NXTbike-GS

Joep Mutsaerts
Mechatronic System Design I
WB 1185756

May, 18 2010

]
TUDelft

Disclaimer

LEGOeis a trademark of the LEGO Group of companies which do not sponsor, authorize or endorse
this project. LEGOe- and Mindstormse are registered trademarks of The LEGO Group.

According to LEGO Mindstorms NXT Hardware Developer Kit,

“Important note: When the NXT is disassembled or when third party firmware is used with the NXT,
all warranties are rendered invalid”.

Therefore, make sure that the author of this document does not take any responsibility for any loss
or damage of any kind incurred as a result of the use or the download of this document, nxtOSEK,
Embedded Coder Robot NXT and other related third party software/hardware.

This document extends on software and control as used in lejos-osek NXTway-GS set-up. View this
here: http://lejos-osek.sourceforge.net/nxtway gs.htm

This document is not intended for commercial purposes.

Author (1* edition NXTbike-GS)
J.T.M. Mutsaerts
J.T.M.Mutsaerts@student.tudelft.nl
Delft University of Techology

In cooperation with Bicycle Dynamics Lab, http://www.bicycle.tudelft.nl.

In assignment of Jo W. Spronck, Associate professor.

Author of NXTway-GS
Y orihisa' Y amamoto

Revision History

Revision Date Description

1.0 May 21,2010 NXTbike-GS first report J.T.M. Mutsaerts

1 Introduction

In the beginning of February 2010, Ir. J.W. Spronck suggested to build a bike out of Lego NXT parts.
The idea that this would work, came from the already working Lego NXTway-GS that can be found on
various video websites. The start of the project was building a Lego segway (two wheels inverted
pendulum) and later convert this into a bike.

The allready existing Lego segway uses Matlab and Simulink development environments to compile a
simulink control scheme into a C programmed code. The ARM processor in the NXT Brick can uses
this code to control the system. After showing the successful function of the segway set-up, a Lego
Bike has been made. This report shows the characteristics of the NXTbike-GS, as well as the control
scheme, JBike6 parameters and future developments.

2 Preparation

To build the NXThike-GS, read the NXTbike-GS Building Instructions.

You need to download Embedded Coder Robot NXT from the following URL because it is used as
Model-Based Design Environment in this document.

http://www.mathworks.com/matlabcentral/fileexchange/13399
Read Embedded Coder Robot NXT Instruction Manual (Embedded Coder Robot NXT Instruction

En.pdf) and test sample models / programs preliminarily. The software versions used in this

document are as follows.

Software Version

Embedded Coder Robot NXT 3.14
nxtOSEK (previous name is LEJOS OSEK) 2.03
GNU ARM 4.0.2
Cygwin 1.5.24

Commercial software
- for the NXTbike-GS, release R2008b is used
- Real Time Workshop Embedded Coder is not included in TU Delft package. Get it yourself!

Product Version

MATLAB® 7.5.0
Control System Toolbox 8.0.1
Simulink® 7.0
Real-Time Workshop® 7.0
Real-Time Workshop® Embedded Coder 5.0
Fixed-Point Toolbox (N1) 2.1
Simulink® Fixed Point (N1) 5.5
Virtual Reality Toolbox (N2) 4.6

You can simulate original NXTway-GS models and generate codes from it without the products (N1)
and (N2). The meaning of these notes:

(N1) : It is required to run fixed-point arithmetic controller model (nxtway_gs_controller_fixpt.mdl).
(N2) : It is required to run 3D visualization (nxtway_gs_vr.mdl).

Required files:

File Description

Nxtbike_controller.m* NXTBike-GS model

iswall.m M-function for detecting wall in map

mywritevrtrack.m M-function for generating map file (track.wrl)

Simulink® 7.0

nxtway_gs.mdl NXTway-GS model (It does not require Virtual Reality Toolbox)
nxtway_gs_controller.mdl NXTway-GS controller model (single precision floating-point)
nxtway_gs_controller_fixpt.mdl NXTway-GS controller model (fixed-point)
nxtway_gs_plant.mdl NXTway-GS plant model

nxtway_gs_vr.mdl NXTway-GS model (It requires Virtual Reality Toolbox)
param_controller.m M-script for controller parameters
param_controller_fixpt.m M-script for fixed-point settings (Simulink.NumericType)
param_nxtway_gs.m M-script for NXTway-GS parameters (It calls param_***.m)
param_plant.m M-script for plant parameters

param_sim.m M-script for simulation parameters

track.bmp map image file

track.wrl map VRML file

vrnxtwaytrack.wrl map & NXTway-GS VRML file

[0 The only new file added to the NXTway-GS package. This file contains the whole bicycle
controller.

3 NXTbike-GS system

This chapter describes the structure and sensors/actuators of the NXTbike-GS.

3.1 Structure

Steer DC Motor ‘ Ny =
‘ Brick CPU

Throttle DC Motor

The figure above shows the active parts of the NXTbike-GS. A Hitechnics Gyro Sensor measures the
angular roll velocity. The Steer DC Motor is able to actively steer the NXTbike-GS. Because of friction
in the motor, the steer is not freely rotating and therefore the natural stability of a bicycle in a
certain velocity region will not occur.

3.2 Sensors and actuators

The table underneath shows the used sensors in the NXTbike-GS set-up.

Sensor Output Unit Data type Max Sample / sec
Rotary Encoder angle deg Int32 1000
Gyro Sensor Angular velocity Deg/sec Uintl6 300

The next table shows the used actuators.

Actuator Input Unit Data type Max Sample / sec
DC Motor PWM % Int8 500

Please take into account that sensors are different individually and the gyro sensor has gyro offset
(the value when the system does not rotate) and gyro drift (the time variation of the gyro offset)

4 NXTbike-GS modeling

For the modeling of a normal bicycle, the JBike6 model is often used. For this model, the parameters
are given in the next table.

g=9.81 [m/sec?] Gravity acceleration
m=0.03 kgl Mass of wheel

R=0.04 [m] Radius of wheel

M=0.678 [kg] Total weight of NXTbike-GS
M_front=0.2 [kg] Weight on front wheel

M _rear=0.478 [kg] Weight on rear wheel
L_base =0.225 [m] Wheel base

L_trail =0.011 [m] Trail

Head_angle =67 [deg] Head angle

V=0.6 [m/sec] Velocity of NXThike-GS

5 Control scheme

This chapter shows the control scheme behind the NXTbike-GS.

Used variables

Parameter Unit Description
theta [deg] Rear wheel position
thetadot [deg/sec] Rear wheel speed
phi [deg] Body roll angle
phidot [deg/sec] Body roll angular velocity
phidotdot [deg/sec’] Body roll angular acceleration
delta [deg] Steer angle
X1 [array] [phi phidot phidotdot] state variables
Inputs and Outputs
Input Sensor Description
Theta DC Motor Rear wheel position
Delta DC Motor Steer position
Phidot Gyro Sensor Angular roll velocity
Output Actuator Description
PWM_theta DC Motor Rear wheel voltage
PWM_delta DC Motor Steer voltage
Stability

Off course the NXTbike-GS is not stable without any control. The NXTbike-GS has to steer into the
same direction as in which it is falling. This is done with proportional gain on the roll angular velocity

into the steer DC motor.

5.1 Main control scheme

The Simulink environment below is exactly the same as the one of the NXTway-GS. Off course, one

DC motor is added for the rear wheel. On the left and right side, one can clearly distinguish the

in/outputs. In this window, code generation, building and downloading through USB interface is

easily done.

ﬁ nxthike_controller *

File Edit View Simulation Format

OD=zEdE&

Toaols Help

bou o [Homal BsRpe REE®

quro

bluetaoth_re

batteny

JReady

B uinitd) EH%
s

Priarity = -1
Y

NXT Bicycle Controller Model based on Rate Monotonic Scheduling
This model consists of four parts : Device Inputs, Device Outputs, Task Scheduler, and Application Task Subsystem.

Dizclaimer:

LE=0O(R) is a trademark of the LEGO Group of companieswhich does not sponsor, authorize or endorse this demo. r%\, irtd) n
LEGOCR) and MindstormalR) are registered trademaks of The LEGO Group. @ puurn_ste er
Servo Motor Interfaced
Port = C
int3z 2 _#a "% : int2 b7
- L % I 5
delta_steer - task_init_fc - e
Reuolutionp Sneljsco:r Interface Sl OSEK Tasde e Servo Motor Interface
P task_init: Init T task ts1 fo
it 2 tasi_ts1: 0004 [rec] o= int8 =
(} > = ¥ tad t=2: 0.02 [sex] task_ts2_fo ! -. ;
theta_rear tash_te3: 0.1 [zav] pram_rear
Revalution Sensar Interfaced Senro Motor Interfacez
Port = B ExpFecnCalls Scheduler task_ts3_fo F.‘or.t = A
PrioTrT—=—1 Priorty =0 — nnm_\; =
-' > ﬁ 1 nihuay_app i' i
ﬂ i3z -1 Tw uintd) E|
sonar .
Ulitrasenic Sensor Interface Blueteoth T Interface
Port = 52 Priority = 1
7 uint:d
uirt 16 | |) ?
SH T iz 5

Gyro Senzor Interface
Port = 54

Bluetooth Rx Interface

Sound Tone Interface

Requires only MATLAB products ## Firanty 211
|Generate code from task subsystem using RTW-EC |

Requires additional 3rd party tools

[Generate code and build the generated code |

Battery Voltage Interface | Download (NXT enhanced firmware) | [Download (SRAM) |

Prigrity = -1

System Clock Interface
Priarity = -1

Click the annotations to generate/build code and download it into NXT

1100% [FixedStepDiscrete

Now the next scheme shows the global controller layout, with the inputs and outputs. Also notice
signals leading to data logging, this is a datalog connection over Bluetooth. The DC Motor A and B

both receive the same PWM control.

i1 mcthike controllers.../task ts1/Balance & Drive Control *

File Edit View Simulation Format Tools Help

O=zE&E & B =4 =i n iinf]Normal - &

rREES®

Servo MotorWirite2
Part = A

intd I- single Il phi_smd

Found = Simplest i et double I e ints > %

Round = Simplest

K : ; i Servo Motor Wirite
@Rx u|nt8= bl h_r rear_dot_cmd int$ m single reardat_cmd Port = B

Round = Simplest

Bluetooth Rx Read

Make Command

w 32 | zingle single theta pwm_detta W ins
Round = Simplest Round = Simplest Caltl |
Revolution Sensor Read1 Servo Motor irite1 alflag_log
Port = B Port = C aﬂ-
2 k| i i - _thet
2 | i3z » single single dekta Lo L)
Round = Simplest P {pum_deta
Rewolution Sensor Read .
Fort = C xi [Eingle et

H dirt16 | zingle single ayro [rata Logging

Round = Simplest

Gyro Sensor Read
Port = 54 Contraller

[100% [[[FinedStepDiscrat

Ready

In the next window, the control scheme is shown. Go here through :
nxtway_app / Balance & Drive control / Balance & Drive control / Controller

The upper Gain: k_thetadot is used to P control the speed of the rear wheel to the setpoint of
thetadot_ref. The second Gain is multiplied with the error signal (x1_ref — x1). Since x1= [phi phidot
phidotdot], this is actually a PID control on the body roll angular velocity.

Now | have used [-0.01 -8 -0.01] as second Gain value. This means there is no | and no D action.
However, the bicycle has shown to be pretty stabile, although there is a mechanical play in the
steering wheel.

E! mxtbike_controller/.../Balance & Drive Control/Controller ™

File Edit Wwiew Simulation Format Tools Help
~ - o]
DEEdS Tt » o= [Noma MR REE®
NXThike-GS Controller
sy double | k_thetadot double wal_theta

o | Fy
(™ plphi omd thetador_ret [F24°'® Integral &ain1
phi_cmd purm_theta double

puum_theta
single thetadot_cmd «1_ref single =i+ single pD&. wol_deha
reardot_cmd FY
Feedback Gain
Cal Reference
single
. —_— gle
gyro thetadot single ﬂ battery
single g fheta_in pum_delta [Z1212
theta prum_delta
single

i x1 e d ek
a0 gliera in v
delta

Cal = Cal Puihg
g ED
1
Ready 100% FixedStepDiscrete

How to determine the reference

Here phi_cmd, the commanded roll angle is 0. However, when this angle would be changed, for
example with the gamepad input, we could be able to steer.

Also thetadot_cmd is determined here. With a switch it is now set to the constant value. Also this

speed could be adjusted by the gamepad, via Bluetooth.

il nxtbike_controllerf.../Controller/Cal Reference ™

File Edit “iew Simulakion Format Tools Help

nRE= == T+ = i |Nomal RN rEE

- =zingle .
phi_cmd : .
in it SI:?I?Ef phi_ref
ints Rl
Lo P ath Filter
DataType = intd }
Smuooth velocity command zingle zingle
using Low Path Filter to | phidat_ref
Divide command values by suppress rapid input change, ~ DType = single

maximum of game pad input.

phidotdot_ref

DataType = single

B single)
thetadot_cmd single
ints
cougs | | oure)
ouplg ol
OataType = intd o —{ - 1
Co—nt thetadot_ref
onstan
20 double >
Constant3 Switch

Ready 1005 Fixed3tephiscrete

How to evaluate the input signals

As presented in the next scheme, the theta_in (rear wheel position) is converted into rad and

differentiated, to obtain the speed thetadot (rad/sec). The derivative is done with respect to the

sample time (0.004 ms), to obtain the speed in (rad/sec).

Delta_in, the feedback of the steer position, is not used. Therefore, when the bicycle fell down, it

might keep rotating the steering wheel.

Gyro signal is corrected by its measured offset and then transformed into the x1 array. This is done

by differentiating to phi_dotdot and integrating to phi. Both with respect to the sample time.

E’ nxtbike_controllers.../ControllerfCal x1 *

File Edit Wiew Simulation Format Tools Help
OIS s a0 | =2 » ||nf |Norma| ﬂ@ W E
@ =ingle - pi.l'180? zingle i o zingle =®
theta_in X — thetadot
degZrad Lriscrete Derivative
(bachmard difference)l
@ =ingle ! pirte0 single
delta_in i
_ degZrad Terminator
=ingle = single | . single | single]
1} 2 P pid180 Phidet Je=in out i P=phi
gyre .
degZradz Dizcrete Integrator
rfonuard euler)
I avrogyro_offset single
] single
Cal gyro_offset phidot » B
x1
Calculate gyro offset for removing gyro drift.
phidat wlin aut zingle phidotdot | phidotdot
Discrete Derivative
(badaward differance)?
Ready 100% Fixed3tephiscrete

How the PWM signals are made

Now it is visible how the PWM volumes are corrected with the actual battery voltages, using an

experimental formula. Also there is a friction compensation and signal limitation.

@ douhle w5
wol_theta
single batteryval_max =irn Ie= =
batteny
Cal wol_max —
zingle
e
wol_delta
L i+

Calculate maximum of DC motor

daubla h double

7|4

Friction Compensator
gain = pwm_gain

offset = pwm_offset

single b single

7|4

Friction Compenzatard
gain = pwm_gain
offset = pom_offset

double > douhle =®
prum_theta
max = 100
min = -100
single - single =@
pumi_delta
max = 100
min = -100

6 Challenges for further research

Backlash in steering servo causes disturbances
Path following by roll angle offset (I control)
Dynamic gain, related to NXThike-GS velocity
Simulation in Matlab / Simulink with JBike6
Performing a ‘wheelie’

