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1 Introduction

Everyone that has ridden a variety of different bicycles will have experienced,
particularly at low speed, that the construction of the bicycle largely influences
the ease with which one can balance oneself.

Therefore it is understandable that, shortly after the bicycle was introduced,
attempts were all ready undertaken to examine what the influence of the head-
angle, trail, position of the centre of gravity, the weight of the front wheel and
other bicycle parameters have on the stability of the bicycle in order to reach
an optimal construction.

The mathematical difficulties and particularly the complexity of the calcu-
lations, that were encountered during these attempts, were so large, that they
remained at attempts. However around 1900 Carvello 1 and Whipple 2 did cal-
culate, for a given bicycle, the speed range within which the bicycle is stable,
and give some general suggestions. However, these articles were published in
mathematical journals and the given suggestions were to restricted to be of any
influence in the development of the bicycle’s construction. The bicycle has thus
developed solely on the insight gained from practical experience and has lead to
a generally accepted model. It is assumed that this design represents the best
compromise between the demands laid upon it by, not only the stability, but
also the strength, the position of the rider, the simplicity of the construction
and the production costs.

However it remains a dissatisfying situation that bicycle manufacturers are
not capable of overseeing the consequences of somewhat radical design changes
to a new model and that they do not know what measures to take to, for
instance, design a bicycle that is also well rideable at low speeds. Also it is
presently not possible to compare, objectively, the properties of the style of
bicycle commonly seen in the Netherlands with that of the French model.

For this reason it was decided to review the fundamental problems of the
bicycle design as thoroughly as possible in a monograph serie. This report

1Journal de l’école polytechnique. 2nd serie, Vol.5 et 6, 1900 and 1901.
2Quarterly Journal of Mathematics. Vol. 30, 1899.
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only treats the stability, but the intention is to, in due time, to follow on
with studies on the external loading, strength, stiffness and physiology

2 The nature of the motion of a moving bicycle

In this chapter some of the facets of a moving bicycle will be discussed in order
to introduce a manner of thinking ahead of the calculations that will be carried
out in the following chapters.The discussed aspects are however, neither exact
nor complete.

When one takes a bicycle with a non-moving, rigidly attached, rider who is in
the hands free situation, and gives this bicycle a certain speed, then theoretically,
it is possible that the bicycle will move in a straight line provided that the
bicycle is released perfectly vertically and no external disturbances take place
such as unevenness in the road surface, lateral wind gusts etc. In practice this is
obviously impossible as the mentioned disturbances, however small, will always
be present. Of interest is how the bicycle will react to a small deviation from
the straight ahead and upright position. In other words, if by coincidence there
happens to be a small handlebar rotation β or angle ε between the frame and
the vertical will this angle automatically become smaller or larger.

One can attempt to account for a number of aspects by considering the
following:

If a bicycle leans over to the right, the handlebars also have to turn to the
right, such that the induced centripetal force, acting to the left, return the
bicycle to its vertical position, otherwise the lean angle to the right will increase
and the bicycle will fall over.

Those effects that try to turn the handlebar in the same direction as that
the bicycle is leaning are of importance for the stability of the bicycle.

1. Trail
Fig.1 represents a rear view of the bicycle. If there is no steering angle and
bicycle moves in a straight line, then the reaction force from the ground,
will be directed vertically upwards. Note that the force Pv acting on the
front wheel has a component directed perpendicular to the wheel plane
and acting in the opposite direction to the the direction that the bicycle
wants to fall over.
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If the contact point of the front-wheel with the ground is located behind
the steering axis, then this force component will cause a moment to act in
the desired direction causing the handlebars to turn towards the side that
it is leaning towards.

2. Position of the centre of gravity of the front-wheel & front-frame
Fig.1 shows that the weight of the front-frame & front-wheel has a compo-
nent perpendicular to the plane of the front-wheel acting in the direction
of falling over. when its centre of gravity is located in front of the steering
axis, then the handlebars will also turn in this direction.

3. Gyroscopic effects of the front wheel
If a bicycle, with its front wheel rotating in the normal manner, is rotated
about its lean axis, then the handlebars will turn in the desired direction.
This can be demonstrated clearly with a bicycle that is suspended at its
rear wheel. A heavy and large front-wheel is thus favourable for stability.

4. Moment of inertia of the front wheel & front-frame about the steering axis
The smaller this moment of inertia is, the faster the handlebars will rotate
as a result of the moments mentioned in parts 1, 2 and 3.

This measure however, is difficult to combine with the other previously
mentioned measures. After all the larger the trail, the further forward the
centre of gravity of the front-frame and front-wheel and the centre of the
front-wheel, the larger the moment of inertia about the steering axis will
be.

With these four points we have been able get an impression of the effects
that play a role in influencing the stability. It is however not possible to make
quantitative assertions about the observations. Neither is it possible to find
their underlying relationship between the different effects or the effect of the
steering axis angle.

In the following chapter the derivation will be given for the general motion
of the bicycle. It will be shown that the general motion of the bicycle can be
described by equations such as:

ε = C1e
a1t + C2e

a2t + ea3t(C3 sin bt + C4 cos bt) (1)

where:
ε = the angle between the frame-plane and the vertical;
e =2.7183, t= the time in seconds
C1, C2, C3, C4 are constants, that determine the initial conditions at time
t = 0.3

3If the bike is completely vertical at time t = 0 and the handlebars in the straight ahead
position, then C1 = C2 = C3 = C4 = 0 and ε and β will both remain = 0
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a1, a2, a3, and b are parameters that depend on the bicycle’s dimensions,
its speed and weight and the weight of the rider.

A similar equation can be derived for the steering angle β, but with different
values for C1, C2, C3, and C4.

The variables a1, a2, a3, and b are the same for both the ε and β equations,
clearly indicating that the tip over mode and the steering mode of the bicycle
are coupled.

Upon further examination of the equations it appears that the stability of
the bicycle depends on whether a1, a2 and a3 are negative in value. If any one of
the variables is positive then there is always at least one term that will grow in
time. This will then also be the case for ε, thus the bike will fall over. If a1, a2

and a3 however are all negative, then all the terms will get smaller in time such
that an initial deviation from the upright will automatically disappear in time.

It should also be noted that, unless b = 0, an oscillation will take place,
which will grow or decay depending on whether a3 is positive or negative.

Fig.2 shows how, for a specific Dutch bicycle, a1, a2, a3 and b depend on
the speed. It shows that between 16 and 21.6 km/h all the a’s are negative and
thus that the motion of the bicycle is stable. Above 21.6 km/h a2 is positive,
but very small. In this speed range the motion is unstable, but this instability
is so small, that the rider can prevent the tipping over of the bicycle by small
and slow movements of the his centre of gravity or of the handlebars.

In the following example let us assume that the speed of the bicycle is 36
km/h (then a3 is largest). Also assume that for some reason the lean angle has
become so large that the centre of gravity of the bicycle has moved 1 cm from
its equilibrium position. Then the deviation of the centre of gravity from the
equilibrium position, assuming that the rider acts completely passively (rigidly
attached), will only have increased by 2 cm after 50 meters of cycling.

On the other hand if the speed drops below 16 km/h, then we see that
a3 becomes highly positive. How slow the bicycle can be ridden, will in this
case, therefore depend on the acrobatic skills and training of the rider. The
instability will be exhibited in the form of an ever growing oscillation. Below
3 km/h, b = 0 and thus the bicycle will tip over without first carrying out an
oscillatory motion.

As stated earlier, Fig.2 applies for one specific bicycle. If such a figure is
drawn for a bicycle, that is of a different construction, then in general the found
values for the limits of stability A and B, will also differ.
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In the following chapters it will be examined how the stability boundaries for
the bicycle depend on its dimensions and the weight distribution of the bicycle
and rider.

Readers who are not at home in the theoretical mechanics can skip chapters
3, 4 and 5 and immediately continue with chapter 6. For them though we
mention that:

a1, a2, a3 + b i and a3 − b i4

are the roots are of the fourth order equation:

α0λ
4 + α1λ

3 + α2λ
2 + α3λ + α4 = 0 (2)

In chapter 6 the meaning of α0, α1, α2, α3 and α4 is given.
The conditions for a1, a2 and a3 to be negative are now:

α0 > 0, α1 > 0, α2 > α3
α1

α0 + α1
α3

α4, α3 > 0 and α4 > 0.
Thus these are the stability conditions.

3 Kinematic relations and the declaration of the
used notation

A bicycle in its most general state is drawn in fig.3. The bicycle is characterised
by both its wheel-radii ra and rv, the length of the two lines e and d that are
perpendicular to the steering axis (stuuras) and connect the wheel centres Ba

and Bv to the steering axis, and the distance m between these two perpendicular
lines measured along the steering axis.

The position of the bicycle is determined by coordinates x and y of the con-
tact point of the rear wheel with respect to the global reference frame O X Y Z,
of which the X Y plane coincides with the ground plane. Furthermore by the
angle θ between the line intersecting ground plane and the rear wheel plane,
and the X-axis, by the angle ε between the rear wheel plane and the vertical
and the angle ψ which is the angle rotated by the handlebars about its axis.

Besides those mentioned above, Fig.3 also shows the following angles and
distances:

ρ = the distance between the contact point of the front wheel Sv and the
intersection H of the steering axis with the ground plane.

q = the distance between the contact point of the rear wheel Sa and the
intersection of steering axis with the ground plane.

4i =
√−1 or more correctly i2 = −1
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α = the angle between the steering axis and the line intersecting the rear
wheel plane (rear frame plane) and the ground plane.

γ = the angle between the steering axis and the line intersecting the front
wheel plane with the ground plane.

β = the angle between the lines intersecting the front and rear wheel plane
with the ground plane.

δ = the angle between the front wheel plane and the vertical.

Relationships exist between these parameters, some of which can be derived
using the well known formulas from the spherical trigonometry (see Fig.4)

tan δ = cot α
sin β

cos ε
+ cos β tan ε (3)

sinβ

sin ψ
=

sin α

cos δ
=

sin γ

cos ε
(4)

In order to determine the dynamic properties of the bicycle, the following axes
that move with the bicycle will be introduced:

1. coordinate system Ca X Y Z, connected to the rear frame, with the origin
Ca, located in the combined centre of gravity for the rear- wheel and frame
and the rider.

2. coordinate system Cv X Y Z, connected to the rotatable front frame with
its origin Cv, located in the combined center of gravity for the front wheel,
front fork and handlebars, in other words all the components that, upon
rotating the handlebars rotate also move accordingly.

The orientation of these two local coordinate systems is such that when the
bicycle is in the upright vertical position with the handlebars facing forward,
the Z-axis is pointing vertically upwards, the X-axis points forward and the
Y -axis to the left.

The following moments of inertia and product moments of inertia are defined
with respect to these local coordinate systems.

Ixa = moment of inertia ) of the rider, the rear frame and
Iza = moment of inertia ) rear wheel, with respect to the
Ixza = product moment of inertia ) coordinate system Ca X Y Z

Ixv = moment of inertia ) of the front wheel, handlebars
Izv = moment of inertia ) and fork, with respect to the
Ixzv = product moment of inertia ) coordinate system Cv X Y Z

Since the local coordinate systems move together with the concerned parts,
the values for Ixa, Ixv etc, do not change when the bicycles moves.
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The position of the two centres of gravity Ca and Cv are given by their
distance to the ground plane ha and hv and by the distances u and a to the
vertical lines through the rear- and front wheel’s contact point respectively,
measured under the condition that the bicycle is placed in the vertical upright
position with the handlebars in the straight ahead position, such that ha, hv, u
and a are constants just like f (= the horizontal distance from Cv to the steering
axis).

All the angles (θ, β, ψ, α, γ, ε, and δ), the distances p and q and the
wheelbase b, as well as the coordinates x and y of the contact point of the rear
wheel are variable during the motion.

In the following only small deviations from the straight ahead motion will
be considered. This means that it is assumed that when y, θ, β, ψ, ε and
δ are infinitesimally small they remain 1st order! It will become evident that
infinitesimally small variations in α, γ, p, q and b are of 2nd order. Namely if
α0 is the value that α and γ have when β = ψ = 0 and putting

α = α0 + ∆α
γ = α0 + ∆γ

(5)

then from equation 4 and provided that infinitesimally small values of the 3rd

order are neglected, one can deduce that:

sin(α0 + ∆α) cos ε = sin(α0 + ∆γ) cos δ

(sinα0 cos∆α + cos α0 sin∆α) cos ε = (sin α0 cos∆γ +
cosα0 sin∆γ) cos δ

{sinα0(1− ∆α2

2
+ .... ) + cos(∆α− .... )}(1− ε2

2
+ .... ) =

{sinα0(1− ∆γ2

2
+ .... ) + cos(∆γ − .... )}(1− δ2

2
+ .... )

∆α−∆γ =
1
2

tanα0(ε2 − δ2) (6)

If H0 is the point along the steering axis at which the steering axis intersects
the ground plane when the handlebars are in the forward position (and thus
β = 0), then in general, if β and ε 6= 0, H0 will lie a certain distance below (or
above) the ground plane. This distance can be expressed in terms of ∆γ and p
and in terms of ∆α and q, and these two expressions can be equated. Thus for
infinitesimally small ∆α and ∆γ it is found that:
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p∆γ = q∆α (7)

Using equations 6 and 7 one solves:

∆α = − p
q−p

1
2 tan α0(ε2 − δ2)

∆γ = − q
q−p

1
2 tan α0(ε2 − δ2)

(8)

If all 3rd order (and higher) terms of equation 3 are neglected, it can be simplified
to:

δ = β cot α + ε (9)

Placing equation 9 in equation 8 and taking q − p = b then:

∆α =
p

b
(εβ +

1
2
β2 cot α) (10)

∆γ =
b + p

b
(εβ +

1
2
β2 cot α) (11)

In equations 9, 10 and 11, the values for α, b and p are the value that these
variables have when β = 0. This will also be the case in all the equations still
to come. The error caused by these assumptions is of 2nd order with respect
to the other terms in the equations. From here on, x, y, φ, ε, and β will be
chosen as the independent variables that describe the motion of the bicycle.
ra, rv, p, b, cot α, Ixa, Iza, Ixza, Ixv, Izv, Ixzv and the mass’s Mv and Ma of
the front and rear part of the bicycle with rider are all constants of the bicycle.
Finally, the moments of inertia of the front wheel Iwv and rear wheel Iwa, about
their respective axles, will also be used.

4 The equations of motion

The lagrange method can be used for the derivation of the equations of motion.
This is possible because retrospective elimination of reaction forces, that the
front and rear frames exert on each other, can be avoided and likewise the
expressing of accelerations in non-cartesian coordinates can also be avoided.

By noting two points in advance, the calculation work for the formulation
of the Lagrange equations can be simplified.
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First, one can eliminate the x-coordinate and the resulting Lagrange equa-
tions[sic].

Only infinitesimally small forces of 2nd order work in the direction of the X-
axis. Namely the components in the X-direction of the ∞ small reaction forces
in the ground plane, perpendicular to the lines intersecting the wheel planes
with the ground plane. The acceleration and the variations in V , the velocity
in the X-direction, are thus ∞ small of 2nd order. The 1

2MV 2 term can thus
be omitted when formulating the kinetic energy Lagrange equation. The same
applies to the rotational speeds about the Y -axes, which are also infinitesimally
small of 2nd order, as can immediately be seen from equations 10 and 11.

Secondly, it is better to process the gyroscopic moments, which are a result
of the rotating wheels, as external moments, thus as energy coefficients, rather
than as rotational-energy in the kinetic energy equation T . Thus for the calcu-
lation of T , the wheels will therefore be considered as rigidly attached elements
to the relevant parts of the bicycle.

We will now proceed by expressing the energy of the bicycle T in the coor-
dinates: y, θ, ε, and β.

T = Tza + Toa + Tzv + Tov (12)

Tza = the energy of the translational motion of the rear part of the bicycle as
a result of the translation of its centre of gravity.

Toa = The energy as a result of the rotational motions of the rear part of the
bicycle about its centre of gravity

Tzv and Tov are the corresponding values for the front part (handlebars + front
fork + front wheel).

In Fig.5 the speeds for which Ca, the centre of gravity of the rear part, partici-
pates have been drawn; in Fig.6 the speeds of Cv; in Fig.7 and 8 the respective
rotational speeds for the rear- and front parts of the bicycle have been drawn.

With these figures it is easy to verify the following expressions (4th order
variables have been neglected):

Tza =
1
2
Ma(ẏ + haε̇ + uθ̇)2 (13)

Tzv =
1
2
Mv{ẏ + fβ̇ + (b− a)θ̇ + hv ε̇}2 (14)

Toa =
1
2
Ixaε̇2 +

1
2
Izaθ̇2 + Ixzaε̇θ̇ (15)
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Tov =
1
2
Ixv(β̇ cot α + ε̇)2 +

1
2
Izv(β̇ + θ̇)2 +

Ixzv(β̇ cot α + ε̇)(β̇ + θ̇) (16)

The potential energy can be calculated by expressing the drop in height of
the centers of gravity in the chosen coordinates. From Fig.3 and with the help
of equations 9, 10 and 11 it is found that Ca drops by:

U∆α +
1
2
haε2 =

pu

b
(εβ +

1
2
β2 cot α) +

1
2
haε2

and Cv drops by:

− a∆γ +
1
2
hvδ2 = −a(b + p)

b
(εβ +

1
2
β2 cotα) +

1
2
hv(ε + β cot α)2

such that the potential energy is:

Epot = −gMa{pu

b
(εβ +

1
2
β2 cot α) +

1
2
haε2}

gMv{−a(b + p)
b

(εβ +
1
2
β2 cot α) +

1
2
hv(ε + β cot α)2} (17)

However during any arbitrary displacement work is also performed by the reac-
tion forces Pa and Pv in the ground plane, perpendicular to the lines intersect-
ing rear wheel plane with the ground plane and the front wheel plane with the
ground plane. These forces prevent lateral wheel slip.

There are also the gyroscopic moments Mxv, Mzv, Mxa and Mza, respec-
tively operating on the front part of the bicycle about the X- and Z-axis and
the rear part of the bicycle about the X- and Z-axis.

The on page 6 described local coordinate systems that move with the bicycle
are the ones meant here. If the angular speeds of the wheels ωv and ωa are
infinitely large relative to the angular speeds ε̇, β̇, θ̇ and δ̇ then these moments
are (see fig.9 and 10):

Mxv = Iwv ω v (θ̇ + β̇) (18)
Mzv = Iwv ω v (β̇ cot α + ε̇) (19)
Mxa = Iwa ω a θ̇ (20)
Mza = Iwa ω a ε̇ (21)
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The virtual work coefficients in the Lagrange equation are thus:

αy = −∂Epot

∂y
+ Pa + Pv = Pa + Pv (22)

αθ = −∂Epot

∂θ
+ bPv + Mza + Mzv = bPv + Iwaωaε +

Iwvωv(β̇ cot α + ε̇) (23)

αε = −∂Epot

∂ε
−Mxv −Mxa = gMa(

pu

b
β + haε) +

gMv{hv(ε + β cot α)− a(b + p)
b

β} − Iwvωv(θ̇ + β̇)

−Iwaωaθ̇ (24)

αβ = −∂Epot

∂β
− pPv + Mzv −Mxv

∂δ

∂β
= gMa

pu

b

(ε + β cot α) + gMv{hv(ε + β cot α) cot α−
−a(b + p)

b
(ε + β cotα)} − pPv + Iwvωvx

(β̇ cot α + ε̇)− Iwvωv(θ̇ + β̇) cot α (24a)

It is now possible to proceed with the formulation of the Lagrange Equation:

d

dt

∂T

∂ẏ
− ∂T

∂y
= αy

d

dt

∂T

∂θ̇
− ∂T

∂θ
= αθ

etc.

The second term in each of these equations is = 0. this is because in each
of the expressions for T only the flux of the coordinate appears and not the
coordinate self.

Finally one therefore finds:
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d

dt

∂T

∂ẏ
= Ma(ÿ + haε̈ + uθ̈) + Mv{ÿ + fβ̈ + (b− a)θ̈ + hv ε̈} =

αy (25)
d

dt

∂T

∂θ̇
= Ma(ÿ + haε̈ + uθ̈)u + Mv{ÿ + fβ̈ + (b− a)θ̈ + hv ε̈}(b− a)

+Izaθ̈ + Ixzaε̈ + Izv(β̈ + θ̈) + Ixzv(β̈ cot α + ε̈)
= αθ (26)

d

dt

∂T

∂ε̇
= Ma(ÿ + haε̈ + uθ̈)ha + Mv{ÿ + fβ̈ + (b− a)θ̈ + hv ε̈}hv +

Ixaε̈ + Ixzaθ̈ + Ixv(β̈ cot α + ε̈) + Ixzv(β̈ + θ̈)
= αε (27)

d

dt

∂T

∂β̇
= Mv{ÿ + fβ̈ + (b− a)θ̈ + hv ε̈}f + Ixv(β̈ cot α + ε̈) cot β +

Izv(β̈ + θ̈) + Ixzv(2β̈ cot α + ε̈ + θ̈ cot α) =
= αβ (28)

The non-holonomic conditions, that prevent lateral wheel slip, still have to
be added:

V θ − ẏ = 0 and
V (θ + β)− ẏ − bθ̇ + pβ̇ = 0

from which one can deduce:

θ =
V β + pβ

b
(29)

Ÿ = V θ̇ =
V

b
(V β + pβ̇). (30)

Using equations 29 and 30, θ̈ and ÿ can be substituted into the equations
25 through 28, such that αy, αθ, αε and αβ are expressed in terms of ε and β
and their time derivative. These expressions can now be substituted into the
following equation that has been derived from equations 23 and 25[sic]:

αβ +
p

b
αθ = gMa

pu

b
(ε + β cot α) + gMv{hv(ε + β cot α) cot α

= −a(b + p)
b

(ε + β cot α)}+ Iwvωv(
b + p

b
ε− v

b
β cot α)

= +
p

b
Iwaωaε̇,
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from which Pa and Pv have been eliminated, and in equation 24.
This gives two equations with β and ε as unknown functions. These two

equations, when classified according ε̈, ε̇, ε, β̈, β̇ and β look as follows:

(Ixa + Ixv + hv
2Mv + ha

2Ma)ε̈− g(haMa + hvMv)ε +

{p

b
(Ixza + Ixzv + uhaMa + [b− a]hvMv) + Ixzv + Ixv cot α

+hvfMv}β̈ + {Ixza + Ixzv + uhaMa + (b− a)hvMv +

p(haMa + hvMv) +
b + p

b
Iwvωv +

p

b
Iwaωa}V

b
β̇ +

{(hvMv + haMa)
V 2

b
− p

b
(uMa + [b− a]Mv)g − gfMv +

Iwvωv
V

b
+ Iwaωa

V

b
}β = 0 (31)

* * *

{Ixzv + Ixv cot α + hvfMv +
p

b
(Ixza + Ixzv + uhaMa + (b− a)

hvMv)}ε̈− {Iwvωv +
p

b
(Iwvωv + Iwaωa)}ε̇−

{p

b
(uMa + [b− a]Mv)g + fgMv}ε + {Ixv cot2 α +

2Ixzv cot α + Izv + f2Mv +
p2

b2
(Iza + Izv + u2Ma + [b− a]2Mv)

+
2p

b
(Izv + Ixzv cot α + [b− a]fMv}β̈ + {Izv + Ixzv cot α

+(b− a)fMv + pfMv +
p

b
(Iza + Izv + u2Ma + [b− a]2Mv) +

p2

b
(uMa + [b− a]Mv)}v

b
β̇ + {(pu

b
Ma +

p

b
[b− a]Mv)

(
V 2

b
− g cot α) + Iwvωv

v

b
cot α}β = 0 (32)

These are the equations of motion that need to be solved, which can be written
in short as:
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a1ε̈ + a3ε + a4β̈ + a5β̇ + a6β = 0 (33)
b1ε̈ + b2ε̇ + b3ε + b4β̈ + b β̇ + b6β = 0 (34)

The meaning of each of the coefficients a1 through b6 can be found by com-
paring equations 33 and 34 with the equations 31 and 32.

Thorough examination of a1 reveals that the term represents the mass mo-
ment of inertia of the complete bicycle with rider about the wheelbase line,
when the bicycle steering angle is =0. We define Ix as this moment of inertia.
In a similar manner the expressions in a5, a4, and b1 can be written as:

Ixza + Ixzv + uhaM − a + (b− a)hvMv = Ixz

in which Ixz is the product moment of inertia of the complete bicycle with rider
with respect to the coordinate system that goes vertically through the rear wheel
contact point and wheel base line, when the bicycle is upright and the steering
angle is =0. (see fig.11 and its associated table).

likewise:

Iza + Izv + u2Ma + (b− a)2Mv = Iz

Mvhv + Maha = Sx

Mv(b− a) + Mau = Sz

Furthermore the following transformations are also introduced:

∆ = Ixzv + Ixv cot α + hvfMv = Ias cot α + Ian + kfMv (35)
Γ = Izv + Ixzv cot α + (b− a)fMv = Ias − Ian cot α + jfMv (36)

The parameters Ias, Ian, k and j are defined in Fig.11 and the the associated
table. Equations 35 and 36 are easily verified with the help of Fig.11, from which
follows:

k = hv − f sin α cosα and
j = b− a− f sin2 α

Using this notation (see Fig.11) the coefficients in the equations 33 and 34
become:
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a1 = Ix; a2 = 0; a3 = −gSx; a4 = b1 =
p

b
Ixz + ∆;

a5 =
V

b

[
Ixz + pSx +

b + p

b
Iwv

b

rv
+

p

b
Iwa

b

ra

]

a6 = (Sx +
Iwv

rv
+

Iwa

ra
)
V 2

b
− g(

p

b
Sz + fMv)

b1 = a4 =
p

b
Ixz + ∆ (37)

b2 = −V

[
b + p

b

Iwv

rv
+

p

b

Iwa

ra

]

b3 = −g(
p

b
Sz + fMv)

b4 =
Ias

sin2 α
+

p2

b2
Iz + 2

P

b
Γ

b5 =
V

b

[p

b
Iz + p(

p

b
Sz + fMv) + Γ

]

b6 = (
p

b
Sz + fMv +

Iwv

rv
cot α)

V 2

b
− g(

p

b
Sz +

fMv) cot α

5 Derivation of the stability conditions

The equations 33 and 34 are solved by taking:

ε = Aeλt (38)
β = Beλt (39)

substituted into equations 33 and 34 thus gives:

(a1λ
2 + a3)A + (a4λ

2 + a5λ + a6)B = 0 (40)
(b1λ

2 + b2λ + b3)A + (b4λ
2 + b5λ + b6)B = 0 (41)

The general solution to these equations is A = B = 0, thus β = ε = 0 which is
the solution for the perfectly vertically upright and straight ahead motion. How-
ever if the equations become dependant then other solutions are also possible
as is the case for when the determinant of the coefficients = 0.
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∣∣∣∣∣∣

a1λ
2 + a3 a4λ

2 + a5λ + a6

b1λ
2 + b2λ + b3 b4λ

2 + b5λ + b6

∣∣∣∣∣∣
= 0

expanded:

(a1b4 − b1a4)λ4 + (a1b5 − b1a5 − b2a4)λ3 +
(a1b6 + a3b4 − a6b1 − b2a5 − b3a4)λ2 +
(a3b5 − b2a6 − b3a5)λ + (a3b6 − b3a6) = 0 (42)

This equation is identical to equation 2:

α0λ
4 + α1λ

3 + α2λ
2 + α3λ + α4 = 0 (2)

Upon viewing the equations 38 and 39, one is instantly convinced that it is
imperative that the real parts of the coefficients of λ in equation 2 be negative
for stability to occur upon. The necessary and sufficient conditions for ensuring
that the roots of the fourth order equation are negative can now be written, in
the notation as used above, as follows:

α0 = a1b4 − b1a4 > 0
α1 = a1b5 − b1a5 − b2a4 > 0
α3 = a3b5 − b2a6 − b3a5 > 0
α4 = a3b6 − b3a6 > 0

α2 = a1b6 + a3b4 − b1a6 − b2a5 − b3a4 >
α3

α1
α0 +

α1

α3
α4

When one substitutes the coefficients a1 through b6 (see equation 37) into the
above inequalities, then the inequalities 43 through 47, of the next chapter, are
found.

6 Conclusions,that can be drawn from the sta-
bility conditions

The following five conditions, 43 through 47, must be fulfilled for the straight
ahead forward motion of a bicycle, with a non-moving rider that is rigidly at-
tached to the rear frame and not touching the handlebars, to be stable. The
significance of the symbols that appear in the equations can be determined using
fig. 11 and its accompanying table.
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α0 = I2
x[

1
sin2 α

Ias

Ix
+

p2

b2
(
Iz

Ix
− I2

xz

Ix2
) + 2

p

b
(1− Ixz

Ix
cot α)

Ias

Ix

+2
(j − Ixz

Ix
k)fMv

Ix

p

b
− 2(cotα +

Ixz

Ix
)
Ian

Ix

p

b
−

∆2

Ix2
] > 0 (43)

α1 = I2
x[(

Iz

Ix
− I2

xz

Ix2
− bSx

Ix

∆
Ix

+
bfMv

Ix
)
p

b
+ (1− Ix2

Ix
cot α)

Ias

Ix
+

(j − Ixz

Ix
k)fMv

Ix
− (cotα +

Ixz

Ix
)
Ian

Ix
+

p2

b2
(
bSz

Ix
− bSx

Ix

Ixz

Ix
)]

V

b
> 0 (44)

α3 = IxSx[(1 +
Iwv

rvSx
+

Iwa

raSx
)(

b + p

rv

Iwv

Ix
+

p

ra

Iwa

Ix
)
V 2

bg
−

p

b
(
Iz

Ix
− Sz

Sx

Ixz

Ix
)− (j − Ixz

Sx
)fMv

Ix
− Ias

Ix
+

Ian

Ix
cot α]g

V

b

> 0 (45)

α4 = s2
xg2[(

Sz

Sx

p

b
+

fMv

Sx
)(cotα− Sz

Sx

p

b
− fMv

Sx
)−

{ Iwv

rvSx
cotα− (

Sz

Sx

p

b
+

fMv

Sx
)(

Iwv

rvSx
+

Iwa

raSx
)}V 2

bg
]

> 0 (46)
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α2 = IxSx[
p

b
{Sz

Sx
− Ixz

Ix
− (

Iwv

rvSx
+

Iwa

raSx
)
Ixz

Sx
+ (1 +

Iwa

raSx
)

(
b + p

rv

Iwv

Ix
+

p

ra

Iwa

Ix
)}+

fMv

Sx
+

Iwv

rvSx
cot α−

(1 +
Iwv

rvSx
+

Iwa

raSx
)
∆
Ix

+ (
Ixz

bSx
+

b + p

b

Iwv

rvSx
)(

b + p

rv

Iwv

Ix
+

p

ra

Iwa

Ix
)]

V 2

b
− IxSxg[(

p

b

Sz

Sx
+

fMv

Sx
){cot α−

2(
p

b

Ixz

Ix
+

∆
Ix

)}+
Ias

Ix sin2 x
+

p2

b2

Iz

Ix
+ 2

p

b

Γ
Ix

]

>
α3

α1
α0 +

α1

α3
α4 (47)

If all the parameters in these inequalities are exchanged for there numerical
values (see fig. 11), then one finds:

α0 = 32, 1 kg2m4 > 0; α1 = 110
V

b
kg2m4sec.−1 > 0;

α3 = (762
V 2

bg
− 672)

V

b
kg2m4sec−3 > 0

α4 = (7230− 2310
V 2

bg
) kg2m4sec−4 > 0; (48)

α2 = (1090
V 2

bg
− 1145) kg2m4sec−2 >

α3

α1
α0 +

α1

α3
α4

It thus follows from α4 > 0 that there is an upper limit for V 2

bg , namely,
V 2

bg < 3, 13 and from α3 > 0 it follows that the lower limit is V 2

bg > 0, 88.
However to fulfill the condition for α2,
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V 2

bg > 1, 71.

Thus if 3, 13 > V 2

bg > 1, 71 or 21, 6 km/h > V > 16 km/h then all five
conditions are met and thus in this speed range the bicycle from fig. 11 is stable.

In order to investigate the size and nature of the instability outside the above
mentioned speed range we consider the equation:

α0λ
4 + α1λ

3 + α2λ
2 + α3λ + α4 = 0 (2)

If all the coefficients are divided by α0, then we get:

λ4 +2, 63
V

b
λ3 + (34

V 2

bg
− 35, 8)λ2 + (23, 7

V 2

bg
− 20, 9)

V

b
λ

+225− 72
V 2

bg
= 0 (49)

For every speed V the corresponding roots to equation 49 can be determined.
This enables figure 2 to be drawn, the results of which were already discussed
in chapter 3.

It is thus relatively easy to determine the stability boundaries and the dy-
namic behaviour for an arbitrary bicycle using the inequalities 43 through 47.
We want to know which measures we have to take to, for example, reduce the
lower stability boundary for a certain bicycle, and more importantly we would
like an answer to the question: “How should we choose the dimensions of the
bicycle such that it best fulfils a certain goal ?”

Unfortunately the inequalities 43 through 47 are to obscure to be able to any
extract general conclusions. However it is possible to determine what the effect
of changing one thing for one specific bicycle has on its’ stability boundaries.
For example the mass moment of inertia of the front wheel Iw can be adjusted.
As a result of this change b, α, j, h, Ix, etc. are only influenced only slight bit
or, not at all . One can fill in a numerical value for each of these parameters
using Fig. 11, whilst for Ias a close approximation can be made by writing:

Ias =
1
2
Iw + (r cos α− p sin α)2Mw + Is

and for f =
Mw

Mv
(r cot α− p)− Ss

Mv sin α
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One therefore obtains:

α0 = 16, 1 + 65, 6Iw > 0

α1 = (92 + 42Iw)
V

b
> 0

α3 = [(3160Iw + 212I2
w)

V 2

bg
− (574 + 404Iw)]

V

b

> 0 (50)

α4 = 7230− 9440Iw
V 2

bg
> 0

α2 = (604 + 1955IW )
V 2

bg
− 1013− 538Iw >

α3

α1
α0 +

α1

α3
α4

The first two inequalities are always satisfied. The three other inequalities each
produce a line in a V - Iw diagram, dividing the diagram into a region that
does, and a region that does not satisfy the concerning equality.

The lines are given in fig. 12. The “illegitimate” side of the lines has been
shaded. One sees that the boundaries of the allowable region are formed by the
equations α4 = 0 (upper limit) and α2 = α3

α1
α0 + α1

α3
α4 (lower limit).

If the mass moment of inertia of the wheel is increased, then the boundaries
decrease; if it is made smaller, then the boundaries rise quite rapidly.

In chapter 3 we saw that the upper boundary is not that important as the
instability caused above this boundary is very small. On the other hand, for
cycling slowly, it is important that the lower boundary lies low. Therefore it is
desirable not to make the front wheel of the bicycle to light, if one desires easy
control at low speeds.

In a similar manner the stability boundaries as a function of the trail p and
for three values of the steering axis slope α have been drawn in fig. 13.

In this case decreasing p
b pulls the stability boundaries down and towards

each other. Reducing cot α has the same effect. By reducing the trail to 3 to 5
cm and cot α to 0.1 (this is an almost vertical steering axis), the lower stability
boundary can be reduced from 16 to less than 11 km/h.
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These changes however, would move the handlebars forward by 35 cm, this
distance is difficult to compensate by simply extending the handlebars rear-
wards. Two other demands that are laid upon the handlebars that can be
deducted from the inequalities. They are that the mass moment of inertia of
the handlebars (including front fork, without the front wheel) about the steer-
ing axis should be as small as possible and that the centre of gravity of the
handlebars should not come to lie to far towards the rear.

During the deduction of the above mentioned conclusions it was presumed that
changes to the handlebars-front wheel part did not influence the parameters
Ix, Ixz, Iz, S, Sz, u, h, j, k, and M in any way. This made the calculation
relatively easy and the mistakes made small. It is however, a different matter
for variations in u and h.

The mass moments of inertia values are greatly influenced by the relocation
of the centre of gravity. Although the influence of movement of the centre of
gravity, foremost in the forward or rearward direction, is highly interesting, the
for this purpose required calculations have not been carried out due to their
extensiveness.

7 Further extensions to the stability research

We have seen, that significant improvements can be made to the current Dutch
bicycle with regard to its’ ease of riding at low speeds. This can amongst others,
be achieved by reducing the trail to approximately 4 cm, placing the steering
axis more vertically, not making the front wheel to light and constructing the
handlebars and front mudguard as lightly as possible.

These conclusions have been deducted for a bicycle, on which a rigid rider
is placed who has released the handlebars. Although it is highly plausible to
presume that a bicycle, that is stable under these circumstances at low speed,
will also be easy to ride in real life, it is still desirable to extend the theory for
the case, that the rider intervenes by exercising forces on the handlebars and by
laterally moving his centre of gravity.

In the first instance it might seem strange to treat the human intervention
mathematically. One can nevertheless assume that the human rider will strive
to make an unstable riding situation a stable one in the most effortless manner.

Provisional calculations have demonstrated, that a bicycle at a speed, just
below the lower stability boundary, can be stabilised by using weak forces to
counter the handlebar rotation. Intense movements would be required to attain
a similar effect by laterally displacing the centre of gravity.
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The instability at high speed on the other hand can be countered by a very small
lateral movement, whilst this can only be accomplished with the handlebars by
using large forces to try to increase a possible handlebar rotation.

In a first attempt one could assume that the forces and displacements caused
by the rider are proportional to the handlebar rotation angle, lean angle, lateral
acceleration etc. If one then chooses from these methods, the most simple and
most effective one, then it is highly plausible to assume, that the actual rider
intervention has been modelled very closely. One can then redetermine the sta-
bility conditions, this time taking the above into account and thereby maybe
discovering new perspectives.

The research can also be extended in a totally different direction. Till now
it has been assumed that the frame is completely stiff. However, anyone who
has ridden hands free on a woman’s design bicycle, knows how detrimental for
the stability a flexible frame can be. If the torsional stiffness of the frame is
taken into account then one gets a 6th order equation in λ instead of the 4th
order equation, which is a more laborious calculation to carry out, but funda-
mentally does not add any new complications.

To conclude a remark on experimental stability research is made.
Obviously it is possible to construct a bicycle where one can change many

parameters such as the head angle, torsional stiffness, trail etc.
In light of the research project at hand, which has proven how complicated

the interaction of the different properties of the bicycle influence its’ stability,
it seems unlikely that one can make precise statements.

INSTITUUT VOOR RIJWIELONTWIKKELING.
Ir. B.D. Herfkens.

September 1949.

* * *

SZ

S-98-247-50-10-’49
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Cf is the location of the centre of gravity of the complete bicycle
Cv ” ” ” ” all the parts of the bicycle that move together with the handlebars such as the

front wheel, front fork, inner head tube and handlebars.
H is the point that the steering axis intersects the ground
Sv is the contact point of the rear wheel
Sa ” ” ” ” ” ” front wheel
Ba ” ” centre of the rear wheel
Bv ” ” ” ” ” front wheel
D ” ” point on the steering axis that intersects the line perpendicular to the steering axis going through Cv.

Γ = Ias − Ian cot α + jfMv

∆ = Ias cot α + Ian + kfMv
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Value for
Symbol Meaning an average

Dutch bicycle
rv radius of the front wheel 0.35 m
ra ” ” ” rear wheel 0.35 m
b wheel base = distance Sv Sa 1.17 m
p trail = distance HSv, the trail is negative if 0.08 m

Sv lies in front of H
a horizontal distance between Cv and the vertical through Sv 0.12 m
uf distance from Ca to the vertical through SA and SB (the Z axis) 0.33 m
hf ” ” Ca to the ground plane (to the X axis) 1.00 m
j ” ” D to the Z axis 1.00 m
k ” ” D to the X axis (to the ground plane) 0.52 m
d ” ” Bv to the steering axis 0.08 m
w ” ” Cv ” ” ” ” =CvD 0.03 m
f = w

sin α , the distance from Cv to the steering axis, measured 0.04 m
horizontally

α angle between steering axis and the ground plane 65◦

g acceleration due to gravity 9.81 m/sec2

M mass of the complete bicycle including the rider 82.5 kg1)

Mv ” ” ” handlebars-front-fork-front-wheel part 5.55 kg
Mwa ” ” ” rear wheel 2.65 kg
Mwv ” ” ” front wheel 2.65 kg
Iwa mass moment of inertia of the rear wheel about its axis 0.245 kgm2

Iwv ” ” ” ¨ ¨ ” front wheel about its axis 0.245 kgm2

Ix ” ” ” ¨ of the complete bicycle + rider about the X axis 98 kgm2

Iz ” ” ” ¨ ” ” ” ” ” ” ” Z ” 14.7 kgm2

Ixz product moment ” ” ” ” ” ” w.r.t. X and Z axis 23.5 kgm2

Ias M.o.I. of handlebars-front wheel part about the steering axis 0.195 kgm2

Ian P.o.I. ” ” ” ” ” w.r.t. the steering axis and
n-axis -0.04 kgm2

Ias M.o.I. ” handlebars, fork, mudguard, head light, etc. without
wheel 0.05

Sx = Muf the static torque of the complete bicycle with rider
about the X axis 82.5 kgm

Sz = Muf ” ” ” ” ” ” ” ” ” about the Z axis 27.2 ”
ss = static torque of the handlebars, mudguard, head lamp, etc. about the

steering axis 0.005 ”

1) the kg as mass unit, not as force

27











Datum: 7 sepr, 2006

Uitsluitend voor persoonlijk gebruik / for personal use only

Technische Universiteit Delft
Bibliotheek
Prometheusplein 1
Postbus 98
Tel: +31 (0) 15 27 846362600 MG  Delft
Tel: +31 (0) 15 27 85678
Fax: +31 (0) 15 27 85706
Email: library@tudelft.nl
www.library.tudelft.nl

Aan: TU DELFT FACULTEIT 3ME; J.D.G. KOOIJMAN         
ENGINEERING MECHANICS, AFDELING PMA             
                                                
MEKELWEG 2                                      
2628 CD DELFT                                   
                                                
NEDERLAND                                       

Aanvraag nr: 1241456     Uw referentie(s): HER49                       

                                          

Artikelomschrijving: Aantal kopieën: 31          
Artikel: DE STABILITIET VAN HET RIJWIEL                    
Auteur:                                                   
Titel: RAPPORT VAN HET INSTITUUT VOOR RIJWIELONTWIKKELING
Jaar: 1000      Vol.           Nr.  3          Pag. GEEN IDEE       
Plaatsnummer:DO1 0340            




