4N ( vaits 28 microsec. ~or SiH to settle )

o StHADDR 1/1 ; ( placs StH device in HOLD mode )

· ( Loading AD_COIlVERTER word code ) CR

AD_COIlVERTER ( - DigitizedValue ) ( 00 Analog to Digital Conversion )

1 ADCAODR 1/! ( Starts A to D Converter )

9 lIAIT411 ( 1/aite 36 microsec. tor ADC titnish )

ADeADDR 1/1 ; ( Reads the digital reeult trom the ADe )

• ( Loading AtoD_COIlVERT word code ) CR

: AtoD_COIiVERT ( channel# - DigitizedValue )

MUXSVITCH ( Complete process for an AtoD Conversion )

SAIlPLEtHOLO

AO_COIiVERTER

•( Loading RLATACC word code ) CR

: RLATACC ( - LatAcc_Volt ) ( Conv. Analog Volt. trom Lateral Accelerometer)

10003660 4884 4095

LATACCIIUX AtoD_COIlVERT

- * - 1000 I . ; ( Output in millivolts )

.( Loading RLGTACC word code) CR
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: RLGTACC ( - LgtAcc_Vol~ ) ( Conv. Analog Vol~. trom Longi~. Accelerome~.r)

10003660 4884 4096

LGTACCMUX A~oD_CDHVERT

- * - 1000 / . j ( Output in millivolts )

J.2 Radio receiver interface design

J.2.1 Hardware design

The radio receiver emits pulse width modulated (PWM) signals in response to

the radio slgnals received from the radio transmitter. The pulses for each radio

channel are repeated every 17.4 ms and has a low voltage of OV and a highvoltage

of 4V. The pulse width is 0.82 ms for a maximum negative stick input and 1.72

ms for a maximum positive stick input.

Figure J.2 shows how the 8254 programmable interval timer (PIT) is used to count

the number of timer clock pulses during the high level of the PWM signal. The

timer interface clock is 4 MHz, half of the microprocessor dock frequency. The

count for the maximum positive stick input will therefore be 7280 while the min­

imum count for full negative stick will be 3280 counts,

The PIT has 3 independently programmable 16 bit counters. The PWM output

from channel1 of the radio receiver ls connected to the gate of counter 1 at address

$800082. The PWM output of channel 2 is connected to counter 2 at $800084.

J.2.2 Software interface

Counters are programmed by writing a control word to address $800086. Coun­

ters 1 and 2 are programmed to operate in Mode 0, by sequentially writing the

I
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bytes $70 and $BO to the control word upon system initialization. Because of the

negative databus logic, the ones complement of these values is actually written

out by the microprocessor, namely $8F and $4F.

As shown in Figure J.2, the falling edge of the second radio channel pulse is used

to generate an interrupt request (IRQ) to the microprocessor,

The interrupt service routine then reads the two count values in the P.LT. and

saves these in the variables for the lateral and longitudinal input commands. The

counters are then re-initialized to zero before the interrupt request flip-flop on the

P.LT. interface card is reset to receive the new radio commands about 17 ms later.

A listing of the software code that drives the radio receiver interface is listed in

the next seetion. The interrupt service routine, RADIO-READ, was ·written in

Motorola 68000 assembler code to maximize the speed of the interrupt service

routine.

J.2.3 Program to drive the radio receiver interface

( =:1= Radio Receiver Interface Driver =ZlI)

CR

ONLY FORTH OEFINITIONS

ALSO ASSElIBLER

VARIABLE LATP1/II

VARIABLE LGTP1/II

HEX

800080 CONSTANT RCCOUNTERO ( Radio Receiver Interface )

800082 CONSTANT RCCOUNTER1 ( Counter Adresses )
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800084 CDHSTANT RCCDUHTER2

800086 CDHSTANT RCCDHTROLVORD ( Counter Controlvord addre.. )

800090 CDHSTANT RCTRIGGER ( Trigger addre•• to RESET IRQ flip-flop )

68 CDHSTAHT LEVEL2_IRQ ( Leve12 Autovector Addre.. )

DECIIlAL

CDDE RADIO_READ ( Reade Radio Receiver Channel. upon IRQ )

MOVE.L DO.-(A7) ( saves contents of DO on stack)

KDVE.B #$21.RCCDHTROLVORD ( Latche. oll count. )

KDVE. V RCCDUHTER1,DO ( Reade LSB of Counter1 )

KDVE.B CO.LATPVK ( Save temporaly )

KDVE. V RCCDUHTER1,DO ( Reade KSB of Counter1 )

LSL.V #8,DO

KDVE.B LATPVK,DO ( Get LSB )

KDVE.V CO.LATPVK ( Save )

KDVE. V RCCDUHTER2, DO ( Reade LSB of Counter2 )

KDVE.B CO ,LGTPVK ( Save temporaly )

MDVE.V RCCDUHTER2,DO ( Reade KSB of Counter2 )

LSL.V #8,DO

MDVE. B LGTPVK, DO ( Get LSB )

MDVE. V CO, LGTPVK ( Save )

KDVE.B #$8F,RCCDHTRDLVDRD ( Revrite. Cntrlvord to 1 )

MDVE.B .#O,RCCDUHTER1 ( Vrite LSB of initial count.r1 )

MOVE.B #O.RCCOUHTERl '( \lrite MSB of initial counter! )

197
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1I0VE.B #$4F.RCCONTROLlIORD ( Revritee Cntrlvord to 2 )

1I0VE. B #0. RCCOUNTER2 ( lIrite LSB of initial counter2 )

1I0VE.B #O,RCCOUNTER2 ( lIrite IISB of initial counter2 )

1I0VE.B #l,RCTRIGGER ( Reset IRQ flip-flop on Radio Int )

1I0VE.L (A7)+,DO ( Restorss original value of DO )

RTE ( Return tram exception routine )

END-CODE

CR

.e Loading RADIO_IRIT code to Initialize R!Control Interface I: InteITUpt )

CR

RADIO_IHIT ( Initialize Radio Contral Interface I; Interrupt )

[.] RADIO_READ ( Initializs Radio Receiver)

LEVEL2_IRQ ! ( Level 2 Autovector )

BINARY

10001111 RCCONTRDLlIORD Cl ( Set Counters 1,2 )

01001111 RCCONTRDLlIORD C! ( for IIode 0 )

1 RCTRIGGER C! (Resst IRQ flip-flop cn Radio Intf )

DECIIlAL

: lIAGnBIETJIE ( lIait a vhile )

10000 0 DO 1000 1000 • DRDP LaOP
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CR

,e Loading RCSHOW code to shov R/e Reading on Terminal Screen)

CR

: RCSH01/ (Sha.. RIC Reading on Terminal Screen )

BEGIH

LATP1/H 1/1 5164 - CR 20 SPACES

5178 LGTP1/H 1/1 - 10 SPACES

1/AGnKIETJIE 7TERllINAL

UHTIL ;

J.3 Floating point processor (FPP) interface

199

The Motorola MC68881 floating point coprocessor interface to the G-64 bus and

MC68000 CPU is shown in Figure J .4.

The address decoding locates the base address for the FPP at $20 000 in memory.

The Mach 2 FORTH Software contains a special floating point instruction set to

utilize the floating point processor.

The component layout far interface card described in tbis appendix is shown in

Figure J.5.

J.4 Electrical and electronic wiring diagram

Figure J.6 shows schematically how the electrical and electronic elements on the

unicycle robot are interconnected.
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Appendix K

Gear Ratio for Maximum

Wheel Acceleration

K.l Introduction

The unicycle wheel is driven by a direct current motor mounted on the frame. A

gear and belt drive system is used to increase the motor torque. If the frame is

falling forward or backward away from vertical, it will be advantageous to apply

maximum acceleration of the wheel to reposition the wheel axle directly below

the frame's center of mass. This appendix will show how the optimal gear ratio is

calculated to allow maxiraum acceleration of the wheel.

K.2 Optimal gear ratio for wheel drive system

A schematic diagram of the wheel drive system is shown in Figure K.l.

The gear drive system has the constraint equation:

w = n(f! -8)

206

(K.1)
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Assuming no slip at the ground contact point of the wheel, the second constraint

equation is:

(K.2)

The rotational and translational kinetic energy elements of the system are:

Wheel:

TJr = ~1r'n2
2

Ti!' 1 .2
= -mwz

2

(K.3)

(K.4)

Frame:

(K.5)

(K.6)

Motor rotor:

The potential energy of the system is:

v = mFrFgcos8

The Lagrangian is then:

L = Ttot - Vtot

= ~[1r'n2 +mw±2 +1[9 +mF(± +rF9)2

+ 1f(w +9)2] - mFrFg cos8

Let the derivatives of the generalized coordinates of the system be:

(K.7)

(K.8)

(K.9)

ql =n /iI =n
q2 =z q2 =±

=9
(K.10)

qa =8 qa

q4 =w q4 =w
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The two nonholonomic constraint equations K.1 and K.2 are augmented to La­

grange's equation to give:

d(81) 81 2
dt 7P - 8( .) = ?=>'jaji +Qiq, q, 3=1

(K.ll)

(for i = 1,2, 3,4)

where Qi is a generalized force. Friction forces will be neglected for the purposes

of this derivation,
8<p'

aji == 8(q:)

(for j = 1,2)

where <Pj are the constraint equations of the system.

<PI =w+n(9-n) = 0

<P2 =:i: - rwn = 0

Rewritten in differential form:

l.dw +n(dlJ - dU) = 0

l.dx - rwdU = 0

We can readily identify the aji coefficients:

an =-n a12 =0 a13 =n aB =1

a21 =rw a22 =1 a23 =0 a24 =0

Apply 1agrange's equations for each generalized coordinate:

2. q2 = x:

(K.12)

(K.13)

(K.14)

(K.15)

(K.16)

(K.17)

(K.18)

(K.19)
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3. q3 = IJ:

209

where QR is the motor rotor torque.

(K.21)

Eliminate the two Lagrange multipliers to yield the two dynamic equations of

motion for the system:

[Ir +mFrF(rw +rF) +If]Ö + [mwrw +mF(rw + rF)]ii

+ Ifw+ Irn - mFTF9 sin IJ = -QR

Use the constraint equations to eliminate the wand x variables:

(K.22)

(K.23)

(K.24)

(K.25)

Subtract equation K.25 from K.24

[Ir +mFr} +(n - 1)2If]11 + [n(l - n)If +mFTFTw]!1

= mFTF9 sin IJ - (n + 1)QR (K.26)
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Notice that equation K.25 and K.26 compare weIl to the longitudinal dynamte

equations of motion if the reflected rotor moments of inertia are taken into ac­

count.

Now proceed to calculate the optimal gear ratio for maximum wheel acceleration:

Eliminate ii between equation K.25 and K.26:

Define:

A = n(l - n )1:-+mFrFrW (K.27)

B = Ir'+n2I: +(mw +mFHv (K.28)

C = Ir +mFr} +(n _1)21:- (K.29)

D = mFrF9 sin 8 (K.30)

n= [n(C+A)+A]QR-AD
BC-A2

(K.31)

We want the maximum wheel acceleration as a function of the gear ratio, n and

since the frame will be nominally vertical, 8 = 0 and therefore D=O.

We can set:

dn = s. [n(c +A) +A] QR = 0
dn dn BC+A2

and solve for the optimal gear ratio nopt analytically.

(K.32)

The gear ratio used in the mechanical design may not necessarily be exactly the

same as the optimal gear ratio calculated above. It is therefore more useful to use

equation K.31 to plot the curve of tR as a funetion of the gear ratio, n, in order

to see the effect of nonoptimal gear ratlos used in practice.
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Equations K.28 through K.30 can be readily extended to include the mass and

inertia properties of the turntable on top of the frame:

Ä =
lJ =
C =

n(l - n)Ir + (mFrF + mTrT )rw

lf +n2Ir+(mw+ mF+mT)?w

Ir +mFr} +IJ +mTr} + (n - 1)2Ir

The measured mechanical parameters for the unicycle from Appendix M and the

CTRL-C program lgtnopt.ctr is used to generate the curve of Figure K.2.
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. ....
x = forward

velocity"

e

mass = mF
moment of inertia
"about; center of mass =

mass = negligible
R

inertia = I 2
ffi= rotor angular velocity

relative to the frame

drive belt:

ratio = n:l

........1---- WHEEL ;

mas s = mw
W

inertia = I
2

n = wheel rotational
speed in inertial
reference frame

no slip at ground contact point

Figure K.1: Wheel Drive System
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WHEEL ACCELERATI0N VS. GEAR RATI0
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Appendix L

U nicycle Mechanical Design

L.1 Introduction

One of the goals of this research is to compare the performance of a computer

stabilized one wheeled robot to that of a person riding a unicycle. The mechanical

design of the unicycle should therefore approximately emulate a human riding a

unicycle.

A person uses four major motions to balance on a unicycle. The longitudinal

stabilization is largely obtained through the torques exerted on the pedals of the

wheel and to a lesser extent by the forward backward leaning motion of the rider's

torso, The simplified mechanical robot emulates the pedal control action only by

a direct current motor driving the wheel through a reduction gear system. Lat­

eral stabilization is obtained through sideways leaning of the rider's body and by

twisting his torso with the arms partially extended. During the twisting action,

the rider uses the inertia of the upper part of his body to rapidly steer the wheel

of the unicycle into the direction into which the unicycle is failing. In this way the

lateral component of the ground reaction force on the wheel is used to upright the

falling unicycle. It was shown in Appendix F that the twisting motion is much

more effective than the sideways leaning motion for lateral stabilization of the

214
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unicyc1e. The rotary battery pack on top of the unicyc1erobot is used to simulate

the twisting motion of a human rider's torso. It should be noted that although

the battery pack is designed to allow full 360 degree rotations, it will not be used

as a control moment gyro for stabilizing the unicyc1e.

The mass, inertias and length dimensions of the unicyc1e robot were selected to

be similar to those of a teenage child riding an actual unicyc1e. This will enable

interesting comparisons between the computer stabilized and human stabilized

unicyc1es without the need of scaling the time constants of the dynamic system.

The unicycle robot consists of three major parts:

1. The wheel drive system (Figure L.1)

2. Frame and electronics system: This is the middle section of the robot and

consists of a frame which connects the wheel drive system to the turntable

drive system. The on board microprocessor, servo amplifiers and other elec­

tronic components are mounted to the frame.

3. The turntable drive system (Figure L.2)

All of the more complex parts of the unicyc1e robot were manufactured out of

Aluminum (Al 6061 - T6) using a numerically coded milling machine.

Full scale drawings prepared on the Hewlett-Packard "HPDRAFT" system are

available on floppy disc at the Computer Aided Desigh Facility of the Design

Division, Department of Mechanical Engineering, Stanford University. The Pascal

code for programming the MATSUURA milling machine is also available at the

same facility.
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L.2 Effect of center of mass height

Here, we simplify the unicycle model to consist of a wheel and a frame only. We

neglect fricton effects and assume that a direct drive torque motor has its rotor

on the wheel axle and its stator connected to the frame.

The longitudinal system dynamic equations can be obtalned from equations N.1

and N.2 by letting f[ = mT = rr = fw = O. We will be investigating the control

torque required to cause a constant wheel acceleration. Since we are interested in

performance near the state where the frame is stabilized vertically, () can also be

set equal to zero in equation N.l.

Eliminate ii:

Qw
n

F 2 .. .
(12 +mFrF)() +mFrFrwn = -Qw

mFrFrwii + [Ir + (mw +mF)r?vJn = Qw

[If +mFr}][Ir + (mw +mF)r?vl- (mFrFrw)2
=

If +mFrF(rw + rF)

If[Ir + (mw +mF)r?vJ + [Ir +mwr?v]mFr}=
mFr} +mFrWrF +If

(L.1)

(1.2)

(L.3)

The expression on the right hand side can be viewed as the effective inertia that

has to be accelerated by the wheel torque motor.

Figure L.3 shows how the effective moment of inertia decreases as the center of

mass of the frame is placed at increasing heights above the wheel axle.

Letting rF = 0 in equation L.3 gives the maximum effective inertia, which is the

case where the frame center of mass is at the height of the wheel axle:

(L.4)
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Letting rr -+ 00 the minimum effective inertia is obtained:

Imin = Ir' +mwr?v

217

(L.5)

I
I

It is therefore concluded that the mechanical design should place the center of mass

of the frame as high above the wheel axle as possible for ease of stabilization, The

side support frames of the wheel drive system were manufactured on a numerical

milling machine and lightened out to leave a rib structure with minimal weight

around the lower sections. The heavy drive motors were mounted as high on the

structure as was practical. The turntable drive system which contains the lead-acid

batteries is mounted at the top of the robot. Although the frame structural design

was made as light as possible, it was designed strong enough so that structural

flexibilityeffects need not be a consideration during the control system design.

L.3 Design of the gear drive systems

Aprecision cable and polyurethane chain drive system from BERG Inc. was se­

lected for the gear drive systems. These chain and sprocket components require

no lubrication and have small backlash effects at reasonable cost. It also facilitates

gear ratio adjustment at any stage of the unicycle robots life cycle without the

need for mechanical redesign.

Bearings are supplied on gear shafts to reduce friction. The bearings are mounted

in bearing blocks whose positions can be adjusted. In this way the drive belt

tensions can be adjusted to minimize backlash in the drive systems.

Appendices G and K show that optimal gear ratlos can be selected for the wheel

drive and turntable drive systems. The optimal turntable gear ratio is selected

to yield maximum yaw acceleration of the frame, since this is the action that will

be utilized to stabilize the unicycle laterally. The wheel gear ratio is selected to
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yield maximum wheel acceleration about its axle, since this is how longitudinal

instability will be controlled.

For the mechanical parameters measured and shown in Appendix M, a practical

gear ratio for the wheel drive system is 24 : 1 and 60 : 1 for the turntable drive

system.
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Appendix M

Mechanical Parameter

.Measurements

M.l Inertia measurement method

The moments of inertia of the wheel, frame and turntable about their mass cen­

ters were measured by means of the trifilar pendulum method. Since the objects

are relatively symmetrie, the cross products of inertia were assumed to be negligi­

bly smaJI and the three principal moments of inertia were determined for each part.

The equation relating oscillation period ofthe pendulum to the moment ofinertia

of the object is derived below. For practieal reasons we used a trifilar pendulum

to perform the experiments, but we will derive the equations for a bifilar pendu­

lum for simplicity, since the results are the same. The oscillation amplitude of

the pendulum is kept smaJI enough to validate smaJI angle approximations for the

angles 8 and '"Y shown in Figure M.l.

Vertieal force balance:

2T cos '"Y ~ 2T = mg

222

(M.I)

I



where r is the period of the oscillation. With the mass of the object and the local

gravity constant known, as well as the two lengths I and r, the moment of inertia

The solution of this differential equation is a sinusiodal function with an oscillation

frequency of:

I

I
I

M.2. CENTER OF MASS MEASUREMENT METHOD

Torque balance:

- 2Tr sln-r ~ -2Tr, = 19

From geometry:
.. 1

rlJ~ l{ ~ IJ ~ -1'
r

From equation M.l to M.3
2.. + mgr 0, --I =

Il

W
n

=Jmgr
2 = 211"

. Il r

is :

9 ( r )21=-- mr2
. I 211" _.

M.2 Center of mass measurement method
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(M.2)

(M.3)

(MA)

(M.5)

(M.6)

The center of mass for each object was determined by finding the locations where

each object would balance when placed on a narrow beam.

M.3 Friction measurements

M.3.1 Longitudinal system friction coeffients

The friction in the drive chains and at the contact point between the wheel and

the ground are nonlinear functions of the rotational speeds. For simplicity it is

assumed that the wheel drive system consists of a Coulomb friction and a viscous

friction component. An approximate value for the viscous friction was obtained

by closing a velocity feedback loop by means of the tachometer mounted on the
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whee1 drive motor and commanding various constant speeds in the vicinity of the

nominal wheel speed. The average torque over 100 samples was ca1culated for

each speed, A linear regression of these data points with the torque values on the

abscissa and the whee1 speeds on the ordinate yields a straight line whose slope

gives the viscous friction. The value is recorded in the table of the next section.

The Coulomb friction in the whee1 drive system was determined by swinging the

upside down unicycle with the whee1 rigidly damped to a suspended beam. It can

be shown that the envelope of a free oscillation decays linearily for a system with

Coulomb friction only:

From equation N.1 and the upside down unicycle and no applied torque:

109=- Jw8 - mglO - Jesgn(8)

where:

1e - coulomb friction measured in N - m

Since Je ::> fw8 equation M.7 can be simplifiedto

x . mgl Je . Je
9+ -0 = --sgn(O) = ±-

10 10 10

Laplace transform.

(M.7)

(M.8)

(M.9)

(M.lO)

2 • mgl Je 1 ()s e - sOo - 00 +-0 = ±- . - M.ll
10 los

where 90 and 80 is the initial angle and velocity of the free oscillation. The exper­

iment will be performed with 80 =0 and 00 # o.

\

(M.12)



In the present unicycle configuration where we actually measure 8(t), equation M.14

can be differentiated to yield

The amplitude of above time response decays linearily with~ during every com­

lete sinusoidal cycle which provides a means of obtaining the Coulomb friction,

fe, from experimental data,I
[

I
I

M.3. FRICTION MEASUREMENTS

where
2 mgl

Wn = - -
I o

The inverse Laplace transform of equation M.12 yields

8(t) = (± ~;l -00 ) W n sin w n t

In this case tbe amplitude of the 8(t) response decays with

. 4fe
t!..0 = -- 'Wn

mgl

during each cycle.
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(M.13)

(M.14)

(M.15)

(M.16)

Notice that the undamped natural frequency W n can also be determined from the

experimental data since the period of the oscillation is

1 I o
T= -=--

W n mgl
(M.17)

Figure M.2 shows a plot of the experimental data. By means of equation M.16

above, it is calculated that the Coulomb friction for the wheel drive system is

fe = 1.84 N - m

and the undamped natural frequency is

(M.18)

I

W n = 3.63

= 0.58

rad/sec

hz (M.19)
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M.3.2 Lateral system friction measurements

The turntable friction is measured by closing a velocity feedback loop on the

turntable speed. The position encoder mounted on the turntable drive motor

shaft is used to obtain the speed of the turntable relative to the frame, Various

constant speeds areund zero are commanded while the frame is constrained in

movement and the average torque over 100 samples is calculated, When these

data points are plotted with the wheelspeeds on the ordinate and a straight Une

is fitted through these data points, the slope of this Une yields the viscous friction

and the intercept with the verticalaxis gives the Coulomb friction present in the

turntable drive system.

The friction between the ground and the rubber tire is not only very nonlinear,

but also varies with the type of the terrain that the unicycle is traverslag. An

estimation of the ground friction during yaw motions was obtained by a similar

procedure as described above, but in this case the turntable instead of the frame

was constrained from turning.
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M.4. MEASURED MECHANICAL PARAMETERS

M.4 Measured mechanical parameters

Wheel:

mw = 2.109 kg

rw = 0.195 rn

227

I
L

Ir' = Ir = 0.01888 kg - m 2 0 10
01 06

,
'I

Ir = 0.03716 kg - m 2

,

I
11

I
\I

fw = 0.047 N-rn per rls O.l/,h

Ia = 0.0245 N-m per s]«

Frame:

mF = 23.18 kg

rr = 0.451 m 0,465 t-,\

Ir = 1.3514kg - m 2

Ir = 1.5121 kg - m2

If = 0.3635 kg - m2 D,l;:l4-' \~.M~ o,"O~"
"
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Turntable:

mT = 24.09 kg

rT = 0.797 m

I
I
I

I

Ir = I[ =0.2928 kg - m 2

Il = 0.5028 kg - m2

!T = 0.0786 N-m per rls

0,26;;11>

0, ~S9"1 .

J,
I'

,..:f:T ~.':J
'1-'-"

T,'

I

Lateral accelerometer height above wheel axle:

rS3 = 0.186 m

Longitudinal accelerometer height above wheel axle:

rR3 = 0.635 m

M.5 D.C.motor and gear drive system parameters

Longitudinal System:

Motor Rotor Inertia:

Ir= 4.52 x 10-4 kg - m2
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I
[

[

[

I

M.5. D.C.MOTOR AND GEAR DRIVE SYSTEM PARAMETERS

Motor Torque Constant:

KfPT = 6.3 X 10-2 N - m JA

Lateral System:

Motor Rotor Inertia:

Ir= 4.377 X 10-5 kg - m 2

Motor Torque Constant:

K~AT = 3.3 X 10-2 N - m JA

229
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Figure M.l: Schematic Diagram of a Bifilar Pendulum for Measuring the Moment of
Inertia of an Object
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Appendix N

Continuous Time Longitudinal

Control System

N.l Longitudinal equations of motion

The longitudinal equations of motion ean be found from derivations in Appen­

dices A, Band C. The folIowing assumptions are made to deeouple these equa­

tions from the lateral system dynamic equations:

1. The nominal tumtable angular rotation speed 1]0 = O.

2. The unieycle frame is symmetrie about a lengthwise eenterline. This implies

that Tl = T2 = O.

With these assumptions, the longitudinal dynamie equations of motion from equa­

tions A.94 and A.95 simplify to:

F 2 T 2 .. .
[12 +mFTF +12 +mTTT]1I + (mFTF+mTTT)Twn

= fw(no+n- ti) + (mFTF+mTTT)gll- Qw

.. W 2 •
[mTTT +mFTF]Twll+[12 +(mw +mF +mT)Tw]n

= fw(ti - no - n)+ Qw

232

(N.!)

(N.2)

J
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i

{

.1

The derivations in Appendix A asstime that the whee1 is driven by a torque Qw

applied directly to the axle, The robot that was constructed uses a gear drive

'. system to drive the wheeL The inertia of the d.c, motor should be refl.ected to the

whee1 as indicated by the dynamic equations K.25 a.nd K.26 for the geared drive

system for the wheeL The modified dynamic equations of motion that inc1ude the

finite motor rotor inertia If are:

[Ir +mFrj,.+I[ +mT;t
l+(n - 1)2If]i} [(mFTF +m~~)T;+n(n -l)I21]~~)

c:»

- fw(n o+@)-@) + (mFTF +mTTT)!iW- Qw (No3)

(NA)

The constant wheelspeed term, f!o, does not a:ffect the longitudinal system dy­

namics other than causing aconstant torque loss due to frietion. In practice these

frietion losses will be compensated for by increaslng the commanded torque to the

drive motors by the required constant value. no is therefore ignored in the design

of the longitudinal feedback control system.

Rewriting these equations into state space representation, they become:

[ J"
112

121 122

0 0

Where:

(N.6)

(N;7)

(N.S)

(N.9)
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Multiplication of equation N.5 by the inverse of the first matrix containing the

inertia terms, yields the standard state space form of the system of dynamic equa­

tions:

x=Fx+Gu

where u = Qw and x = [9, n, IIjT.

N.2 Longitudinal sensors

A tachometer and an accelerometer are used as the longitudinal sensors.

(N.I0)

I. The tachometer is mounted directly on the rotor shaft of the wheel drive motor. It

is actually a digital position encoder, but angular velocity information is extracted

from this sensor by means ofthe electronic circuitry described in Appendix 1. lfit

is assumed that the wheel gear drive system has negligible elasticity and backlash,

the tachometer on the motor shaft reads:

WLGT = nLGT(nO+n -9) (N.ll)

where ~~T is the known wheel drive system gear ratio, no is the constant nominal

wheel speed and is typically much larger than the wheel perturbation velocity n
and the frame pitch rate 9. Since no is known, a measurement consisting of a

combination of the two states n and 9can be reconstructed in the microprocessor

software:

Yt=n-9 (N.12)

~. The accelerometer design is described in Appendix H. It is mounted on the uni­

cycle frame, with its acceleration sensitive axis in the direction of the forward

motion of the unicycle. With the accelerometer mounted at a height Tm above

the wheel axle, it measures a combination of the acceleration due to the pitch of

the frame and the forward acceleration of the wheel of the unicycle. As shown in
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Figure N.1, the signal measured by the accelerometer is proportional to the servo

pendulum control torque:

Qp(LGT) = k.[g/l- (TWl1 +TRaB)] (N.13)

The pitch acceleration of the frame and the wheel acceleration are from equa­

tion N.5:

B= Fu 9+ F12n + F13/1 + GIQw

l1 = F2I9+ F22n + F23/1 + G2Qw

(N.14)

(N.15)

By scaling in the microprocessor software and by using equations N.14 and N.15,

the accelerometer measurement can be rewritten in terms of the states and control

input:

v. = g/l- TWl1 - TRaB

= -(TRaFu +TwF21 )9 - (TRaFI2+TW F22)n

+ (g - TRaFI3- TwF23)/I - (TR3GI +rwG2)QW

N.3 Longitudinal system characteristics

(N.16)

The CTRL-C program 'lgtchar.ctr' is used to calculate the longitudinal system

characteristics.

The results presented in section N.3.1 show the state transition matrix and the

Input and output matrices for the system with measured mechanical parameters

as listed in Appendix M. The eigenvalues calculated show a pair of poles on the

real axis on either side of the imaginary axis, These are due to the pitch instabil­

ity of the frame of the unicyc1e. The third pole is the rigid body mode which is

slightly shifted from the origin due to the wheel friction.
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The controllability matrix (marked eTR in the print-out) shows that all three

modes are controllable with the wheel torque, Qw. All modes are also observable

from the tachometer and accelerometer measurements. The residue matrix shows

how much of each mode is present in the tachometer and accelerometer measure­

ments.

The program also calculates open-loop transfer functions as shown below, A

frequency response (Figure N.2) of the transfer function from the wheel torque

to the pitch angle, shows that the open-loop bandwidth ofthe longitudinal system

is approximately 0.75 Hz.

N.3.1 Longit. system characteristics calculation

UCYC6/LGTCHAR.CTR

LONGITUDINAL SYSTEII CHARACTERISTICS

*********.**************************

LONGITUDINAL STATES THETA. DOT;- OMEGA; THETA

CONTROL INPUT VHEEL HOTOR TORQUE (QV)

MEASUREIIENTS TACHOMETER; ACCELEROMETER

UNITS METERS, RADIANS, SECONDS

RR3 =

0.6350

FLGT •
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0.1138 -0.1138 -161.2607

-0.0333 0.0333 64.5447

F
1.0000 o. o.

GLGT =

-0.7076
C

2.4216

O.

IILGT =

'J L!

-1. 0000

-0.0011

1.0000

0.0011

O.

4.6700

IlLGT =

o.
J-0.0230

EIGVAL •

-0.0216

7.3232

-7.4486

EIGVEC

0.0000 -0.3620 -0.3592

1.0000 1.0000 1.0000

-0.0006 -0.0494 0.0482

COIlTROLLABIUTY. OBSERVABILITY AIlD RESIDUE MATRICES

cm

0.4597



238 APPENDIX N. CONTINUOUS TIME LONGITUDINAL CONTROL SYSTEM

0.9659

0.9961

DES =

1.0000 1.3620 1.3592

-0.0018 -0.2294 0.2267

RESIOU =

0.4597 1. 3156 1.3539

-0.0008 -0.2216 0.2258

TRANSFER FUNCTION FROII WllEEL DRIVE TORQUE TC TACHOIlETER IIEASUREIIENT

GAIN

3.1291

2E1lOS

2.8309

-2.8309

POLES =

-7.4486

7.3232

-0.0216

TRANSFER FUNCTIOII FROII I/IIEEL DRIVE TORQUE TC ACCELEROIlETER IlEASUREIIEIIT

GAIN •

-0.0230

ZEROS =



I
I

I
I
I

N.3. LONGITUDINAL SYSTEM CHARACTERISTICS

-0.0000 + 9.4457i

-0.0000 - 9.4457i

0.0000 + O. i

POLES

-7.4486

7.3232

-0.0216

N.3.2 Experimental confirmation transfer functions
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.Before a control system for the longitudinal stabilization can be designed, experi­

ments should be performed to verify that the actual plant transfer functions cor­

respond to the theoretical model. The unstable longitudinal dynamics are difficult

to identify in an openloop configuration. The unicycle was therefore suspended

upside down with the wheel clamped to a beam, Although this configuration can­

not provide information on the in:fluence of the wheel dynamics in the system, it

can be used to confirm certain parameters of the longitudinal system.

The theoretical model for the upside down unicycle configuration is

where

loB = - fwiJ - fesgn(iJ) - mgl(J +Qw (N.!7)

(N.!8)

Apart from Coulomb friction, fe, the belt and sprocket wheel drive system also

has other nonlinearities like backlash and torque variations due to the imperfect

gear system. A tight velocity feedback loop was therefore closed first to enhance

the system linearity:
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Qw = -kT(iJ - Yc) (N.19)

so that the closed loop system becomes

10Ö = - fwiJ - fcsgn(iJ) - kTiJ - mgl9 +kTYc (N.20)

If the velocity feedback gain is large enough the feedback torque will completely

dominate the plant friction effects, so that the transfer function can be approxi­

mated by

10Ö = -kTiJ - mgl9 + kTYc (N.21)

Henceforth the tachometer speed command, Yc, can be considered as the new

longitudinal system control input. The Laplace transform of this equation gives

0(s) kT
Yc(s) = Ios2 +kTS +mgl

(N.22)

(N.23)[ :] = [~~ ~~] [ : ] + [ ; ] Yc

The state space representation of the continuous time longitudinal system is there­

fore

The accelerometer sensor measures the specific force on the frame at a distance

rR3 from the wheel axle:

Y. = rR3Ö +g9 (N.24)

so that the closed loop system transfer function to accelerometer measurement is

y.(s) kT(rR3s2 +g)
Yc(s) - 10s2+kTS +mgl

(N.25)

The frequency response of this transfer function have the following characteristics

which can be verified experimentally:

- The low frequency gain is W-.
- The high frequency gain is ~.

- The zeros are at W z = ±.j~ so that the plant should have zero gain at this

frequency.
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- The undamped natural frequency of the poles are at wp = ±J!!fI!-. The

relative positions of wp and w. on the frequency axis will be evident from the

phase behavior of the experimental results.

The proportional tachometer feedback compensator was implemented as a digital

control system in the on board microprocessor of the unicycle. A fast sampling

frequency of 100 hz was selected and a computational delay of 1.2 ms between the

sampling instant and the moment the control command is issued, was measured.

(N.26)

= e~8

1 - !.Ls
"" 2_
- 1+ Jfs-

This delay, Td, was included in the plant model by means of a first order Pade
).. 7..~

approximation: \a~>( et w\\"eid.":1 ~L"" \+-.r.. ...~ ...1"

e-~s

Ta include the delay in the state space model, an additional state, Xd, is defined.

Equation N.26 in the time .domain then becomes

Xd - ~(U-Xd)
Td

ü = 2Xd - U (N.27)

The original plant x = Fx +Gü of equation N.23, is therefore modified to include

the transportation delay:

[:.j- [~, ~~ ][:}[~G ] ,

- .
(N.28)

A listing of a CTRL-C program that calculates the discrete time system matri­

ces for equation N.28 as weil as the transfer function from the tachometer speed

input command to the measured accelerometer output is shown in the next section.

Sinusoidal tachometer speed commands were generated in the on board computer

of the unicycle and used to excite the system. The accelerometer output signal was
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recorded and a typical input-output time response is shown in Figure N.3. Notice

that some distortion in the accelerometer slgnal occurs at the instants when the

sign of the acceleration changes. This is probably caused by backlash in the drive

system, which cannot be corrected by feedback since the tachometer is mounted

on the drive motor and not directly to the wheel.

Figure NA shows the theoretical frequency response with the measured data points

indicated with squares. The sharp decrease in the gain between 0.6 and 0.7 hz

conflrms that the transfer function zeros are near the theoreticallocation of 0.63 hz.

The fact that the phase first decreases below zero degrees and then has a positive

discontinuity indicates that the undamped natural frequency of the complex pole

pair is at a lower frequency (theoretically 0.58 hz) than the zeros. The measured

low and high frequency gains are within 2 dB of the expected theoretical values.

The discrepancies between the measured and theoretical frequency responses are

attributed to the following factors:

- The electronic interface used to extract angular velocity information from

the position encoder on the wheel drive motor (Appendix 1) was designed

to provide accurate wheel speed information in the vicinity of the nominal

wheel speed of3 rad/sec. In the frequency response identification experiments

with the wheel clamped to the suspending beam, the maximum value of the

sinusoidal speed command was only 0.05 rad/sec so that the resolution of the

velocity information available to the controller, is suboptimal.

- Characteristics of the belt drive system like backlash and elasticity have been

ignored in the linear theoretical model. Although it is assumed that the

control torque dominates the friction effects in the drive system, it is rea­

sonable to expect that at low speeds, frictional characteristics can be worse

and include stiction effects when the speed becomes zero at the apexes of the

pendnlum swings.

In spite of these reservations, satisfactory agreement between the experimental

\

I \
I

I

I

I

I
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data and theoretical predictions has been obtained. The conclusion is drawn that

the theoretical model for the upside down pendulum is acceptable. Since the

unicycle parts with major weights and inertias as weH as the complete wheel drive

system have been included in the experiment, it is assumed that the model for the

vertical unicycle on its wheel is also valid for small pitch motions.

N.3.3 Upside down unicycle transfer functions

ucycid/pend.ctr

LGT UPSIDE DOWN UCYC WITH PADE APPRDX FDR TIIIE DELAY

•••**••••••***** ••••••••••••••••••••••••••***••••••••

LDNGlTUDINAL STATES : THETA.DDT; DIlEGA; TIlETA; XD

CDNTROL INPUT : WHEEL MOTOR TORQUE (Q1/)

IlEASUREMENTS TACHOIlETER; ACCELERDMETER

UNITS METERS. RAOIANS. SECONDS

TSAMPLTACH =

0.0100

TDELAYTACH =

0.0012

•••••• CONTINUOUS TIME SYSTEM MATRICES ••••••

FLGT

1.0d+03 •
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-0.0000 -0.0132 -0.0001

0.0010 O. O.

O. O. -1.7094

GLGT =

1.0d+03 •

0.0000

O.

1. 7094

IILGT •

-1.0000 O. O.

0.0014 -1.4440 O.

IILGT

O.

0.0288

****** DIseRETE TIME SYSTEM: MATRICES ******

PHI

0.9993 -0.1317 -0.0001

0.0100 0.9993 -0.0000

O. O. 0.0000

GA!!

-0.0004

-0.0000

1.0000

•••••• PLAIIT TRANSFER FUIICTIOIIS •••••
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TRAIlSFER FUIICTIOIl FROH VllEEL ORIVE TORQUE TO TACHOMETER MEASUREMEIlT

TACIIZEROS

-0.1325

1.0000

TACI!POLES m

0.0000 + O. i

0.9993 + 0.0363i

0.9993 - 0.0363i

TACHGAIIl =

3.9984d-04

TRAIlSFER FUIICTIOIl FROH VllEEL DRIVE TORQUE TO ACCELEROMETER MEASUREMENT

ACCZEROS =

-0.0000 + O. i

0.9993 + 0.0393i

0.9993 - 0.0393i

ACCPOLES m

0.0000 + O. i

0.9993 + 0.0363i

0.9993 - 0.0363i

ACCGAIIl m

0.0288

•••••• TACHOMETER FEEOBACK LOOP PARAMETERS ( IIlIlER LOOP) ••••••

245
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TACH LOOP PROPORTIONAL FEEDBACX COMPEHSATOR GAIN=XT

XT =

25.0

CLOSED TACHOIlETER LOOP GAIN, ZEROS ANO POLES YACC(S)/TACHCMO(S)

TACHLOOPZE =

0.9993 + 0.03931

0.9993 - 0.03931

-0.0000 + O. 1

TACHLOOPPO =

0.9937 + 0.03581

0.9937 - 0.03581

0.0013 + O. 1

TACHLOOPGA =

0.7190

N.4 Longitudinal control system design

The feedback control system design is perlormed in three steps:

1. Assume that all states are available to the feedback controllsr and design the

optimal feedback gains for a linear quadratic regulator,

2. Design an optimal linear quadratic estimator to estimate all the lateral states

from the tachometer and accelerometer measurements.

3. Discretize the continuous time design so that it can be implemented as a

digital control system in the microprocessor on the unicycle.
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(N.29)

A block diagram of the feedback control system is shown in Figure N.5. xis the

state vector [8 n ey and u is the control input torque, Qw. The measured

output vector, YM, is the tachometer and accelerometer signals. It was decided

that the reference input, r, to the regulator should be a commanded perturbation

of the wheel angular velocity, ne. This will enable increasing and decreasing of

the unicycle forward speed by external commands. The regulator also features

integral error control to provide zero error to step input commands and improved

rejection of constant disturbances on the plant.

N.4.1 Optimal continuous time regulator design

If it is assumed that all the plant states are available to the controller, an optimal

linear quadratic regulator can be designed to minimize the cost function:

J = ~ t" (x T Ax +117Bu)dt
2 Jo

where A and B are diagonal matrices whose diagonal elements are the weights on

the states and control input.

It was decided to introduce feedback of the integral of the error in the wheel

speed. This will ensure good control of the unicycle forward speed and rejection

of constant disturbance inputs on the plant. This introduces an extra state, e,

and from the block diagram in Figure N.5 the closed loop system matrices are:

(N.30)

where H = [ 0 1 0 1for integral error feedback of the wheel speed n.

A CTRL-C program 'lgtlqg.ctr' is used to calculate the optimal feedback gains for

specified weighting matrices A and B. A print-out of the results of the program is
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shownin section N.6.1. The diagonals ofthe weightingmatrices are called ADIAG

and BDIAG in the print-out and the feedback gains are CERR and CLGT for the

integral error and state feedback gains respectively.

For analysis of the closed loop system, equation N.30 can be rewritten as:

(N.31)

(N.32)

If the state weighting matrix places a penalty, a, on the error in the wheel speed

only, and the control, u, is weighted by b = 1, a locus of the closed loop poles as

a funetion of r can be calculated.These closed loop pole locations for values of r
ranging from 0 to 10 000 are plotted in Figure N.6. This is essentially a symmetric

rootlocus plot. The low frequency branches of the Iod approach the location of

the zero and the refiected non minimum phase zero of &as r approaches infinity.

This constitutes an inherent bandwidth limitation for the unicycle longitudinal

closed loop dynamics with a regulator designed by. the technique of minimizing a

linear quadratic cost function.

For practical reasons the value of r should not be too large, because the state feed­

back gains would be so large that signal saturations in the controller may occur. A

choice of r = 30 gives moderate gains and an acceptably fast closed loop response.

Figure N.7 shows the time response of the closed loop system for a step command

to increase the wheel speed by 1 r/s.

The frequency response plot ofFigure N.8 shows that the closed loop longitudinal
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system has a bandwidth of approximately 0.3Hz.

249

N.5 Process and measurement noise models

In order to evaluate the performance of various compensators, a model of the

process and measurement noise is required. The plant model is modified to include

these random disturbance effects:

where:

:i: = Fx+Gu+Gnw

Ym = Mx+v

Ue<I"'''\\U

Z.?_~
w is a random disturbance vector, with.spectral density-,matrix Q

v is a random measurement noise vector, withrsp,ietraloensity matrix R.
._Cj)u.v,~.,(.o

(N.33)

(N.34)

The complete statistical nature of these random noise signals is rarely known in

practice. Since we can usually rely on the inherent band limitation present in

most control systems, it is convenient to assume that w(t) and v(t) are indepen­

dent white noise processes. We now proceed to estimate the ratios of the spectral

densities.

Let

Rt = spectral density of the tachometer measurement noise in units of rad2/s.

Ra = spectral density of the accelerometer measurement noise in units of m2 /83.

From practical experience with the accelerometers and tachometers that were

constructed, the ratio of the measurement spectral densities is estimated as

s, 0.05 d2 2/ 2-= -- ra 8 m
Ra 0.1

(N.35)

The princlpal source of process noise in the plant is the vibrations of the unicycle
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caused by the roughness of the terrain over which the wheel trave1s.

It is assumed that process noise enters the plant with the same input distribution

matrix as the control torque, i.e, Gn = G. In the absence of the exact knowledge

of the statistical nature of the process noise, it is assumed that the spectral density

ofQ is much Iarger than the measurement noise spectral densities. A choice of

-ix,which places the estimator poles in the same s-plane region as the regulator

poles is (see Section N.6.1).

(N.36)

For the numerical simulations in the sections that follow, it will be necessary to

approximate the continuous time purely random gauss-markov processes (with

the spectral densities Q and R given) by discrete time gauss-markov sequences

(with covariance matrices QD and RD). Chapter 11 of reference [Bryson 2] shows

that a good approximation of the continuous randomprocess would be a discrete

gaussian random sequence with a correlation time Tc which is short compared to

the characteristic time constants of the plant, and a covariance (QD) determined

from:

likewise

Rt(t) ~ 2·Tc·RDt

Ra(t) ~ 2·Tc· RDa

(N.37)

(N.38)

(N.39)

The shortest characteristic time in the longitudinal system is about 0.125 sec (

from the inverted pendulumpoles at s 2:: ±8 rad/so A noise corre1ation time of

Tc =0.01 sec is therefore assumed, and taken to be the same for all 3 noise sources,



Figure N.7 shows that the maximum pitch angle during a typical manuever is 1

degree. The maximum acceleration is then (from equation.NAO):

H we assume that the spectral densities of the random noises are reasonably uni­

form from 0 hz to the control bandwidth, we can approximate the noise covariance

by the square of the standard deviation of the signal, eg.

Even though only the ratios of the various spectral densities are considered during

an LQG estimator design, we need to estimate particular values for these quantities

that can be used in time response simulations. From equation N.16 and the actual
lC'4W~>?

vlues of the coeflicients of the states, we see that the accelerometer measurement
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(N.43)

(N.44)

(N.42)

(N.41)

(N.40)Y. e!! g()

0". = 0.01 m]S2

RD. = (.01? = 1 X 10-4 m21s4

Assume that (O".)m.", is approximately 10% of (Y.)m."" then

N.5. PROCESS AND MEASUREMENT NOrSE MODELS
I
I
I
I
I

I
I

I
I
I

From equations N.37 to N.39 the tachometer measurement noise covariance and

standard deviation is

RDt = 5 X 10-5 rad2I S2

O"t = vRDt = 7.07 X 10-3 rad]«

(N.45)

(N.46)

and the process noise covariance and standard deviation is

QD = 1 X 10-3 N2m2

O"p = vQD = 3.16 X 10-2 Nm

(N.47)

(N.48)

The computer langnage CTRL-C has a function that generates a random number

with normal distribution (0 mean and standard deviation of 1.0) every time it is
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called, Simulation of the noise signals will therefore be performed by using a time

step equal to the 0.01 sec correlation time and then scaling the random number

with the square root of the appropriate covariance,

N.6 Optimal continuous time estimator design

A linear quadratic estimator can be designed to estimate all the states of the lon­

gitudinal system from the accelerometer and tachometer measurements, provided

that we have some knowledge of the degree of uncertainty in the measurements

and of the degree of intensity of the random disturbances on the plant. The plant

model is modified to include the random disturbance effects on the plant and

measurements:

x = Fx+Gu+Gnw

Ym = Mx+v

where:

x is the state vector

w is a random disturbance vector

Ym is a vector of the measured quantities

v is a random measurement noise vector.

(N.49)

Assume that w(t) and v( t) are independent white noise processes with spectral

density matrices Q and R, respectively. A Kalman-Bucy filter, [Kalman] with

filter gains L, can then be designed for the optimal estimate of the state vector,

X, given by

:i: = Fox+Gou +L(Ym - Mx) (N.50)

Ideally the plant model used in the estimator would have the same parameters as

the actual plant, i.e. Fo = Fand Go = G.
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The complete statistieal nature of the random plant disturbance vector, w, and

the process noise input matrix, Gn , is rarely known in practiee. By the lack of any

better approximations, the process noise input matrix is assumed to be the same

as the control input matrix, i.e. Gn = G. w is then a scalar white noise process,

whose spectral density, Q, will be selected upon inspection of the symmetrie root

locus of the estimator poles.

The spectral densities of the random noise in the tachometer and accelerometer

measurements can be determined with frequency spectrum analysing instruments.

If we assume that the spectral densities are reasonably uniform from 0 hz to the

control bandwidth, we only need to concern ourselves with the ratio of the two

measurement noise spectral densities during the estimator design.

The paper by Bryson and Hall in [Leondes] give the Euler-Lagrange equations for

the optimal filter problem as:

w = -QG~>'

(N.51)

(N.52)

If we take the Laplace transform of the above three equations, and eliminate x(s)

and >.(s) we obtain the symmetrie rootlocus characteristie equation (SRCE)

where:

Z(s) =Ym(s) =[ Zt(s) ] =M(sI _ F)-lGn
w(s) Z.(s)

(N.53)

(N.54)
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and Zt(s) and Za(s) are the transfer functions from the procesa noise input to

tachometer and acce1erometer measurements respectively.

If the two measurement noise processesare uncorrelated, equation N.53 can be

rewrittenas

If we let Zi(s) = 1j;((:} we can rewrite N.55 as

Rt _ N t ( -s)Nt(s) +1t;Na ( -s)Na(s)
- er D(-s)D(s)

(N.55)

(N.56)

The zeros of the symmetrie root locus equation above are a function of the ra­

tio of the measurement noise spectral densities. They are called the compromize

zeros because they are located somewhere between the zeros of Zt(s) and Za(s).

The form of the locus of the compromize zeros as a function of ;f=} is shown in

Figure N.9.

The CTRL-C program 'lgtlqest' is used to calculate the compromize zeros and

estimator poles as functions of Rt , Ra and Q. The results of this program are

listed in the next section.

The process noise spectral density (QLGT in the print-out) was thenchosen so that

the low frequency estimator poles were in the same range as the low frequency

regulator poles.

The Kalman filter gain matrix, L, of equation N.50 is indicated underESTGAINS

in the print-out.

The matrix equations that constitute the complete longitudinal system with a full I
[;
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order estimator and feedback of the integral error and estimated states can be

summarized as:

:i: = Fx+Gu+Gnw (N.57)

Ym = Mx+v (N .58)

e = Hx-r (N.59)

u = -G.e - Gx (N.60)

x = Fox+Gou+ L(Ym - Mx) (N.61)

The interconnection of all these equations is shown in the longitudinal system

blockdiagram of Figure N.5. These equations can be represented in matrix form

for analysis and simulation purposes:

[
: ] = [: -~G. -;G ][:]+ [ ~1 ] r+ [:n L:] [: ]
:i: LM -GaG. Fo-GoG-LM !i: 0 0

(N.62)

The eigenvalues of the system matrix above are the same as the eigenvalues of the

regulator and the estimator If Fa = F, and Go = G. If the initial estimate of the

state vector is the same as the initial state vector, the step response of this system

will be the same as the response for the full state feedback system of Figure N.7.

An example of the response when 8(0) = 0.1 rad,but the initial estimate 8(0) =
o rad is shown in Figure N.10. It can be seen that large excursions of the plant

states occur initially because the control commands are issued based on the wrong

estimates of the plant states. As the LQG estimator improves its estimates of the

plant states, the wheel speed approaches the commanded value of Oe = 0 and the

frame is held vertical (8(0) = 0 rad).

The performance of the closed loop system in the presence of measurement and

process noise was evaluated. The plot of Figure N.n is generated with the initial
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state estimate the same as the initial plant state and noise inputs as described in

section N.5.

N.6.1 LQE gain calculation program

UCYC6/LGTLqG.CTR

ANALOG LONGITUDINAL CoNTROL SYSTEM WITH FULL ORDER LQ ESTIIlAToR

*******************••*.***** ••****•••****.*****************.***

LONGITUDINAL STATES THETA.ooT; OMEGA; THETA

CoNTROL INPUT WBEEL KoToR ToRQUE (QW)

KEASUREKEHTS TACHOMETER; ACCELERDMETER

UNITS METERS, RADIANS, SECoNDS

****. CONTINUOUS TIME PLANT MATRICES .*•••

FLGT

-0.0333

0.1138

1.0000

GLGT

-0.7075

2.4216

o.

0.0333 54.5447

-0.1138 -151.2607

o. o.

=

GNoISELGT =

-0.7075
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2.4216

O.

MLGT

257

-1. 0000

-0.0011

NLGT

O.

-0.0230

1. 0000

0.0011

O.

4.6700

••••• HATRICES FOR INTEGRAL ERROR FEEDBACK CONTROL •••••

EXTENDED STATE VECTOR IS OIlEGA.ERR; THETA. DOT; OllEGA; THETA

FINT

O. O.

O. -0.0333

O. 0.1138

O. 1.0000

GINT

O.

-0.7076

2.4216

O.

1.0000 O.

0.0333 64.6447

-0.1138 -161.2607

O. O.

***** REGULATOR DESIGK *****

COST FONCTION IiEIGBTING FACTORS ON STATES ANO CONTROL

ADIAG
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30.0 o. o. o.

BDIAG =

1.0

DPTIMAL INTEGRAL ERROR AIID STATE FEEDBACK GArNS

CERI\ =

-5.4772

CLGT =

-47.6924 -6.8830 -228.2964

REGPOLES =

-1.2208 - 1.00061

-1.2208 + 1.00051

-1.3891 + 0.12951

-1.3891 - 0.12951

••••* ESTIHATOR DESIGN *••••

PROCESS AND MEASUREIIENT NOISE SPECTRAL DENSITIES

QLGT =

1.0

RLGT

0.0500

O.

O.

0.1000

XFER FN. ZEROS FROH PROCESS NOISE INPUT TO TACHOMETER It ACCELEROMETER OUTPUTS
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TACIlZEROS =

2.8309

-2.8309

ACCZEROS

-0.0000 + 9.4457i

-0.0000 - 9.4457i

0.0000 + O. i

PLANTPOLES =

-7.4486

7.3232

-0.0216

COMPROMIZE ZEROS FOR SYHIIERIC ROOTLOCUS OF ESTIIIATOR :

COMPRZEROS

192.0571

-192.0571

3.0991

2.5927

-3.0991

-2.5927

OPTlllAL ESTIIlATOR GAINS AII0 ESTIIIATOR POLES

259

ESTGAINS

-6.3092

15.7493

-0.7363

=

0.6621

-1.0452

0.1181
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ESTPOLES =

-1.5074 - O.OOOOi

-4.4218 + O.OOOOi

-16.8260 - O.OOOOi
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The output signal from the servo accelerometer is proportional to
• ••the total pendulum contral torque: Qp (LGT) = ka [g e - (Twn + r R3 e )]

a 3 (vertical)

direction of r
R3frame acceleratian

for forward pitch : 8 > 0
pendulurn contral tarque
Q p (LGT) > 0

for forward acceleration
of the frame:• ••( rwn +rR3 e) > 0

pendulurn contral torque
Q (LGT) < 0

P

FRAME F --.,

Pendulum position
if no control torque
had been applied

[

1

[

[

[

[

I
.1

[

Figure N.!: Longitudinal Accelerometer Measurement
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SYMMETRIe R00T L0CUS 0F L0NGIT. SYSTEM
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FREQ. RESP0NSE WITH FULL STATE FEEDBACK
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RESP0NSE WITH FULL 0ROER ESTIMAT0R
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Appendix 0

Discrete Time Longitudinal

Control System

0.1 Sampling rate selection

The continuous time compensator designed in the previous section must be dis­

cretized for implementation as a digital control system in the on-board computer

of the unicycle. The selection of the best sample rate for the digital computer is

a compromise among many factors. First of all, the sample period must be long

enough to allow all the control calculations for the longitudinal and lateral control

systems to be completed. The sampling theorem states that in order to recon­

struct an unknown band-limited continuous signal from sampies of that signal, the

sampie rate f. must be at least twice as high as the highest frequency contained

in the unknown signal. We can consider the input signal to a digital controller

to have a spectral content up to the system's closed loop bandwidth, fe. The

longitudinal closed loop system has a bandwidth of less than 0.5 Hz, so that the

fundamentallower bound on the sampling frequency should be approximately 1

Hz. In order to have acceptable tracking effectiveness of the reference input com­

mand, good regulation during random disturbance inputs and rejection of errors

due to measurement noise, it is customary to use sampling rates of at least an

272
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order of magnitude greater than this value. (Refer to chapter 10 in [FranklinJ).

Experiments with the rnicroprocessor mounted on the unicycle have shown that

all the control system calculations can be done in less than 25 milliseconds. A

sampling frequency of 40 Hz is therefore chosen, i.e.

T,ample = 0.025 sec. (0.1)

I
i

i.;,

We can associate a pure transportation delay of approximately one half of a sam­

pIe period with the sampIe and zero-order-hold (ZOH) device which converts the

analog plant signals for input to the rnicroprocessor.

where 8 is the Laplace operator.

The phase shiftadded to the openloop system due to the sampling process is

caluculated, because it can decrease the phase margin of stability signiflcantly if

the sample rateis too low. At the closed loop bandwidth (lBW) of approximately

0.5 Hz, the phase lag due to the ZOH is

~ZOH = WBw~olIampll!

= 1r~ = 2.25 degrees
~

This small phase lag should not have a serious effect on the system stability.

0.2 Equivalent discrete LQG compensator

0.2.1 Discrete time regulator

A discrete time regulator with integral error feedback ofthe wheel speed, fl, can be

designed by first discretizing the continuous time plant matrices of equation N.30,

using the sample time T, defined in the previous section:

l

,\

[
e(k+1) ] [1 He][e(k)] [re] [rr]= +. u(k) + r(k)x(k+ 1) 0 cl? x(k) r 0

(0.2)
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where [x(k) = B(k) n(k) O(k)jT

and r(k) is the reference input.

The measured outputs are

Ym(k) =Mx(k) +Nu(k)

Simpify equation 0.2 to:

(0.3)

(0.5)

(0.6)

xI(k +1) = i1iIXI(k) +rlu(k) +rrlr(k)

where xI(k) = [eCk) eCk) n(k) O(k)jT (004)

The continuous time cost function of equation N.29 can also be converted to

an equivalent digital performance index as described in Appendix D of reference

[Bryson 1].

Given the continuous time performance index

1100

J = - (XIAxI +uTBu)dt
2 0

the CTRL-C program 'lgtdlqg.ctr' uses the algorithm by Van Loan [Van Loan]to

calculate the weighting matrices in the discrete time performance index beiow,

which will produce the discrete closed loop system whase performance is the same

as that of the original continuous time system.

JD = 'E[xT(k)uT(k)] [AD ND] [XI(k) ]
k=o ND T BD . u(k)'

The QZ algorithm in CTRL-C does not currently support the cross terms ND in

the cost function above, but if we transform the system in equation 0.4 to

xI(k + 1) = (i1iI - rjBD-1 . NDT)XI(k)+ rlü(k) (0.7)

ülk) = u(k) +BD-1 . NDTxI(k) = -CxI(k) (0.8)

the cost function of equation 0.6 becomes
00

JD = 'L,.xT(k)(AD-ND.BD-1.NDT)XI(k)+üT(k)BDü(k)
k=O
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We can now use the standard QZ algorithm to solve for the regulator feedback

gains C of the system of equation 0.7 and modified cost funetion of equation 0.9.

The desired feedback gain for the regulator u(k) = -CIXI(k) ia then from equa­

tion 0.8:

(0.10)

A print-out of the results of this program is shown in section 0.2.3. The optimal

feedback control law, with al1 states available, is:

[

O(k) ]
u(k) = -Cee(k) - C n(k)

O(k)

(0.11)

A pole mapping of the continuous time regulator poles of section N.6.1 by nieans

of the z-transformation, z = esT , confirms the locations of the equivalent discrete

time design's regulator poles as indicated in the print-out listed in section 0.2.3.

The step response of the discrete plant shown in Figure 0.2 is also the same as

the continuous system step response of Figure N.7.

0.2.2 Discrete time estimator

A discrete equivalent of the continuous time estimator of section N.6 is designed to

estimate the plant states from the two sampled data measurements of the tachome­

ter and accelerometer signals.

The spectral densities of the process and measurement noise inputs, Q and R of

the continuous time system must be converted to covariance matrices QD and RD

for the digital estimator, Appendix D of reference [Bryson 1] shows that QD can

be found using duality of the regulator performance index design converslon.

The measurement noise input Vd(t) to the discrete time estimator is a sample of

the random white noise input v(t) of equation N.49. For the discrete time system
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we should rather model v( t) as colored noise with a variance V and a correlation

time Tc that is smaJI compared to the shortest time constant of the plant. v(t)

could be generated by the first order system

Teil(t) + v(t) = n(t)

where n(t) is a white noise process with spectral density

R = 2VTe

(0.12)

(0.13)

If we discretize the shaping filter of equation 0.12 with the sampIe period of TB,

wehave

and the variance of the purely random sequence nd(I.:) is

RD = V [l-e-~]

as derived in reference [Bryson 1].

If V is eliminated between equations 0.13 and 0.15,

(0.14)

(0.15)

(0.16)

L
I

The elements of the RD matrix were therefore chosen proportional to the elements

of the given spectral density matrix, R, as a function of the correlation time Tc

and the sampling period TB' The choice of values for Tc and TB was motivated in

sections N.5 and 0.1 respectively.

A print-out of the discrete time rnatrices is given in the next section. It shows the

optimal closed loop estimator eigenvalues and the Kalman filter gains, L, where

x(I.: +1) = <px(k) +ruCk)

x(k) = x(k) +L[Ym(k) - Mx(k) - Nu(k)]

(0.17)

(0.18)
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Equation 0.17 is known as the time update oftheKaIman filter and equation 0.18

is called the measurement update. Substitution of 0.17 into 0.18 gives the pre­

diction estimator equation

x(k +1) = 91[I - LM]x(k) +UYm(k) +[I' - UN]u(k) (0.19)

The optimal prediction estimator poles are therefore given by the eigenvalues of

91 [I - LM].

The integral error state which is shown as part of the plant system of equations 0.4

is actually part of the compensator.

Therefore let

e(k +1) = e(k) +Hex(k) + feu(k) +f rr(k) (0.20)

where

He = 911(1,2: 4)

I', = f1(1)

(0.21)

(0.22)

The regulator feedback law is

u(k) = -Cee(k) - Cx(k) (0.23)

Equations 0.19, 0.20 and 0.23 can now be combined to form the compensator

system matrices

(0.24)

(0.25)u(k) =

[
e(k +1) ] [1- feCe He - r,c ] [ e(k) ]
x(k+ 1) = (UN - f)Ce 91 [I - LM] + rUN - f]C x(k)

+ [:L] Ym(k) + [ f; ]r(k)

-[Ce C] [e(k)]
x(k)

A block diagram of the discrete time closed loop system is shown in Figure 0.1.

The closed loop system matrices are obtained by using the plant equation x(k+1)
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= il?x(k) + fu(k) and eliminating u(k) and Ym(k) from this equation and the

compensator equations:

-fC

[

x(k +1)]
eCk + 1)

X(k+1)

=

+

[

il? -rc,
o 1- r,c;

il?LM -rc,

[~ ]-(')

] [

x(k) ]
H. - f.C eCk)

il?[I - LM] - fC x(k)

(0.26)

If the initial estimate of the state vector is the same as the initial plant state

vector, the step response of this system will be the same as the response for

the full state feedback system of Figure 0.2. An example of the response when

1/(0) = 0.1 rad, but the initial estimate 8(0) = 0 rad is shown in Figure 0.3. It

can be seen that large excursions of the plant states occur initially because the

control commands are issued based on the wrong estimates of the plant states.

As the LQG estimator improves its estimates of the plant states, the wheel speed

approaches the commanded value of nc = 0 and the frame is held vertical (1/ = 0

rad),

0.2.3 Optimal regulator and estimator gains

DISCRETE LDNGITUDINAL LQG DESIGN

********************************

LDNGITUDINAL STATES : THETA.DDT; DHEGA: THETA

CDNTROL INPUT : WHEEL MOTOR TORQUE (QW)

HEASUREHENTS TACHOHETER, ACCELEROHETER
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UKITS METERS, RADIANS, SECONOS

........ CONTINUOUS TIME SYSTEM MATRICES ******

FLGT •

-0.0333 0.0333 54.5447

0.1138 -0.1138 -151.2607

1.0000 o. o.

GLGT

-0.7075

2.4216

o.

GNOISE

-0.7075

2.4216

o.

IILGT =

-1.0000 1.0000 o.
-0.0011 0.0011 4.6700

NLGT =

o.
-0.0230

••••• CONTINUOUS TIME SYSTEM HATRICES VITH INTEGRAL ERROR FB •••••

EXTENOEO STATE VECTaR IS OMEGA.ERR; THETA.OOT; OMEGA; THETA

279
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FINT •

o. o.
o. -0.0333

o. 0.1138

o. 1.0000

GINT

o.
-0.7075

2.4216

o.

GHEFINT

-1.0

o.
o.
0..

1.0000 o.

0.0333 54.5447

-0.1138 -151.2607

o. O.

• 1/EIGHTING FACTDRS FDR OPTlllAL CDNTlNUDUS TIME HEGULATDR •

ADIAG =

30.0 o. o. o.

BDIAG •

1.0

• PRDCESS AND IlEAS. SPECTRAL DENSITIES FDR CDNTINUDUS SYSTEM •

QLGT =

1.0
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RLGT =

0.0500 O.

O. 0.1000

•••*** DISCRETE TIME SYSTEM MATRICES ******

TSAMPLE

0.0250

PHI

1.0162 0.0008 1. 3692

-0.0445 0.9971 -3.7957

0.0251 0.0000 1.0171

GAJIIIA =

-0.0178

0.0607

-0.0002

• DISCRETE TIIlE SYSTE!! IIATRICES WITH INTEGRAL ERROR FEEDBACK •

PHIINT =

1.0000 -0.0004 0.0250 -0.0473

O. 1.0162 0.0008 1.3692 ~

O. -0.0445 0.9971 -3.7957 r

O. 0.0251 0.0000 1.0171

GAllINT =

0.0008

-0.0178

0.0607
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-0.0002

GAMREFIHT ~

-0.0250

O.

o.
O.

* DISCRETE OPTIMAL REGULATOR COST FUHCTIOH WEIGHTIHG KATKICES *

AD

0.7500 -0.0001 0.0094 -0.0118

-0.0001 0.0000 -0.0000 0.0000

0.0094 -0.0000 0.0002 -0.0002

-0.0118 0.0000 -0.0002 0.0003

ND

1.0d-03 *

0.1893

-0.0000

0.0035

-0.0054

BD =

0.0250

* DISCRETE REGULATOR FEEDBACK GAIHS FOR ERROR AND STATES *

CERR

-4.4247

\
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CLGT =

-41.0670 -5.6284 -201.8878

* DISCRETE REGULATDR PDLES *

REGPDLES

0.8312 + 0.01521

0.8312 - 0.01521

0.9696 + 0.02431

0.9696 - 0.02431

* DISCRETE SYSTEM PROCESS AND NOISE COVARIANCE MATRICES *

QD

0.0126 -0.0431 0.0002

-0.0431 0.1474 -0.0005

0.0002 -0.0005 0.0000

RD

283

2.5000

O.

O.

5.0000

* CURREIIT ESTIIIATOR GAIN MATRIX *

LLGT

-0.1155 0.0126

0.2900 -0.0193

-0.0138 0.0023

* PREDICTION ESTIMATOR GAIN MATRIX LPRED=PHHLLGT *

LPRED
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-0.1360 0.0160

0.3465 -0.0286

-0.0169 0.0027

* PREDICTIOll ESTlMATOR POLES *

ESTPOLES =

0.6780 + O.OOOOi

0.8922 - O.OOOOi

0.9654 + O.OOOOi

* CLOSED LOOP SYSTEM POLES *

SYSPOLES '"

0.6780 - O.OOOOi

0.8312 + 0.0152i

0.8312 - 0.0152i

0.8922 + O.OOOOi

0.9654 - O.OOOOi

0.9696 - 0.0243i

0.9696 + O".0243i

***** COMPENSATOR HATRICES *****

i
!

ACOMP

1.0034

-0.0769

0.2657

-0.0007

BCOMP

0.0308

0.1663

2.7681

0.0017

0.0292 0.1056

0.0389 -2.2157

0.9887 8.4615

0.0160 0.9723

')

)
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o. O. -0.0250

-0.1360 0.0160 O.

0.3465 -0.0286 O.

-0.0169 0.0027 O.

CCOIIP

4.4247 41.0670 5.6284 201. 8878

DCOIIP ~

285

o. o. o.

MODAL FORM OF COIIPENSATOR :

COIIPENSATOR INPUTS [YTACH(K) YACC(K) HEF(K)]

COIIPENSATOR OUTPUT : QlI(K) ~ 1llIEEL TORQOE

AKDDAL

-0.0664 -0.0000

0.0000 0.9314

0.0000 0.0000

0.0000 -0.0000

BKODAL

0.0000

0.0000

1.0011

0.0000

0.0000

0.0000

O.

1.2545

4.6483 -0.5677 0.0521

0.0806 -0.0051 -0.0008

0.2574 -0.0476 -0.2435

-1.2481 0.2868 -0.0448

CKODAL ~

-1.1031 -2.1475 -0.0305 1. 3899
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DlIDDAL

O.

SYSPDLESM

O. O.
I
l

0.6780 + O. i

0.8312 + 0.0152i

0.8312 - 0.0152i

0.8922 - O.OOOOi

0.9654 + O. i

0.9696 + 0.0243i

0.9696 - 0.0243i

NOIlINAL 1iIIEEL SPEED DURING STEADY STATE :

DMEGAO

3.0

STEADY STATE VAL1JES OF EsTIMATOR STATES XI(!) THROUGH XI(4)

XI

13.3487

3.4915

-38.7489

15.2396

STEADY STATE VALUE DF CDNTRDL TDRQUE:'

QlI =

0.141

I

I
I I
•

I
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0.3 Modal decomposition of LQG compensator

287

The number of numerical calculations can be significantly reduced if the compen­

sator of equations 0.24 and 0.25 is transformed to modal form. Implementing

the compensator in this form is also numerically less sensitive.

Rewrite the compensator as

xe(k +1)

u(k)

where

(0.27)

(0.28)

[0 -1]Be = = [By Br ]
iJ!L 0

Let the modal coordinate state vector be eCk), then

x(k) = TeCk) => eCk) = T-1x(k)

(0.29)

(0.30)

where T is a non-slngular transformation matrix, whose columns are the right

eigenvectors of Ac above.

With this transformatlon applied to equations 0.27 and 0.28 the modal form of

the compensator becomes

eCk +1)

u(k)

(0.31)

(0.32)
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where

Am = T-1AcT

B m = T-1Bc

Gm = GcT

Dm = Dc (0.33)

Am is a diagonal matrix if Ac has no repeated eigenvalues. The values of the

compensator matrices in modal form are listed at the end of Section 0.2.3.

Notice that since Dm = 0,

u(k) = Gm~(k) (0.34)

The closed loop system with the compensator in modal form then becomes

The compensator is implemented in the on-board microprocessor of the unicycle,

using the FORTH [Mach2] programming language, Since calculation of the control

torque command takes up approximately 25% of the sampling period, a prediction

compensator is implemented to calculate the correct control command at the next

sampling Instant, based on measurements at the present sampling Instant. The

algorithm is summarized b elow:

- At the sampling instant, issue the control torque command u(k) that was

calculated during the previous sampling period, to the wheel drive motor.

- Read the sensors to obtain Ym(k) and r(k).

- Update the compensator states by using equation 0.31:

~(k +1) = Am~(k) +e; [ Ym(k)]
r(k)
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- Calculate the control command for the next sampling instant, u(k +1), by

using equation 0.32:

u(k +1) = Cm~(k+1)

- Wait for the next sampling instant and then repeat the loop.

In order to start the longitudinal system with minimum transients in the control

torque the best estimate for the initial values of the estimator states should be

used. The unicycle is first brought up to the nominal speed flo by using feedback

of the tachometer signal only. No attempt is made to stabilize the unicycle during

this phase, and the operator holds the unicycle as vertical as possible during the

speed-up phase. The plant model simplifies to a first order system

(0.36)

with the coeflicients as defined in Appendix M. A PID compensator with integral

error feedback control was designed, with the transfer function

(0.37)

K; = 16 and Zt = 0.9 gives a good time response of the longitudinal system dur­

ing the phase where the wheel speed is accelerated to the nominal operating speed.

The initial values for the plant and estimator states when the nominal operating

speed is reached, can be calculated from equation 0.35 by noticing that in this

steadystate condition

so that

[
x(k) ]

~(k)

and r(k) =flo (0.38)

(0.39)
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whence we find eo that should be used to initialize the compensator states in the

on-board computer.

A listing of the FORTH code that implements the longitudinal control algorithm

is shown in Appendix P.

0.4 Pole-zero compensator with accelerometer sen-

sor

Control systems designed by successive loop closure techniques not only produce

compensators of low order, but usually have better robustness to plant variations

than LQG designs.

We will use the same sampling period as for the LQG design. The CTRL-C pro­

gram 'lgtdtach' is used to design the controller and a listing of the program is

shown in the next section. The on board microprocessor on the unicycle takes

a finite time, Tdelay, to complete all the calculations for the compensator. This

delay is incorporated in the plant model as a pure transportation lag by means

of a first order Pade approximation before the plant is discretized. Section N.3.2

describes how this adds an additional state to the plant state space model.

The first loop closure in the compensator design is a proportional feedback of the

tachometer signal. Figure 0.4 shows the rootlocus of the tachometer feedback loop

as a function of the feedback gain K t . We would like to select K; as large as possi­

ble since this would decrease the nonlinear effects of stiction, Coulomb friction and

friction variations due to the eccentricities in the gears of the wheel drive system.

Figure 0.4 also shows that there is an upper limit on the magnitude of K; be­

cause the damping in the tachometer feedback loop can become unacceptably low.
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The accelerometer feedback loop is closed next. Since an unstable pole is present,

a compensation pole is placed close to it outside of the unit circle. A compensation

zero is also placed just inside the unit circle to draw the rootlocus into the stable

region of the z-plane as shown in Figure 0.5. Notice that there is a range of loop

gain values, K., for which the closed loop system is stable. The lower bound on

K. is determined by the gain for which the low frequency locus enters the unit

circle and the upper bound by when the high frequency part of the locus leaves

the stability region. Without careful compensator design it can happen that the

damping on the low frequency closed loop poles is .not yet sufficient before the

damping on the high frequency poles become unaccept,ably low. The final design

of the compensator was obtained through iteration and inspection of the closed

loop step response.

In order to simulate the time response of the closed loop system the compensator

was modeled as shown in the block diagram of Figure 0.6. The block diagram

shows a first order compensator in the tachometer loop for greater generality, but

it can be changed to a proportional feedback controller by letting Pt = Zt = O.

The plant equations are

x(k+1) = ilix(k)+ru(k)
JF\

Ym(k) = Mx(k) +Nu(k)

where Ym(k) is the measured tachometer, Yt(k), and accelerometer, y.(k).

The compensator matrices are

(0.40)

(0.41)

[
xt(k + 1) ]

x.(k +1)
=

+

[
Pt K.(p. - z.) ] .[ xt(k) ] + [ -1

o P. x.(k) 0

[
KrK. ] r(k)
Kr

-K. ] [ Yr(k) ]
-1 y.(k)

(0.42)
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or

x(k + 1) = Acx(k) + BcYm(k) + Rcr(k) (0.43)

or

[
xt(k) ] + [-Kt
xa(k) [

Yt(k) ]

Ya(k)

(0.44)

u(k) = Ccx(k) +DcYm(k)+Scr(k) (0.45)

The value of Kr is selected so that the transfer function from r(k) to oa(k) is unity

in steady state:

Um oa(k) =
.--+1 r(k)

so that Kr must be

li K K
Z - s«

m r a-­
%-+1 Z - Pa.

1- Za
= K rKa--=l

1- Pa
(0.46)

(0.47)

We can now combine the plant equations 0.40 and 0.41 with the compensator

equations 0.43 and 0.45 to abtain the closed loop system equations:

where

[
x(k +1)] =

x(k + 1)

+

[
W+ r DCJ M r(Cc+DcJNCc)] [X(k)]
BcJM Ac+BJNCc x(k)

[
r(SC+DJNSc) ] r(k) (0.48)
Rc+BcJNSc

(0.49)

Figure 0.7 shows a step response for a 1 rls command in wheel speed. Figure 0.8

shows the loop gain and phase versus frequency of the longitudinal system.
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0.4.1 Successive loop closure compensator parameters

UCYC9/LGTDTACH.CTR

LGT DISCRETE COIlPENSATOR DESIGN 1/ITH PADE APPROX FOR TIME DELAY

****.******************.****.*******.******••********.*********

LONGITUDINAL STATES THETA. DOT; OMEGA; THETA; XD

CONTROL INPUT WHEEL MOTOR TORQUE (QV)

MEASUREMENIS TACHOMETER; ACCELEROMETER

UNITS METERS. RADIANS • SECONDS

TSAHPLE

0.0250

TDELAY

0.0050

****** CONTINUOUS TIME SYSTEM MATRICES ******

FLGT

-0.0333

0.1138

1.0000

O.

0.0333 54.5447

-0.1138 -151.2607

O. O.

o. o.

-1.4149

4.8433

O.

-400.0000

GLGT =
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0.7075

-2.4216

O.

400.0000

HLGT =

-1. 0000

-0.0011

1.0000

0.0011

O.

4.6700

o.
O.

NLGT Ja

O.

-0.0230

••**** DISCRETE TIME SYSTEM MATRICES ******

PHI

1. 0162

-0.0445

0.0251

O.

GAM .

~0.0142

0.0485

-0.0001

1.0000

0.0008

0.9971

0.0000

O.

1.3692

-3.7957

1. 0171

O.

-0.0036

0.0122

-0.0001

0.0000

•••••• PLANT TRANSFER FUNCTIONS •••••

TRANSFER FOlICTION FROH lIIIEEL DHIVE TORQUE TO TACHOMETER MEASUREKENT

TACHGAIN =
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0.0627 + O.OOOOi

TACHZEROS

1.0733

0.9317

-0.2488

TACIIPOLES •

1.2009 - O.OOOOi

0.9995 + O.OOOOi

0.8301 - O.OOOOi

0.0000 + O. i

TRANSFER FUNCTION FROH WIIEEL DRIVE TORQUE TO ACCELEROMETER KEASUREKENT

ACCGAIN =

0.0230 + O.OOOOi

ACCZEROS

1.0035 + 0.2359i

1.0000 - O.OOOOi

1.0035 - 0.2359i

-0.0023 + O. i

ACCPOLES •

1.2009 - O.OOOOi

0.9995 + O.OOOOi

0.8301 - O.OOOOi

0.0000 + O. i

TRANSFER FUNCTION FROH 1IIlEEL DRIVE TORQUE TO I/IIEEL SPEED ( OMEGA )
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GMGGAIII =

0.0485 + O.OOOOi

GMGZERGS

1.0838

0.9227

-0.2488

DMGPGLES

1.2009 - O.OOOOi

0.9995 + O.OOOOi

0.8301 - O.OOOOi

0.0000 + O. i

•••••• TACHGMETER fEEDBACK !.GOP PAIlAIIETERS ( INNER LGGP) ••••••

TACH LGGP PROPGRTIGNAL FEEDBACK CDMPEIISATDR GArIl=KT

KT

15.0

CLDSED TACHGMETER !.GOP GArN, ZEROS AIID PGLES YACC(S)/TACHCMD(S)

TACHLDDPZE =

1.0035 + 0.2359i

1.0000 + O.OOOOi

1.0035 - 0.2359i

-0.0023 + O. i

TACHLDDPPD =

1.0876 + O.OOOOi
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0.9~3 - 0.00001

0.0302 + 0.47681

0.0302 - 0.47681

TACIILOOPGA ~

-0.3447

•••••• ACCELEROMETER FEEDBACK LOOP PARAMETERS ( OUTER LOOP) ••••••

FIRST ORDER COIIPENSATOR:

GAIII=KA; ZA~ZERO t PA=POLE

KA =

-20.0

PA =

1.0500

ZA =

0.9600

KR ~

0.0625

ACCLOOPZE ~

1.0838 + 0.00001

0.9600 - O.OOOOi

0.9227 + O.OOOOi

-0.2488 + O. 1
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ACCLOOPPO =

0.9351 + 0.1625i

0.9782 + 0.0281i

0.9782 - 0.0281i

0.9351 - 0.1626i

0.0337 - O.OOOOi

0.5 Pole-zero compensator with vertical sensor

We will use the same successive loop elosure design approach as in section 0.4,

but this time assume that we have a sensor that measures the pitch angle, (). The

first loop elosure in the compensator is feedback of the tachometer signal, with an

integral error compensator consisting of a pole at z = 1 and a zero at Zt = 0.75.

Figure 0.9 shows the root locus of the tachometer feedback loop as a function of

the loop gain K t • The print out of the CTRL-C program that was used to design

the compensator is shown in section 0.5.1.

The pitch angle feedback loop is elosed next, with a first order compensator where

the pole is at Z = 1.03 and the zero at Z = 0.95. The root locus of the outer

loop is shown in Figure 0.10. Notice that the high frequency root locus enters

the unstable region of the z-plane for high loop gains IKpl > 150. This is a sig­

nificant improvement over the situation with the accelerometer sensor where the

high frequency root locus branches were strongly attracted by the pair of complex

zeros just outside the unit drele. The enlargement of the low frequency root locus

brauch near z = 1 (Figure 0.11) shows that the loop gain K p was selected so that

the elosed loop poles were weil damped.

The simulation of Figure 0.12 shows a time response of the elosed loop system to
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a unit step command in wheel speed.

0.5.1 Pitch feedback compensator calculation

UCYC7/LGTDTACH.CTR

LGT DISCRETE CDIIPENSATDR DESIGN llITH PADE APPRDX FOR TIIIE DELAY

**.*******••••••••••••••***••••••**•••••••••••••••***•••***••••

LONGITUDINAL STATES THETA. DOT; DMEGA; THETA; XD

CDNTROL INPOT VHEEL KOTOR TORQUE (QW)

KEASUREKENTS TACHOMETER; PITCH SENSOR

UNITS METERS, RADIANS, SECONDS

TSAIIPLE =

0.0250

TDELAY =

0.0040

•••••* CONTINUOUS TIME SYSTEM MATRICES *•••••

FLGT =

299

-0.0333

0.1138

1.0000

O.

0.0333 54.5447

-0.1138 -151.2607

O. O.

O. o.

-1.4149

4.8433

O.

-500.0000
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GLGT

0.7075

-2.4216

O.

500.0000

HLGT =

-1.0 1.0 O. O.

O. O. 1.0 O.

NLGT

o.
O.

****** DISCRETE TIME SYSTEM MATRICES .*....
PHI =

1.0162

-0.0445

0.0251

O.

GAH

-0.0149

0.0509

-0.0002

1.0000

0.0008 1.3692 -0.0029

0.9971 -3.7957 0.0098

0.0000 1.0171 -0.0001

O. O. 0.0000

****** PLANT TRANSFER FUNCTIONS *****

TRANSFER FURCTION FROH 1IIIEEL DRIVE TORQUE TO TACHOMETER MEASlJREMENT
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TACHGAIII

0.0658

TACHZEROS =

1.0733

0.9317

-0.1895

TACHPOLES =

1.2009 + 0.00001

0.9995 + 0.00001

0.8301 - 0.00001

0.0000 + o. 1

TRAIISFER FllIICTIOII FROIl lIIIEEL DRIVE TORQUE TO PITCH IlEASUREIIEIIT

PITCHGAIII

-1. 5614d-04

PITCHZEROS

-1.7782

1.0000

-0.0203

PITCHPOLES

1.2009 + 0.00001

0.9995 + 0.00001

0.8301 - 0.00001

0.0000 + o. 1

301
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TRANSFER FUNCTION FROll 1IIIEEL DRIVE TORQUE TO 1IIIEEL SPEED ( OIlEGA )

OllGGAIN

0.0509

OllGZEROS =

1. 0838

0.9227

-0.1895

OllGPOLES

1.2009 + O.OOOOi

0.9995 + O.OOOOi

0.8301 - O.OOOOi

0.0000 + O. i

•••••• TACHDMETER FEEDBACK LDOP PARAMETERS ( INNER LOOP) ••••••

TACH LODP PROPORTIONAL FEEDBACK COHPENSATOR GAIN=KT, ZERO=ZT, PDLE=PT

KT

15.0

ZT =

0.7500

PT

1.0

CLDSED TACHOMETER LODP GAIN, ZEROS AND POLES YPITCH(S)/TACHCHD(S)
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TACHLOOPZE =

-1.7782 - O.OOOOi

1.0000 - O.OOOOi

0.7500 + O.OOOOi

-0.0203 + O. i

TACHLOOPPO =

0.1735 + 0.4160i

1.0766 + O.OOOOi

0.9271 - O.OOOOi

0.6922 + O.OOOOi

0.1735 - 0.4160i

TACHLOOPGA

0.0023

•••••• PITCH ANGLE FEEOBACK LOOP PARAMETERS ( OUTER LOOP) ••••••

FIRST ORDER COHPENSATOR:

GAIIl=KP; ZP=ZERO I: PP=POLE

KP

-40.0

PP

1.0300

ZP

0.9500

303
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KR =

0.0150

PITCHLODPZ =

1.0838 - O.OOOOi

0.9500 +o.6600i

0.9227 - O.OOOOi

0.7500 + O.OOOOi

-0.1895 + O. i

PITCHLDDPP =

0.3144 + 0.4736i

0.3144 - 0.4736i

0.9834 + 0.0249i

0.9834 - 0.0249i

0.8472 - O.OOOOi

0.5366 + O.OOOOi
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,..--------------,

REGULATOR

l~ _ PLANT
---------~---~----------------- I

u (k)

INTEGRAL ERROR
ESTIMATOR

u(k)

r (k)

reference
input

STATE
ESTlMATOR~ ~ ~4 ,~ 1

----I rr 1---+------1
r-----------------------

Figure 0.1: Blockdiagram of a Discrete Time LQG Compensator with Integral Error
Feedback
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Figure 0.2: Step Response of the Longitudinal Discrete Time System with Full State
Feedback
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RESP0NSE WITH FULL 0RDER ESTIMAT0R

6.03.0 4.0 5.0

tirne(s)
2.01.0

Qw

- TSc rnrbl e - ~5 ms'1

Act ual e(c ) = 0. 1 ra~While
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I r
\
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15.

10.

20.
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t:lD 0.0
Q.)
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.--..
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<,
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~ - 10.----

.--..
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Figure 0.3: Response of the Longitudinal System with a Full Order Estimator with
8(0) = 0.1 rad, but 9(0) = 0 rad
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R00TL0CUS 0F TACH0METER·L00P VERSUS KT

1.51.0

- _.{ :::::: 0/' ...... '>/ ........ r
<,

-,

"-
-,

0.0 0.5

Real(z)

/
I
\

-0.5

1.0r--------,-------::::::=---r--=:::::;:-------r-------=-----,,------

0.5

- 1. 0~ .L____=~.l..-OC:::::::::=--__J..___ ..L..- _____l

-1.0

-0.5

Figure 0.4: Rootlocus of the Discrete Time Longitudinal Tachometer Loop with Pro­
portional Feedback of the Tachometer Measurement



0.5. POLE.,ZERO COMPENSATOR WITH VERTICAL SENSOR 309

R00TL0CUS 0F ACCELER0METER L00P VERSUS KA
O. 3)E-----,....--------,------.-----.-----,-------.

0.2

............ tc; = ·-20
<,

.......

O. 1

- . 1

- . 2

1.11.00.8 0.9

Real(z)
0.7

_ . 3~----.cL-----JL--------'------'-------'-------'
0.6

Figure 0.5: Rootlocus of the Accelerometer Loop with a First Order Pole-zero Com­
pensator
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Appendix P

FORTH Codes for

Longitudinal Control

P.l Successive Loop Closure and Accelerometer

The FORTH [Mach2] code which implements the compensator designed by suc­

cessive loop closure (section 0.4) with an accelerometer sensor, is listed below.

During the first 200 sample periods, the control algorithm closes the tachometer

feedback loop only, to bring the wheel speed up to the nominal speed, no. The

operator tries to hold the unicycle robot as vertical as possible during this stage.

Thereafter the algorithm closes the accelerometer feedback loop to start the bal­

ancing process.

All the compensator calculations are performed in fixed point arithmetic with a

64-bit word length, in order to minimize the computational delay. The tachometer

measurement and control torque signals are scaled up by a factor of 103 and the

accelerometer signal is scaled up by a factor of 106 in the computations in order

to malntaln good numerical accuracy.

317
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The program listing is documented with comments to explain the logic of the

algorithm,

( ========== ·Longitudinal Contral Turnkey Program =::11============)

( Program to test ucyc9/1gtdtach controller

( Tight tach feedback loop closed first )

Tsample = 25 milliseconds )

o VERIFY !

LOAD/TAROET ( Turn echoing off during dovnloading )

( ••**••••••***•••••** DEFlNE ADDRESSES AHD CDNSTANTS •••••••••••**...... )

IlEX

800000 CDHSTAHT LATDACADDR ( Set LAT DAC's address

800010 CDHSTAHT LOTDACADDR ( Set LOT DAC's address )

800020 COHSTAHT LATEHCADDR (Set LAT Encoder's address )

800030 COHSTAHT LGTEHCADDR (Set LOT Encoder's address )

800080 COHSTAHT RCCOUHTERO ( Radio Receiver Interface

800082 COHSTAHT RCCDUHTER1 ( Counter Adresses )

800084 COHSTAHT RCCOUNTER2

800086 COHSTAHT RCCDHTROLl/DRD ( Counter Controlvord address )

800090 CDHSTAHT RCTRIGGER ( Trigger address to RESET IRQ flip-flop )

68 COHSTAHT LEVEL2_IRQ ( Level2 Autovector Address )

8000DO COHSTAHT StHADDR

8000EO CDHSTAHT HUXADDR

8000FO COHSTAHT ADCADDR

( Sample t Hold's address )

( MultiplexerJs address )

( Analog-to-Digital ConverterJs address )
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o CONSTAHT LATACCKUX ( KUXCode for Lateral Aecelerometer )

1 CONSTAHT LGTACCKUX ( KUXCode for Longitudinal Aecelerometer

81000F CONSTANT RTCetrlADDR Set Real Time Clock's Cntrlvord address )

81000B CONSTANT RTCcounterl (Set Real Time ClockJa Counter 1 address )

o CONSTANT CHANNELO ( Terminal task number )

DEClllAL

15 CONSTANT LGTKt ( Taeh loop gain )

-20 CONSTANT LGTKa ( Ace loop gain )

62500 CONSTANT LGTKr ( Kr_l0e6 : referenee input gain )

3000 CONSTANT OmegaO ( 1000_nominal vheel speed )

500 CONSTANT STORELength ( # of entries to besaved in STORE arrays )

1250 CDNSTANT RTCperiodl ( Real Timer Clock Timer 1 initial count )

( for 40 hz sampling fr.q )

VARIABLE LATPl/II ( Lateral Radio Puls. Width )

VARIABLE LGTPl/II ( Longit. Radio Puls. Width )

VARIABLE TICKSAVE ( Memory loeation to save tick count)

VARIABLE LgtEncCount ( Counter for # vheel speeds to average)

VARIABLE SpeedUpCount ( counter for time in speed-up mode )

VARIABLE STORECount ( Counts numbers stored in STORE arrays )

VARIABLE LGTCmd ( LGT acceleration command *10e6 )

VARIABLE LGTxak ( LGT accelerometer compensator etate.tOe6 )

VARIABLE Ytach3 ( Tachometer measurement *10e3 )

VARIABLE Vace6 ( Accelerometer measurement * 10e6 )

VARIABLE Qv3 ( Wheel Torque _10e3 )

319



320 APPENDIX P. FORTH CODES FOR LONGITUDINAL CONTROL

400 1000 BACKGROUND SLAVE

400 1000 TERMINAL BOSS

( **************** REAL TIME CLOCK REPROGRAMHING WORDS ***.*************. )

CODE RTCset ( Sete RTC Counter 1 to sampie rate )

MOVE.L DO,-(A6) ( saves contents OI 00 on stack)

MOVE.B #$74,RTCctrlADDR ( Renftes Cntrl1lord for counter ·1 )

HOVE.V #RTCperiodl,DO

HOVE.B IlO,RTCcounterl ( Send 10" byte)

LSR.V #8,DO

HOVE.B IlO,RTCcounterl ( Send high byte )

HDVE.L (A6)+,DO ( Restores original value of DO )

R1'8 ( Return to subroutine )

END-CODE

CR .( Loaded RTCset )

ALSO IIATH

FP32

FVARIABLE STOREl STDRELength 2. 2. VALLOT ( Time hietory )

FVARIABLE STORE2 STDRELength 2. 2. VALLDT ( arrays 1, 2, 3 )

FVARIABLE STORE3 STDRELength 2. 2. VALLOT

( •••••••••••••••••••• REAL TIME CLOCKREADING WORDS .**................. )

CODE ZEROtheTICKS ( - ) ( Zeros the tick counter register )

CLR.L (.15)

RTS

END-CODE
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CR . ( Loaded ZEROtheTICKS )

CODE TICKStoSTACK ( - n ) ( Loade tick count on top ot stack )

KOVE.L (A5)~-(A6) ( Current tick counter value anto stack)

RTS

END-COOE

CR .( Loaded TICKStoSTACK )

( ******************* CONTROL SYSTEM ALGDRITHM WORDS ******************** )

321

S 2048 LATOACADOR V! 2048 LGTOACAODR W! ( Quick motors stop)

: ?DACSATURATE ( n - n ) ( Check it OAC command Saturates )

DUP 4095 > ( check for positive saturation ).

IF DROP 4095 ( drop large value t supply sat. value )

ELSE DUP 0 < ( check for negative saturation)

IF DROP 0 ( drop large value t supply sat. value )

TREN THEH (otherwise keep commanded DAe value )

: VAIT4R ( n -) ( S/V VAIT tor n.30 microseconde )

o DO LOOP ;

: CHECKTSAMPLE ( - t ) ( Check it sempIe time has expired )

TICKStoSTACK ( get tick count )

o > ; ( sets true flag if dt)Q Tsample )

CR • ( Loaded CHECKTSAMPLE

WORK ACTIVATE ( Activate Background task )

S ( Stop all motors )

o LGTCmd! ( Initial LGT reference inputassumsd = 0

o LGTxak! ( Initialize ace. camp. etate to zero )

o SpeedUpCount (Initialize SPEED_UP counter )

o STORECount (Initialize STOREi counter )
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RTeset ( Set Real Time clack to Tsample )

BEGIN

CIlECKTSAMPLE ( Check if aampke time has e:q>ired )

IF ZEROtheTICKS ( If TRUE Raset counter to zero . • • )

( ************ READ LGT TACHOMETER AND ACCELEROMETER ************ )

LGTENCADDR va ( read binaxy value trom ene. interface)

( Bt <- top of stack )

LGTACCMUX MUXADDR W! ( svitch KUX to LGT accelerometer )

1 StHADDR V! ( sample analog signal )

1 WAIT4H ( vait 30 microsec for SaH to settle )

o StHADDR V! ( place StH device in HOLD mode )

1 ADCADDR Vi ( Starts A to D Converter )

1 VAIT4N ( buy a little time for ADC to finish)

ADCADDR va ( reade binary value fram A/D )

( Bt Ba <- top of stack )

4095 - 4884 * 10003660 + ( convert to a voltage*10e6

-31576 100000 */ ( scale by LGTACCGAIN => acc*10e6 )

( Bt Ya6 <- top of etack )

CUP Yace6 ! ( save copy of aceel to print later )

( Bt Ya6 <- top of stack )

SpeedUpCount a 200 > (check if speed-up phase Le over )

( ************** ACCELEROMETER LOOP COMPENSATION **************** )

IF ( it so, add accelerometer compensation )

LGTCmd C ( get acceleration command )

LGTKr * ( mult. by Kr*10e6 -> 10e6 * acceI. cmnd )
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SVAP - ( Bubtract Ya6 to get ace. error*10e6

CUP ( save a copy for compensator update

( Bt EaS EaS <- top of stack )

LGTxak G (get LGT accelerometer compensator etate )

( Bt EaS EaS XaS<- top of stack )

9 100 ./ + ( Jaultiply by pa-za and add to acc , error )

LGTKa 1000 ./ ( Jault. by LGTKa; div. by 1000 -> 1000.da )

( Bt EaS da3 <- top of stack )

ELSE ( during speed-up do tach loop camp. only )

DROP ( drop -Ya6 froJa top of stack )

o 0 ( supply zeros for EaS sud da3 )

( Bt 0 0 <- top of stack )

( *••• **••*••••*** TACHOMETER LOOP COKPENSATIOH .*•••••*.*****.** )

TREN ( da tachometer compensation loop )

OmegaO + ( ..heel speed + da3 )

( Bt EaS sum <- top of stack )

ROT ( get binary value of the tach )

( Ea6 BUR Bt <- top of stack )

CUP ( copy to determine sign later )

1047197S SWAP / ( get 1000'abs(ytach) )

SWAP 2 MOO 0= ( get sign of tbe ..hsel speed )

IF lEGATE THEN ( 0 -> even # => neg. speed)

( Ea6 sum Yt3 <- top of stack )

CUP Ytach3! (save a copy to print later )

( EaS sum Yt3 <- top of stack )

323



324 APPENDIX P. FORTH CODES FOR LONGITUDINAL CONTROL

( get velocity errorol0e3 )

- ( Ea6 Et3 <- top of steck )

LGTKt * ( mult tach loop gain )

( -> 1000*Wheel torque )

( Ea6 Qs3 <- top of stack )

DUP Q~3! (make a copy to print later )

( Ea6 Qs3<- top of stack )

15120 + 2048 15120 */ ( get binary command for DAC )

?DACSATURATE ( check if DAC saturates )

LGTDACADDR V! ( output torque command )

( Ea6<- top of stack )

( .******•••*.******* COKPENSATOR STATE UPDATE ***••************* )

LGTxak G (get LGT accelerometer compensator etate )

( Ea6 Xa6 <- top of stack )

105 100 */ ( multiply by LGTpa )

+ LGTxak ! ( add to the ace. error and save xhat(k+l) )

(stack empty <- top of stack )

1 SpeedUpCount +! ( increment speed-up counter)

( ******************** STORE TIME HISTORY ****.*.*********.****** )

STORECount 0 STORELength <

IF

Qs3 0 I>F 1000. F/ ( Seale to normal units )

STOREl STORECount C 2* 2* + F! ( multiply index by 4 to )

( store 64 bit # )

Ytach3 0 I>F 1000. F/ ( Scale to normal units )
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STDRE2 STORECount G 2* 2* + F!

Yacc6 G I>F 1000000. F/ (Scale to normal units )

STDRE3 STORECount G 2* 2. + F!

325

1 STORECount +!

TIIEH

( Increment the counter of #etored )

TIIEH PAUSE (Go -dc terminal tssk )

AGAIN

( ••• BUILDIHG OF TERllIHAL It BACKGROUNO TASKS FOR TURHKEY APPLICATIOH ••• )

: WIP ( Build and Activate Background taek )

SLAVE BUILD

SLAVE WORK ;

: ?KEY ( Check if kay was depressed )

BEGIH

PAUSE

?TERllIHAL

DUP

IF

KEY DROP

TllEH

UHTIL

: PRIHT ACTIVATE (Activate Tsrminal task )

-1 IHIT-DISK ( reset all disk drives)

BEGIH

CR

." Press any kay to see BACKGROUHD variable "

?KEY
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CR .11 Qll=[ 11

STORELength 0 00

STOREl I 2* 2* + FI

I 9 KOD 0= IF 11 "CR

TUE! F. 11 n

PAUSE LOOP"];" CR

CR .. 11 Ytach=[ 1I

STORELength 0 00

STORE2 I 2* 2* + FI

I 9 KQD 0= IF 11 11 CR

THEllF. 11 11

PAUSE LOOP 11]; 11 CR

CR .. 11 Yacc=[ 11

STORELength 0 00

STORE3 I 2* 2* + FI

I 9 KOD 0- IF" 11 CR

TUEH F. " "

PAUSE LOOP 11]; 11 CR

CR

AGAIN

: START

CHANNELO BOSS BUILO ( InitializeB Terminal TaBk )

BOSS PRINT

liHIP j ( lnitializes Background Tasle )

TURNKEY START (Turn program into a TURNKEY application )

CR CR CR

.( Vrite protect STATre memory and raset the computer)

EOF
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P.2 LQG Compensator with Accelerometer Sensor

The FORTH code which implements the LQG compensator (sections 0.2 and 0.3)

is listed below. The algorithm has an initial phase to bring the robot up to the

nominal wheel speed, 110, where after the LQG compensator is invoked to start

the balancing process.

The compensator is implemented in modal form since it requires fewer arithmetic

operations. Floating point arithmetic is used because of its convenience and the

fact that the calculation time is not that critical due to the prediction estimator

that is used.

( CTRL-C program : ucyc6/1gtdlqg. ctr )

========= Longitudinal Control Turnkey Program ==="'1:=1======)

Discrete LQG compensator with integral error feedback of wheel speed )

o VERIFY !

LOAD/TARGET ( Turn echoing oU during dovnloading )

( •••***••********* DEFlNE ADDRESSES AIO CDHSTAHTS ****************.***** )

HEX

800000 CONSTART LATDACADDR ( Set LAT DAC's address )

800010 CoNSTART LGTDACADDR ( Set LOT DAC's address )

800020 CoNSTART LATENCADDR (Set LAT Encoder's addrsss )
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B00030 CoNSTANT LGTENCADDR (Set LGT Encoder's address )

BOOOBO CDNSTANT RCCoUNTERO ( Radio Receiver Interface)

8000B2 CoNSTANT RCCoUNTERl ( Counter Adresses )

BOOOB4 CoNSTANT RCCoUNTER2

BOOOB6 CoNSTANT RCCoNTROLlioRD ( Counter Controlvord address )

800090 CoNSTANT RCTRIGGER ( Trigger address to RESET IRQ flip-flop)

6B CDNSTANT LEVEL2_IRQ ( Leve12 Autovector Address )

BOOODO CoNSTANT SlHADDR

BOOOEO CoNSTANT KUXADDR

BOOOFO CoNSTANT ADCADDR

( Sample l Hold's address )

( KultipIexer's address )

( Ana1og-to~Digita1 Converter's address )

o CoNSTANT LATACCMUX ( MUXCode for Lateral Accelerometer )

1 CoNSTANT LGTACCMUX ( MUXCode for Longitudinal Accelerometer )

Bl000F CoNSTANT RTCctrlADDR ( Set Real Time Clock's Cntrlvord addrese )

81000B CDNSTAHT RTCcounterl (Set Real Time Clock's Counter 1 addresB )

DECIMAL

VARIABLE LATF1/II ( Lateral Radio Pulse lIidth )

VARIABLE LGTF1/II ( Longit. Radio Pulse lIidth )

VARIABLE LATDACCIID ( Commanded Lateral Current )

VARIABLE LGTDACCIID ( Commanded Longitudinal Current )

VARIABLE TICKSAVE ( Memory Ioeation to save tick count )

VARIABLE LgtSBflag ( SPEED_UP I BALANCE flag )

VARIABLE LgtEncCount ( Counter :ror # vheel speeds to average

VARIABLE SpeedDpCount ( Counter for period in SPEED_UP mode)

VARIABLE STORECount ( Counts numbers stored in STORE arrays )
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VARIABLE PanicFlag ( 1 -> panic 0 =) everything DK )

240 CDNSTANT STDRELength ( me:< # of entries which in array STDREi )

D CDNSTANT CHANHELO

1250 CONSTANT RTCperiodl (Real Timer Clock Timer 1 initial count )

(NOTE Must da Radio Initialization code BEFORE Kath liJards are included )

( **.**.******......... RADIO RECEIVER READING yaRDS •••••••••••••••*.... )
CDOE RAOID_REAO ( Reada Radio Receiver Channels upon IRQ )

KOVE.L DO,-(A6) ( saves contents of DO on stack)

KDVE.L $24(A4),-(A6)

KDVE.L D5, (A3)+

KDVE.L 06,05

KDVE.L (A6)+,06

KDVE. B #$21, RCCDIITRDLWDRD ( Latches all counts )

KDVE. W RCCDUNTER1,DO ( Reada LSB of Counter1

KDVE. B DO,LATPWK ( Savs temporaly )

KDVE. W RCCDUNTER1,OO ( Reada HSB of Counter1 )

LSL.W #8,00

KDVE.B LATPWK,DO Get LSB )

KDVE. W DO,LATPWK Save)

KDVE.W RCCDUNTER2,OO ( Reada LSB of Counter2 )

KDVE. B DO,LGTPWK ( Save tsmporaly )

KDVE. W RCCDUNTER2, 00 ( Reada HSB of Countsr2 )

LSL.lI #8,00

KDVE.B LGTPWK,OO Get LSB )

KDVE.lI DO,LGTPWK Save)

KDVE.B #$8P,RCCD!lTRDLlIDRD ( Revrites Cntrlword to 1 )

MOVE.B #0 ,RCCOUNTER1 ( Vrite LSB of initial counter! )

KDVE.B #D,RCCDUlITER1 ( lIrite HSB of initial counter1 )

KDVE.B #$4F,RCCD!lTRDLWDRD ( Revritss CntrIvord to 2 )

KDVE.B #D,RCCDU1ITER2 ( lIrite LSB of initial counter2 )

KDVE.B #O,RCCDU1ITER2 ( lIrite HSB of initial counter2 )

KDVE.B #l,RCTRIGGER ( Reset IRQ flip-flop on Radio Int )
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1I0VE.L D6,-(A6)

1I0VE.L DS,D6

1I0VE.L -(A3).D5

1I0VE.L (A6)+.$24(A4)

1I0VE.L (A6)+.00 ( Restores original value of DO )

RTE ( Return fram exception routine )

END-CO OE

CR . ( Loaded RADIO_READ )

RADIO_INIT ( Initialize Radio Control Interface t Interrupt)

[,] RADIO_REAO ( Initialize Radio Receiver ..• )

LEVEL2_IRQ ! ( ... Level 2 Autovector)

BINART

10001111 RCCONTROLWORO C! ( Set Counters 1,2 )

01001111 RCCONTROLWORD Cl ( tor !Iods 0 )

1 RCTRIGGER Cl ( Reset IRQ flip-flop on Radio Intf )

DEClllAL

RADIO_INIT ( Do radio receiver interrupt initialization )

(NOTE Must da Radio Initialization code BEFORE Math lilards are included )

( ****************** REAL TIME CLOCK REPROGRAMMING WORDS **************** )

CODE RTCset ( Sets RT Clock Counter 1 to sample rate )

MOVE.L DO,-(A6) ( saV8Scontents of 00 on stack)

1I0VE.B #$74,RTCctrlADDR ( Rewrites Cntrlvord for counter 1 )
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MOVE.W #RTCperiod1,OO

MOVE.B DO.RTCcounter1 ( Send 101l' byte )

LSR.W #8,DO

MOVE. B 00, RTCeo\lIlter1 ( Send high byte )

MOVE.L (A6)+,DO ( Restores original value of.OO )

RTS ( Return to subroutine )

END-COOE

CR . ( Loaded RTCset )

ALSO MATH ( include floating point processorvords )

FP32 ( set for 32 bit floating point numbers )

3. FCONSTANT OmegaO ( Nominal vheel epeed )

19.8 FCONSTABT LAT10NKtorq ( Lateral 10.Ngear.Ktorque )

15.12 FCONSTABT LGT10BKtorq ( Longit. 10.NgearoKtorque )

0.35048 FCONSTANT LATACCGAIN ( LAT Aeeel'meter ealibr eonstaut )

-0.31576 FCONSTANT LGTACCGAIN ( LGT Aeeel'meter ealibr ccna'tarrt )

( in units of m!s"2 per volt)

1. FCONSTANT LGTpt ( LGT taeh eomp pole)

0.9 FCONSTART LGTzt ( LGT taeh eomp zsro )

16. FCONSTART LGTKt ( LGT taeh eomp gain )

FVARIASLE LGTcommand ( LGT command fram radio receiver )

FVARIASLE LGTtach-meas ( LGT tachometer mau

FVARIASLE LGTacc_meas ( L6T accelerometer meas )

FVARIASLE LATcommand ( LAT command fram radio receiver )

FVARIASLE LATtach_meas ( LAT tachometer mau )

FVARIASLE LATacc_meas ( LAT accelerometer meas )
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FVARIABLE thetadot ( Plant theta_dot )

FVARIABLE eaege ( Plant omega )

FVARIABLE theta ( Plant theta )

FVARIABLE LGTVelError ( LGT velocity e=or )

FVARIABLE LGTxtk ( LGT tach loop compensator state )

FVARIABLE LGTxhatlk ( modal compensator state )

FVARIABLE LGTxhat2k ( modal compensator state )

FVARIABLE LGTxhat3k ( modal compensator state )

FVARIABLE LGTxhat4k ( modal compensator state )

FVARIABLE Eta5ign ( Sign of Turntable epeed ETA )

FVARIABLE OllegaSign ( Sign of Wheel speed OMEGA )

FVARIABLE LGTcontrolTorq ( Qcontrol = Qv of simulations )

FVARIABLE LG'ITorqAverage ( Average Longit Torque = Qfric)

FVARIABLE LGTtotalTorq (Qtotal = Qfric + Qcontrol )

FVARIABLE OllegaOAverage ( Average Wheel Speed )

FVARIABLE OmegaOAccum ( Wheel Speed Accumulator )

FVARIABLE LGTIorqAccum ( Longit Torque Accum. )

FVARIABLE STOREl STDRELength 4. VALLOT ( Time history )

FVARIABLE STORE2 STDRELength 4. VALLDT ( o=ays )

FVARIABLE STORE3 STORELength 4. VALLOT

400 1000 BACKGROUND SLAVE

400 1000 TERMINAL BOSS

( *****.****•••••••* DIGITAL-TO-ANALOG CONVERTER VORDS •••••••*••••**•••• )
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lIAG 5000 0 00 1000 1000 * DROP LODP (General purpoBe SIll ..ait loop )

: ?DACSATURATE ( n - n ) ( Check it DAC command Saturates )

DUP 4095 > ( check for positive saturation )

IF DROP 4095 ( drop large value i supply ea't , value )

ELSE DUP 0 < ( check for negative saturation )

IF DROP 0 ( drop large valus i supplysat. value )

THEI THEH (otherwis8 keep commanded DAe value )

: LATDAC ( tn - ) ( Get 12 bit biuary <-> Qt )

LAT10UKtorq FI (divide by 10*Ugear*Ktorque )

1. FSlIAP F- 2048. F*

F>I ?DACSATURATE ( check it 0 < BIUARY < 4096 )

LATDACADDR 1I! ; ( vrite 16 bit ..ord to LATDAC )

: LGTDAC ( tn - ) ( Get 12 bit biuary <-> Q.. )

FliEGATE ( so tbat Q.. > 0 causes OmegaO > 0 )

LGT10UKtorq FI (divide by 10*Ugear*Ktorque )

1. FSlIAP F- 2048. F*

F>I ?DACSATURATE ( check it 0 < BIUARY < 4096

LGTDACADDR 1I! ; ( vrite 16 bi1; word -tc LGTDAC

CR .( Loaded LGTDAC )
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S O. LATDAc O. LGTDAC ( Quick war to stop motors )

( ••••••••••••••••••• ANALOG-TQ-DIGITAL CONVERTER waRDS ••••••••••**•••** )

lIAlT4U ( n - ) ( sIll lIAlT tor n*4 microsecondB )

o 00 LOOP ;

: IlUXSWITCH (n - ) ( s'i'itches :HUX to specified input channel n )

IlUXADDR 11!

1 WAIT41 j ( waits 4 microsec. for KUX to settle )

SAlIPLEl:HOLD (-) ( SAlIPLE and HOLO command )

1 SiHADDR 1I! (sample analog signal )

7 WAIT4H ( vaits 28 microsec. for 8tH to settle )
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o SiHADDR 1/! ( place SiH device in HOLD mode )

AD_CONVERTER ( - n ) ( Do Analog to Digital. Conversion )

1 ADCADDR 1/! ( Starts A to D Converter )

9 WAIT4N ( Waits 36 micros8c. for ADe to finish)

ADeADDR 1/G ; ( Reada the digital. resul t trom the ADe )

: AtoD_CONVERT ( n - n ) ( Input Channel# ; Output Digitize value )

HUXSliITCH ( Complete process for an AtoD Conversion )

SAl!PLEI:HOLD

AD_CONVERTER

( ***.****••••••***... ACCELEROMETER READIHG VORDS .**••••***** ••••••***. )

RLATACe ( - tn) (Reads acceleration ae the instrument eeee i t )

4095

LATACCMUX AtoD_CONVERT ( Reada binary val.ue trom A/D )

- I>F ( Converts to floating point # )

0.004884 Fo

10.00366 FS1/AP F- ( Get analog voltage)

LATACCGAIN Fo (Kultiply by cal.ibr. constant to get ••• )

j (real acceleration seen by the instrument )

RLGTACC ( - fn) (Reads accelerationas the instrument sees it )

4095

LGTACCMUX AtoD_CONVERT ( Reada binary val.ue trom A/D )

- I)F ( Converts to floating point # )

0.004884 Fo

10.00366 FS1/AP F- ( Get anal.og voltage)

LGTACCGAIN Fo (Kultiply by cal.ibr. constant to get ••• )

j (real acceleration seen by the instrument )

CR • ( Loaded RLGTACC )

, ••**•••••**** ••*** POSITION ENeODER READIHG yaRDS ********************. )
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: RLATENC (- fn ) ( Read rurnrable Speed EU )

LArENCADDR WO ( Read number of clock pul.e. counted )

DUP 2 MOn 0= ( 0 m) even number => negative speed )

IF -1. EtaSign F! ( 1 => odd number -> positive speed )

ELSE 1. EtaSign F!

TREN I>P ( Conver1; encoder reading to float. point )

27.2708 FSWAF FI
EtaSign FO F* ; ( rurntable Speed EU in rad/sec )

: RLGTENC (" fn ) ( Read liheel Speed OMEGA )

LGTENCADDR VG ( Read number of clack pulses counted )

DUP 2 MOn 0= ( 0 => even number => negative speed )

IF -1. OmegaSign P! ( 1 => odd number 11:1) positive speed )

ELSE 1. OmegaSign F!

TREH I>P ( Convert encod.er reading to float. point )

10471.9755 FSWAF FI
OmegaSign FO F* ; (liheel Speed OMEGA in red/sec )

CR .( Loaded RLGrENC )

( ******••••••••***... REAL TIME CLOCK READING VORDS **••••****.*.*.*.*.* )

CODE ZEROtheTICKS ( - ) ( Zero. the tick counter regi.ter )

CLR.L (A5)

Rr5

END-CODE

CR .( Loaded ZEROtherICKS )

CODE rICKStoSrACK ( - n) ( Loads tick count on top of .tack )

KOVE.L (A5).-(A6) (Current tick counter value anto stack)

Rr5

END-CODE

CR .( Loaded rICKStoSrACK )

( ••••*****•••••**** RADIO RECEIVER READING WORDS •••***.********.***•••* )
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RLAl'PliH ( - LatR/C ) ( Read Lateral radio command )
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LATPI1lI 1/1 5154 - ( Remove bias )

I>F 1700. FI ( Scale to a value between -1 end +1 )

: RLGTPI1lI ( - LgtR/C ) ( Read Longit. radio command )

LGTPI1lI 1/1 5164 - ( Remove bias )

I>F -1700. F/ ; ( Scala to a value betveen -1 and +1 )

CR • ( Loaded RLGTPI1lI )

( *••************** CDNTROL SYSTEM ALGORITHM VORDS ********************** )

: CHECKTSAllPLE ( - f ) ( Check if semple time has expired )

TICKStoSTACK ( get tick count )

o > ; ( sets true flag if dt >~ Tsample )

CR • ( Loaded CIlECKTSAllPLE )

( -) (reads radio commandB, tacho- I:: accelerometers )

RLGTACC ( Reads Longitud. acceleration : ya )

LGTacc..meas Ft ( save the accelerometer measuremen't ya )

RLATACe ( Reads lateral acceleration as seen by sensor )

LATacc_meas F!

RLGTENC ( Reade wheel speed - pitch rate )

LGTtaclLmeas F! ( Saves longit. tach measurement yt )

RLA'I'ENC ( Reads turntable speed relative to frame : "e'ta" )

LATtaclLmeas F! ( Saves lateral tach measurement yt )

RLGTPWM ( Reads command fram radio receiver)

FDROP O. ( Temporary na additional vheel speed commanded )

OmegaO F+ ( Add nominal wheel speed )

LGTcommand F! ( Saves Longit. command )

RLATPllM ( Reads command from radio receiver)

LATcommand F! i ( Saves Lateral command )
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eR .( Loaded READ_SENSORS )

PLANTmodel ( Plant model for simulation purposes )

( Fixet calculate y(k) ~ Mx(k) + nu(k) : )

omega FG thetadot PI F- LGTtach-meas F! ( simulated tach meas. )

0.0011 omega FGthetadot Fe P- F*

4.67 theta Fe F* F+

-.023 LGTtotalTorq Fe F* F+ ( direct teedthrough term

LGTacc_meas F! ( simulated ace aeeeureaene")

( simulate state transitions x(k+1) ~ PHI*x(k) + G4MMA*u(k) )

1.0162 thetadot Fe F*

0.0008 omega Fe F* F+

1.3692 theta Fe F* F+

-0.0178 LGTtotalTorq Fe F* F+

( thetadot(k+l) remains on stack)

-0.0445 thetadot Fe F*

·0.9971 omega Fe F* F+

-3.7957 theta Fe F* F+

0.0607 LGTtotalTorq FO F* F+

( omega(k+1) remains on stack )

0.0251 thetadot Fe F*

0.0 omega Fa r* F+

1.0171 theta Fe F* F+

-0.0002 LGTtotalTorq FO F* F+

( theta(k+l) remains on stack )
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theta F!

omega F!

thetadot P!

( CR 11 thetadot a 11 thetadot FG F. )

( CR " omega = 11 omega FCI F. )

( CR " theta = 11 theta FCI F. )

GetAverageOmegaO ( - ) ( Checks if Average DmegaO .•. )

( elose to desired OmegaO )

LgtEncCount CI I>F FDUP ( number of numbers in accumulators )

OmegaOAccum FII FSWAP FI ( calculate average wheel speed)

OmegaOAverage P! ( stores the value )

LGTTorqAccum. FCI FSVAP FI ( calculate average friction torque )

LGTTorqAverage P! ( stores the value )

O. OmegaOAccum. P! ( Clears the accumulator )

O. LGTTorqAccum F! ( Clears the accumulator )

o LgtEncCount ! ( Resete counter )

1 SpeedUpCount +! ( increment counter)

SpeedUpCount G 3 > ( check if 300 sampIe periode have passed )

IF 1 LgtSBflag (Set flag => BALAIlCE routine next time )

o SpeedUpCount (Reset counter )

THEN j

CR • ( Loaded GetAverageOmegaO )

CHECK_SPEED ( -) (Check if wheel speed is up to DmegaO )

LGTtaclLmeas FCI ( Reads Vheel speed anto Floating Point stack )

OmegaOAccum FG F+ OmegaOAccum. F! ( Accumulate Speeds )



( Increments # wheel speeds stored counter )

( Check if enough values saved on stack)

P.2. LQG COMPENSATOR WITH ACCELEROMETER SENSOR

LGTtotalTorq FO ( Reads latest commanded 'Ilheel torque )

LGTTorqAccum. Fa F+ LGTTorqAccum. F! ( Accumulate torques

1 LgtEncCount +!

LgtEncCount a 100 >
IF GetAverageOmegaO

THEH

CR .( Loaded CHECK_SPEED )

SPEED_UP ( Tachometer PB compensation to speed up V'heel to OmegaO )

DmegaO (nominal wheel speed )

RLGTENC FDUP lGTtach_measF! (reads llheel speed and saves i t )

F- LGTVelError P! ( present velocity error )

LGTpt LGTzt F- LGTxtk Fa F* LGTVelErrox Fa F+ LGTKt F*

FDUP LGTOAC ( IBBuaB wheel torque command through ClA

LGTtotalTorq F! (Saves the contra! command )

LGTVelError Fa LGTpt LGTrtk Fa F* F+

LGTrtk P! (Update tach camp etats for Dext Tsample )
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( Check if 'Ilheel speed i8 up to OmegaO )

LGT_COHTROL ( Calculates the LGT contr output for this sampie instant )

LGTTorqAverage Fa

LGTcontrolTorq Fa F+ ( Add contra! torque to friction torque )

FDUP LGTtotalTorq F! (save the total torque commanded )

LGTDAC ( Output torque command to vheel motor )

CR .( Loaded LGT_CONTRDL )

LGTCompUpdate ( Updates LGT compensator states and control .•. )

( for next TBample )

-0.0564 LGTxhat1k Fa F*
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4.6483 LGTtach..meas Fa F* F+

-0.5677 LGTacc_meas Fa F* F+

0.0521 LGTcommand Fa F* F+

LGT:<hatlk F! ( store rlhat(k+l) for nert Tsample )

0.9314 LGTrhat2k Fa F*

0.0806 LGTtach..meas Fa F* F+

-0.0061 LGTacc_meas Fa F* F+

-0.0008 LGTcommand Fa F* F+

LGT:<hat2k F! ( store r2hat(k+l) for nert Tsample )

1.0011 LGT:<hat3k Fa F*

0.2574 LGTtach..meas Fa F* F+

-0.0476 LGTacc_meas Fa F* F+

-0.2435 LGTcommand Fa F* F+

LGTmat3k F! ( store x3hat(.k:+1) for next Tsample )

1.2545 LGT:<hat4k Fa F*

-1. 2481 LGTtach..meas Fa F* F+

0.2868 LGTacc_meas Fa F* F+

-0.0448 LGTcommand Fa F* F+

LGTrhat4k F! ( store r4hat(k+l) for nert Tsample )

-1.1031 LGT:<hatlk Fa F* ( calculate control torque •. )

-2.1475 LGT:<hat2k Fa F* F+ ( command for nert Tsample )

-0.0305 LGT:<hat3k Fa F* F+

1. 3899 LGT:<hat4k Fa F* F+

LGTcontrolTorq F! ; ( save u(k+l) )

CONTROL_SYSTEK (COIlTROL of lateral 1I: longitudinal motion)

Pan1cFlag a 0= ( Check the panic flag first

IF ( If zero => no panic )

LGTcommand Fa FDllP

-.5 F> 0.5 F< * 0= ( check if -.5 < LGTstick < 0.5 )



( Set panic flag )

( Do LGT system contra1 )

( get Lateral Radio Command )

( Let Lateral Stick contral tumtable torque )

( Output as a Current CollDlall.d to Lat motor )

P,2, LQG COMPENSATOR WITH ACCELEROMETER SENSOR

IF 1 PanicFlag !

ELSE LGT_CDNTRDL

TIIEN

ELSE ( Panic Mode : Command LGT torque directly fram R/e )

LGTcommand FD LGT10NKtorq F* LGTDAC

TIIEN

LATcommand FI

LAT10NKtorq F*

LATDAC ;

CR .c Loaded CDNTRDL_SYSTEJI )

STOREtimeHistory ( Stores a time bistory of a variable )

STDRELength STORECount D > ( check all data stored ? )

IF

LGTtotalTorq FG ( get the variable to be stored )

STORE1 STORECount 0 2* 2* + F! (increment index by 4 .. )

( to store Fl. Pt. # )

LGTtach-meas FG ( get the variable to be stored )

STDRE2 STORECount D 2* 2* + F!

LGTacc_meas. F1I (get the variable to be stored )

STIlRE3 STORECount D 2* 2* + F!
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1 STORECount +! ( increment index: )

TREN (increm.ents array pointer )

: lIORK ACTIVATE ( Activate Background taek )

S ( Stop all motors )

RADIO_XIII ( Initialize Radio receiver)

O. LGTtotalTorq F! ( Initial LGT contral torque == 0 )

DmegaO LGTcommand F! ( Initial LGT ref input ~ 0 )
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OmegaO LGTtach..meas F! ( Initial LGT tachometer meu • 0 )

O. LGTacc_lIl.eas F! ( Imtial LGT acesl meas = 0 )

O. LGTVelError F! ( Initial LGT velocity error = 0 )

O. thetadot P! ( lnitialize plant simu. states )

DmegaO omega P!

O. theta F!

O. LGTxtk P! ( lnitialize SPEED_UP camp etate)

13.3487 LGTxhatlk F! (Initialize the modal .• )

3.4915 LGTxhat2k F! ( compensator state. )

-38.7489 LGTrhat3k F!

15.2396 LGTxhat4k F!

O. OmegaOAccum P! ( Zero ~heel speed Accumulator )

O. LGTTorqAccum F! (Zero wheel torque Accumulator )

o. LGTTorqAverage P! ( Zero friction torque )

0.141 LGTcontrolTorq F! (Steady st. cntrl torque(Qw) •• )

( tor OmegaO )

o LgtEncCount !

o SpeedUpCount

o PanicFlag !

o STORECount

( Counterfor # wheel speeds to average )

( Counter that determines hOll long to SPEED_UP )

( Start vith no panic condition )

( initialize STOREi array counter)

o LgtSBnag (Start with speed-up algorithm )

RTeset ( Set Real Time clock to Tsample )

BEGIB

CHECKTSAMPLE ( Check if sample time haa e:I:pired )

IF ZERCtheTICKS ( If TRUE Reee't cntr = 0 .•. )
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LgtSB!lag G 0= ( Speed_up/Balance Plag - ? )

IF SPEED_UP ( 0 -> speed up vheel )

ELSE ( 1 -> do balance algorithms )

LGT_CONTRllL ( calculate LGT control torque )

STOREtimeHistory ( Stores a time histories )

READ_SENSORS ( Read all tbe sensors simultaneously )

(PLANTmodel simulate plant model to predict states .. )

( and measu:rements at next sample )
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LGTCompUpdate

TIIEII TIIEI/ PAUSE

AGAIII

( Update LGTcomp states for next Ts

( Go du terminal taek ) I

( *** BUILDIIIG OF TERMIIIAL It BACKGRllUIID TASKS FOR TllRI/KEY APPLICATIOII *** )

: WHIP ( Build and Activate Background task )

SLAVE BIJILD

SLAVE lIORK :

: ?KEY ( Check if key vas depressed )

BEGIlI

PAUSE

?TERMIIIAL

DUP

IF

KEY DROP

TIIEII

UllTIL

: PRIllT ACTIVATE (Activate Terminal tesk )

-1 II/IT-DISK ( reset all disk drives)

BEGIII

CR
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a" Press any kay to see BACKGROUND variable 11

?KEY

CR ." qw=[ n

STORELength 0 00

STORE1 I 2. 2. + FO

I 7 Mon 0= IF. II 11 CR

TREN F. 11 11

PAUSE LOOP

CR .11 ytach=[ 11

STDRELength 0 00

STDRE2 I 2. 2. + PO

I 7 Mon 0- IF 11 11 CR

THEN F. 11 11

PAUSE LOOP

CR .11 yacc=[ 11

STDRELength 0 00

STDRE3 I 2. 2. + FI

I 7 Mon 0= IF.II 11 CR

TREN F. 11 1I

PAUSE LOOP

AGAIN

: START

CHAIINELO BOSS BUILO ( Initializes Terminal Task )

BOSS PRIllT

WHIP j ( Initializes Background Tast )

TURNKEY START ( Turn program into a TURIlKEY application )

CR CR CR

.( Vrite protect STATIe memory and reset the computer)

EOF
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P.3 Successive Loop Closure and Pitch Sensor

345

The FORTH code which implements the compensator designed by successive loop

closure (section 0.5) with a pitch angle sensor, is listed below. The particular

print-out is for balancing the robot at zero speed, but it can be modified to bal­

ance longitudinally at any wheel speed by changing the OmegaO constant.

Fixed point arithmetic had been used and wheel speed and control torque was

scaled up by a factor of 103 while the accelerometer was scaled up by 106 •

Comments in the program listing explains the operations in the algorithm.

( -=-====== Longitudinal Contral TurnkeyProgram ===========)

( Program to test ucyc7/1gtdtach controller : Tsample= 25 milliseconds

( Tight tach feedback leop closed first vith integral error contral)

( Uss LOIlET pitch angle sensor )

o VERIFY !

LOAD/TARGET ( Turn schoing off during dollll1oading )

( ***.*************** DEFINE ADDRESSES AHD CONSTANTS ******************** )

HEX

800000 CONSTANT LATDACADDR ( Set LAT DAC's address )

800010 CONSTANT LGTDACADDR ( Set LGT DAC's address )

800020 CONSTANT LATENCADDR (Sst LAT Encoder's addre•• )

800030 CONSTANT LGTENCADDR (Sst LGT Encoder's addres. )
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800080 CDNSTANT RCCDUliTERO ( Radio Raceiver Inter:face )

800082 CDNSTANT RCCDUliTER1 ( Counter Adresses )

800084 CDNSTANT RCCDU1iTER2

800086 CDNSTANT RCCDNTRDLlIDRD ( Counter Controlvord address )

800090 CDNSTANT RCTRIGGER ( Trigger address to RESET IRQ flip-flop )

68 CDNSTANT LEVEL2_IRQ ( Level2 Autovector Address )

800000 CDNSTANT SiHADDR

8000EO CDNSTANT MUXADDR

8000FO CDNSTANT ADCADDR

( Sample a Hold's address

( Multiplexer's address )

( Analog-to-Digital ConverterJs address )

o CDNSTANT LATACCMOX ( MOXCode for Lateral Accelerometer )

1 CDNSTANT LGTACCMOX ( MOXCode for Longitudinal Accelerometer )

81000F CDNSTANT RTCctrlADDR ( Set Raal Time Clock's Controlsord addr. )

81000B CONSTAHT RTCcounterl (SetReal Time Clock's Counter 1 address

o CONSTANT CRANNELD ( Terminal task number )

DECIIlAL

15 CONSTANT LGTKt ( Tach loop gain )

-40 CDNSTANT LGTKa ( Acc loop gain )

o CDNSTANT DmegaO ( nominal sheel speede Iöeä")

320 CDNSTANT STDRELength ( data storage array STDREi length )

1250 CONSTANT RTCperiodl ( Real Timer Clack Timer 1 initial count)

( for 40 hz sampling freq )

VARIABLE LATFI/II ( Lateral Radio Pulse lIidth )

VARIABLE LGTFI/II ( Longit. Radio Pulse lIidth )

VARIABLE TICKSAVE ( Memory Lecatdcn to eeve tick count )

VARIABLE LgtEncCount ( Counter for # wheel epeede to average )
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VARIABLE Spe.dUpCoun~ ( # sampl. periods in SPEED_UP made )

VARIABLE STORECount ( Counter for # numbers stored )

VARIABLE LGTCmd ( LGT acceleration command *10e6 )

VARIABLE LGTxak ( LGT accelerometer compens. etate*lOeG

VARIABLE LGTxtt ( LGT tachometer compensator state*10e3

VARIABLE Ytach3 ( Tachometer measurement *10e3 )

VARIABLE Yacc6 ( Accelerometer m.easurement * 10e6

VARIABLE Qv3 ( Wh••l Torqu. *10.3 )

400 1000 BACKGROUND SLAVE

400 1000 TERMINAL BOSS

( *.****••••*....... REAL TIME CLOCK REPROGRAMMING WORDS ****.*********** )

CODE RTeset ( Sets Real Time Clock Counter 1 to sampie rate )

MOVE.L DO,-(A6) ( saV8S contents of Da on stack )

HOVE.B #$74,RTCc~rlADDR ( Revri~e. C~rlvord for coun~er 1 )

HOVE.W #RTCperiodl.DO

HOVE.B DO,RTCcoun~erl ( Send lov byte)

LSR.W #8,DO

HOVE. B DO, RTCcoun~erl ( Send high byte )

HOVE.L (A6)+,DO ( Re.~ore. original value of 00 )

RTS ( Return to Bubroutine )

END-CODE

CR .( Loaded RTC.e~ )

ALSO HATH
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FP32

FVARIABLE STORE1 STORELength 2* 2* VALLOT ( Time history )

FVARIABLE STORE2 STORELength 2* 2* VALLOT ( storage arrays )

FVARIABLE STORE3 STORELength 2* 2* VALLOT

( ******************* REAL TIME CLOCK READING WDRDS ********************* )

CODE ZERDtheTICKS ( - ) ( Zeros the tick counter register )

CLR.I. (AS)

RTS

END-CODE

ca . ( Loaded ZEROtheTICKS )

CODE TICKStoSTACK ( - n ) ( Loada tick count on top ot stack

KOVE.I. (A5).-(A6) ( Current tick counter value -) stack)

RTS

END-CODE

CR .( Loaded TICKStoSTACK)

( **********.******* CORTROL SYSTEM ALGORITHM VORDS ********************* )

S 2048 I.ATDACADOR V! 2048 LGTDACADOR V! ( Quick motors stop )

: ?DACSATURATE ( n - n) ( Check it DAC command Saturates

DUP 4095 > ( check for positive saturation )

IF DROP 4095 ( drop large value I: supply sat. value )

ELSE DUP 0 < ( check tor negative sa'turation )

IF DROP 0 ( drop large value I: supply sat. value )

THEN THEN (other'llise keep commanded DAe value )

WAIT4N ( n - ) ( S/W VAlT tor n*30 microseconda )

o 00 LOOP ;

: CHECKTSAKPLE ( - t ) ( Check it sample time has expired )

TICKStoSTACK ( get tick count )

o > ; ( ee'tie true flag if dt)= Tsample )

CR • ( Loaded CHECKTSAKPLE )
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WORK ACTIVATE ( Activate Background task )

S ( Stop all motors )

o LGTCmd! ( Initial LGT reference input assumed = 0 )

o LGTxtk (Initialize tach. comp. etate to zero )

o LGTxak (Initialize ace. comp. state to zero )

o SpeedUpCount (Initialize SPEED_UP countsr)

o STORECount (Initialize STOREi array entry ccurrtez-)

RTCset ( Set Real Time clock to Tsample )

BEGIB

CIlECKTSAIIPLE ( Check if sampIs time has expired

IF ZEROtheTICKS ( If TRUE Raset counter to zero ..)

( .************ HEAD LGT TACHOMETER AND ACCELEROMETER *********** )

LGTENCADDR va ( read binary value ;fram pos enc )

( Bt <- top of stack )

LGTACCMUX MUXADDR V! ( switch KUX to LGT accelerometer )

1· SlHADDR V! ( sampIe analog signal )

1 WAIT4H ( vait 30 microsec for StH settle )

o SI:HADDR V! ( place S.lH device in HOLD mode )

1 ADCADDR V! ( Starts A to D Converter )

1 VAIT4B ( wait for ADe to finish)

ADeADDR va ( reade binary value from A/D )

( Bt Ba <- top of stack )

4095 - 4884 • 10003660 + ( convert to a voltage.l0e6 )

20435 1000000 ./ ( scala by LGTACCGAIB => acc.l0e6 )

( Bt Ya6 <- top of stack )
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DUP Yace6 ! ( save capy of aceel 100 print )

( Bt Ya6 <- top of stack )

SpeedUpCount • 0 > (check if epeed-up phase over )

( ************. ACCELEROMETER LOOP COMPENSATION ***************** )

IF ( if so • add accelerometer compensation )

LGTCmd G ( get acceleration command )

5 100 */ ( mult. by Kr to get 10e6 * accel. command )

SWAP - ( subtract Ya6 100 gat ace. error*10e6 )

DUP ( save a capy for compensator update later )

( Bt Ea6 Ea6 <- top of stack )

LGTxak a (gat LGT accelerometer compensator etate )

( Bt Ea6 Ea6 Xa6<- top of stack )

8 100 */ + ( multiply by pa-za and add to ace. error )

LOTKa 1000 */ ( mult. by LOTKa, div. by 1000 -> da*10e3 )

( Bt Ea6 da6 <- top of stack )

ELSE ( during speed-up do tach loop compens. only )

DROP ( drop Ya6 fram top of stack )

o 0 ( supply zeros for Ea6 and da3 )

( Bt 0 0 <- top of stack )

( ***************** TACHOMETER LOOP COMPENSATION ******.*.******* )

THEN ( da tachometer compensation loop )

OmegaO + ( vheel speed + da3 )

( Bt Ea6 sum <- top of stack )

ROT ( get binary tach reading )
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( Ea6 sum Bt (- top of stack )

DUP ( make a copy to )

( determine sign later )

10471976 SWAP / ( get abs(ytach)'10e3 )

SWAP 2 1I0D 0= ( get sign of 'the wheel speed )

IF NEGATE THEN ( 0 => even # => neg. speed)

( Ea6 sum Yt3 (- top of stack )

DUP Ytach3! (save a copy to print later )

( Ea6 sum Yt3 (- top of stack )

( getvelocity error*10e3 )

- ( Ea6 Et3 (- top of stack )

DUP ( Save copy for tach camp update

( Ea6 Et3 Et3(- top of stack )

LGTxtk G ( Get LGT tach compensator state )

( Ea6 Et3 Et3 Xtk(- top of stack )

25 100 ./ + ( multiply by pt-zt aod )

( add tach error )

LGTKt • ( multiply vith tach loop gedn to )

( iheel torque*10e3 )

( Ea6 Et3 Qw3 (- top of stack )

DUP Qw3! (make a copy 'tc print later )

( Ea6 Et6 Qw3(- top of stack )

15120 + 2048 15120 ./ ( get binary command for DAC )

?DACSATURATE ( check if DAC saturates )

LGTDACADDR W! ( cutput tcrque commaod )
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( Ea6 Et3<- top of stack )

( *************••• COMPENSATOR STATE UPDATE .****.******* )

LGTrtk G

( Ea6 Et3

( get LGT tach compens

Xt3 <- top of stack )

state )

100 100 */ ( multiply by LGTpt )

+ LGTrtk ! ( add to the tach. er-rc'r end save xhat(k+1) )

( Ea6 <- top of stack )

LGTxak 0 (get LGT accelerometer compensator state )

( Ea6 Xa6 <- top of stack )

103 100 */ ( multiply by LGTpa )

+ LGTXak ! ( add to the ace. error and save xhat(k+l) )

( stack empty (- topof stack )

1 SpeedUpCount +! ( mcrement speed-up counter )

( .*.*••**....... STORE TIME BISTORY .************.****** )

STORECount G STDRELength <

IF

Qv3 G I>F 1000. F/ ( Scale back to normal )

STORE1 STORECount G 2* 2. + F! ( multiply indel: by )

( 4 to store 64 bit # )

Ytach3 G I>F 1000. F/ ( Scale back to normal)

STORE2 STORECount G 2* 2* + F!

Yacc6 G I>F 1000000. F/ (Scale back to normal)

STDRE3 STORECount G 2* 2* + F!

1 STORECount +! ( Increment # stored )
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TIIEN

TIIEN PAUSE (Go do terminal taek )

AGAIN

( ••• BUILDING DF TERMINAL i BACKGRDUND TASKS FDR TURNKEY AFFLICATIDN ••• )

: WHIP ( Build and Activate Background task )

SLAVE BUILD

SLAVE WDRK ;

: ?KEY ( Check if key vas depressed )

BEGIN

PAUSE

?TERMINAL

DUP

IF

KEYDRDP

TIIEN

UNTIL

: PRINT ACTIVATE (Activate Terminal task )

-1 INIT-DISK ( reBBt all diek driveB )

BEGIN

CR

.11 Press any kay to see BACKGROUND variable 11

?KEY

ca .11 Qv=[.11

STORELength 0 00

STORE1 I 2. 2. + FG

I 8 MOD 0= IF 11 11 CR

TREN F. 11 11

PAUSE LOOP 11]; 11 CR
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CR .11 Ytach=[ 11

STORELongth 0 00

STDRE2 I 2* 2* + FI

I 8 HOn 0= Ir 11 11 CR

TlIEH F. 11 U

PAUSE LOOP 11]; 11 CR

CR ." Yacc=[ 11

STDRELongth 0 DO

STDRE3 I 2* 2* + FI

I 8 MOD 0= IF 11 11 CR

TlIEH F. 11 11

PAUSE LOOP 11]; 11 CR

CR

AGAIII

: START

CHAIlllELO BOSS BUILD ( Initializos Torminal Tast )

BOSS PRIllT

WHIP ; ( lnitializes Background Tast )

TURllKEY START ( Turn program into a TllRNKEY application )

CR CR CR

.e Write protect STATre memory and reset the computer ).

EOF



Appendix Q

Lateral Control System

Q.l Lateral equations of motion
"

The lateral equations of motion can be found from derivations in Appendices A, B

and C. The lateral equations can be decoupled from the longitudinal equations of

motion under the same conditions mentioned in section N.l.

Equations A.90, A.91 and A.92 then simplify to:

I

I

I '

I

[Ir + Ir +Ir +mwr?v +mF(rw + rF? +mT(rw +rT?]~

w 2 •- [12 + mwrw +mFrw(rw +Tp) +mTTw(rw + rT)]no'l,b

(Q.l)

, (Q.2)

(Q.3) ,

I
~

If the d.c. motor rotor inertia is non zero the additional terms due to the geared

drive system that should be included in the lateral dynamic equations of motion
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can be determined by inspection of equations G.13 and G.14 in Appendix G

W FR" R[I3 + 13 + (1 - n)I3 ],p + n(l - n)I3 iJ
W' •

= -I2 flor/> - fa,p + fTTI - QT

[lI + nI§l]~ + [lI + n2IfliJ = - fTTI + QT

(Q.4)

(Q.5)

Equations Q.2, Q.4 and Q.5 are the dynamic equations of motion of the lateral

system, where I§l is the moment of inertia of the roter of the turntable drive motor

and n is the gear ratio of the turntable drive system.

Rewriting these equations into state space representation, t~ey become:

4>
/

~0 112 113 0 J11 -fa Ir 0 -1

121 0 0 0 ~ 0 hJ. 0 J24 ,iJ 0
= + QT

0 132 133 0 iJ 0 0 -fT 0 TI 1

0 0 0 1 ~ 1 0 0 0 r/> 0
(Q.6)

Where:

112 = ir' +If + (l-n)I§l (Q.7)

113 - n(l- n)I§l (Q.8)

121 = Ir' + Ir + ir+ mwr?v + mF(rw + rF)2 + mT(rw + ~T?

(Q.9)

132 = Ir +nI§l (Q.10)

Ia3 = II +n2If (Q.ll)

J11 = -Irflo (Q.12)

J22 = [Ir + mwrh + mFrw(rw + rF) + mTrw(rw + rT)Jflo (Q.13)

J24 = [mwrw + mF(rw + rF) + mT(rw + rT)]g (Q.14)

Multiplication of equation Q.6 by the inverse of the first matrix containing the

inertia terms, yields the standard state space form ofthe system oflateral dynamic
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equations:

x=Fx+Gu

where u = QT and x = [~, ,p, TI <f>Y.

Q.2 Lateral sensors

357

(Q.15)

A tachometer and an accelerometer are used as the lateral sensors. A roll angle

sensor, for example a vertical gyro, is also considered as an alternative to the ac­

celerometer.

The tachometer's operation is slmllar to that of the one in the longitudinal system,

but here it is mounted on the rotor shaft of the turntable drive motor. It reads

WLAT = nLAT . TI (Q.16)

where nLAT is the known gear ratio of the turntable drive system. The mierepro­

cessor can scale the tachometer measurement so that the state TI is measured:

y, = TI (Q.17)

. '.

The accelerometer is mounted on the unicycle frame so that its acceleration sensi­

tive axis is in the direction of the sideways motion of the unicycle. It is placed on

the vertical centerline of the unicycle, so that it will not measure the component

due to yaw acceleration.

The accelerometer is actually a pendulum with a servo feedback loop around it

to change it to an accelerometer, as described in Appendix H. The output of the

instrument is a signal proportional to an internal control torque. This is generated

to counter the effects of specific forces on the unicycle frame at the position where

the accelerometer is mounted. The component of the frame sideways acceleration

can be obtained from equation A.76 and the acceleration due to gravity is -g<f> for

______ ________J
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small roll angles. Figure Q.1 shows how the sign of the accelerometer measurement

is determined.

(Q.18)

where rS3 is the height above the wheel axle at which the accelerometer is mounted.

From equation Q.15

(Q.19)

By scaling the accelerometer measurement in the microprocessor software and by

substituting equations Q.19 into Q.18, the lateral acceleration measurement can

be rewritten in terms of the states and control input:

Ya = -(rw + rS3)Fll4> +[rwno - (rw +rS3)FI2]-if,

(rw +rS3)FI31J + [g - (rw +rS3)F14]4> - (rw +rS3)G1QT

(Q.20)

The measurement obtained from an ideal roll angle sensor would be

Yr = <P

Q.3 Lateral system characteristics

(Q.21)

The lateral system dynamic behaviour is a function of the nominal wheel speed

0 0 , as can be seen from equations Q.12 and Q.13. The results presented in sec­

tion Q.3.1 show the state transition input and output matrices for a typical wheel

speed of 3 rad/sec. The measured mechanical parameters used in these calcula­

tions are listed in Appendix M.

j
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Q.3.1 Lateral system characteristics calculation

UCYC12/LATCHAR.CTR

LATERAL SYSTEII CHARACTERISTICS

***.*.*•••*******************************.***********.*****

LATERAL STATES PHI.DDT; PSI.DDT, ETA, PHI

CONTROL INPUT TURIlTABLE KOTOR TORQUE (QT)

KEASUREIIEIlTS TACHOIlETER; ACCELEROIlETER; ROLL ANGLE SENSOR

UIlITS IIETERS. RAOIANS. SECONOS

***.*****•••••**••*********••••****•••••••********•• ******.

NOMINAL WHEEL SPEED (RAD/SEC)

OIlEGAD =

3.D

ACCELEROIlETER HEIGHT (METERS)

RS3 =

0.6500

OPEIlLOOP SYSTEII IUTRICES:

*************************

FLAT =

359
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O. 0.6575 O. 10.9719

-0.2240 -0.0492 0.1212 O.

0.1718 0.0378 -0.2122 O.

1.0000 O. O. O.

CLAT

O.

-1.5415

2.6999

O.

IlLAT

O. O. 1.0000 O.

O. 0.0294 O. 0.5387

O. O. O. 1. 0000

NLAT =

O.

o.
O.

EIGVAL =

-0.0250

-0.2384

-3.2890

3.2910

EIGVEC •

0.0015 -0.0094 1.0000 1. 0000

1.0000 -0.6515 0.0713 -0.0653

0.2031 1.0000 -0.0567 0.0483
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-0.0599 0.0392 -0.3040 0.3039

cm

0.1828

2.5792

0.1573

-0.1425

OBS

0.2031 1.0000 -0.0567 0.0483

-0.0028 0.0020 -0.1617 0.1618

-0.0599 0.0392 -0.3040 0.3039

RESIDU

0.0371 2.6792 -0.0095 -0.0069

-0.0005 0.0052 -0.0271 -0.0231

-0.0110 0.1051 -0.0509 -0.0433

TRANSFER FUNCTION FROH TURIITABLE ORIVE TORQUE TC TACHOIlETER IIEASURE!lENT.

TACH2EROS =

3.3000

-3.2998

-0.0279

TACIIPOLES

3.2910

-3.2890

-0.2384

-0.0250

TACHGAIIi =



[

I
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2.6999

TRAIlSFER FUIlCTIDN FROH TURNTABLE DRIVE TDRQUE TD ACCELEROIlETER IIEASUREIIENT

ACCZEROS =

0.0000 + 1.02841

0.0000 - 1.02841

0.0000 + O. 1

ACCPDLES =

3.2910

-3.2890

-0.2384

-0.0250

ACCGAIN

-0.0454

TRAIlSFER FUIlCTIDN FRDH TURNTABLE DRIVE TDRQUE TD ROLL ANGLE IlEASUREIIEHT

ROLLZERDS =

O.

ROLLPDLES =

3.2910

-3.2890

-0.2384

-0.0250

RDLLGAIN
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-1. 0135

Q.4 LQG control system design

363

In this section we will design an optimal continuous time linear quadratic gaussian

compensator for the lateral system.

The unicycle yaw rate will accurately follow a reference command if the regulator

uses integral error feedback of the measured plant yaw rate. This introduces an

extra state, e, to the lateral system matrices:

[:] = [~ ;] [:]+[;]u+[.]

u = -[C. Cl [:]

where H = [ 0 1 0 0]

(Q.22)

The regular gains Ci for an optimal linear quadratic regulator were calculated by

minimizing the cost function:

(Q.23)

A CTRL-C program 'lgtlqg.ctr' was used to calculate the regulator gains and the

print-out is shown in section Q.4.l. The ratio r of the weighting factors were

chosen so that the step response (Figure Q.2) of the closed loop system reached

the commanded value in approximately 5 seconds. Figure Q.3 shows the closed

loop frequency of the lateral system. The closed loop system has a bandwidth of

approximately 0.3 Hz, which is comparable to that of the longitudinal system.
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A linear quadratic gaussion estimator was designed to estimate all the lateral states

from the tachometer and roll angle sensor measurement. The modified plant model

that includes the random disturbance effeets on the plant and measurements, is:

:i: = Fx+Gu+Gnw

Ym = Mx+v

where:

w is a random disturbance vector with spectral density Q

Ym is a vector of the measured quantities

'V is a random measurement noise vector

G n is the process noise input distribution matrix,

(Q.24)

(Q.25)

The complete statistical nature of the measurement noise is not known because

the actual sensors have not been selected. For this reason we will assurne the

same spectral densities for the tachometer (Rt ) and roll angle sensor (R r ) as for

the longitudinal system (refer to section N.5).

Rt = 0.05 rad2/8

R; = 0.1 m2
/ 8

3

The process noise speetral density is also assumed to be similar to that of the

longitudinal system. The noise input distribution matrix Gn is assumed to be the

same as the control input distribution matrix.

(Q.26)

A Kalman-Bucy filter [Kaiman] with filter gains L, can be designed to provide an

optimal estimate of the state vector :1: in the presence of the specified disturbance

Inputs. The estimator state equation is

~ = Fox+Gou +L(Ym - Mx) (Q.27)
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IdeaJly the plant model used in the estimator would have the same parameters as

the actual plant, i.e. Fa = Fand Go = G.

The Kalman filter gain matrix L is shown under ESTGAINS in the print-out listed

in section Q.4.l. Equations Q.22 and 0.24 can be combined to give the lateral

closed loop system matrices:

[
: ] = [: -~Ge -;G ][: ]+ [ ~1 ] r+ [~n ~] [: ]
ä: LM -GaGe Fa - GaG - LM ii; 0 0 L

(Q.28)

The performance of the state estlmator ls simulated where the actual initial roll

angle 16(0) = 2 degrees, while the estimated roll angle is ~(o) = O. Figure Q.4

shows that the roll error initiaJly increases to approximately 2.4 degrees while the

state estimates are improved. In the absence of noise the estimated states track

the actual plant states and the roll error is reduced to zero in approximately 5

seconds.

Q.4.1 Calculation of LQG gains

UCYC12/LATLQG.CTR

CONTINWUS TIIIE LATERAL CONTROL SYSTElI WITH FULL ORDER LQ ESTIHATOR

•••••••**•••••••••••**••••••••****.****.*******•••***.*.****•••****

LATERAL STATES PHI.DOT; PSLDOT; ETA; PHI

CONTROL INPUT : TURNTAllLE HOTOR TORQUE (QT)
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MEASUREMENTS UCHOIlETER; ROLL ANGLE SENSOR

UNITS METERS, RADIANS, SECONDS

••••• CONTINUOUS TIIIE PLANT KATRICES •••••

FLAT =

0.0000 0.6675 0.0000 10.9719

-0.2240 -0.0492 0.1212 0.0000

0.1718 0.0378 -0.2122 0.0000

1.0000 0.0000 0.0000 0.0000

GLAT

0.0000

-1. 5415

2.6999

0.0000

GNOISELAT •

0.0000

-1.5415

2.6999·

0.0000

MLAT

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

NLAT =

0.0

0.0
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••••• HATBICES FOH INTEGRAL ERROR FEEDBACK CONTROL •••••

EXTENOED STATE VECTOR IS PSIOOT.ERR; PHI.OOT; PSI.OOT; ETA; PHI

FINT =

0.0000 0.0000 1. 0000 0.0000 0.0000

0.0000 0.0000 0.6575 0.0000 10.9719

0.0000 -0.2240 -0.0492 0.1212 0.0000

0.0000 0.1718 0.0378 -0.2122 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000

GIIIT

0.0000

0.0000

-1.5415

2.6999

0.0000

***** REGULATOR DESIGN *****

COST FUNCTIOI/ l/EIGHTING FACTORS ON STATER ANO COI/TROL

ADIAG =

5.0 0.0 0.0 0.0 0.0

BDIAG =

1.0

OPTIMAL II/TEGRAL ERHOR ANO STATE FEEDBACK GAIIIS

CERH

2.2361
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CUT

-45.4187 -5.9571 -0.0787 -150.9253

REGGAIJI

-3.4468

REGZEROS •

-3.3124

3.3124

-0.0000

REGPOLES =

-0.0000 + O.OOOOi

-1.3237 + 1.3180i

-1.3237 - 1.3180i

-3.2921 - 0.0064i

-3.2921 + 0.0064i

***** ESTlMATOR DESIGN *****

PROCESS AJlD MEASUREMEJIT NOISE SPECTRAL DENSITIES

QUT

1.0

RUT =

0.0500 0.0000

0.0000 0.1000
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OPTIMAL ESTIHATOR GAINS !ND ESTIHATOR POLES

ESTGAINS

369

1.2390

-6.8113

11. 8559

0.4628

ESTPOLES

21. 7228

-0.9544

0.2314

6.5832

=

-0.0279 + O.OOOOi

-3.3009 + 0.0417i

-3.3009 - 0.0417i

-12.0710 - O.OOOOi
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a 3 (vertical)

for a positive roll angle
$ > 0

pendulum control torque
Q p (LAT) > 0

A

I
I
I
I

~ direction ofSiframe acceleration

rw+ r S3 for lateral acceleration
of the frame of:

[- (IW + rS3)~ + rwQo Cp] f 2
pendulum control torque
Qp (LAT) > 0

f
2

he output signal from the servo accelerometer is proportional to
't.he total pendulumcontrol torque AIQp(LAT)= k a [-(rW + rS3)~ + rwf.loll> + gcjl1f

2

Figure Q.l: Lateral Accelerometer Measurement
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RESP0NSE WITH FULL .STATE FEEDBACK
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Figure Q.2: Step Response of the Lateral System with Full State Feedback
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FREQ. RESP0NSE WITH FULL STATE FEEDBACK
0.0
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Figure Q.3: Frequency Response of the Lateral Closed Loop System with Full State
Feedback
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RESP0NSE WITH FULL 0ROER ESTIMAT0R
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