

NXTbike-GS

Mechatronic System Design II

Joep Mutsaerts

Mechatronic System Design II

WB 1185756

May, 18 2010

Disclaimer

LEGO® is a trademark of the LEGO Group of companies which do not sponsor, authorize or endorse

this project. LEGO® and Mindstorms® are registered trademarks of The LEGO Group.

According to LEGO Mindstorms NXT Hardware Developer Kit,

“Important note: When the NXT is disassembled or when third party firmware is used with the NXT,

all warranties are rendered invalid”.

Therefore, make sure that the author of this document does not take any responsibility for any loss

or damage of any kind incurred as a result of the use or the download of this document, nxtOSEK,

Embedded Coder Robot NXT and other related third party software/hardware.

This document extends on software and control as used in lejos-osek NXTway-GS set-up. View this

here: http://lejos-osek.sourceforge.net/nxtway_gs.htm

This document is not intended for commercial purposes.

Author (1
st

 edition NXTbike-GS)

J.T.M. Mutsaerts

J.T.M.Mutsaerts@student.tudelft.nl

Delft University of Techology

In cooperation with Bicycle Dynamics Lab, http://www.bicycle.tudelft.nl.

In assignment of Jo W. Spronck, Associate professor.

Author of NXTway-GS

Yorihisa Yamamoto

Revision History

Revision Date Description Author

1.0 May 21, 2010 NXTbike-GS first report J.T.M. Mutsaerts

1 Introduction
In the beginning of February 2010, Ir. J.W. Spronck suggested to build a bike out of Lego NXT parts.

The idea that this would work, came from the already working Lego NXTway-GS that can be found on

various video websites. The start of the project was building a Lego segway (two wheels inverted

pendulum) and later convert this into a bike.

The allready existing Lego segway uses Matlab and Simulink development environments to compile a

simulink control scheme into a C programmed code. The ARM processor in the NXT Brick can uses

this code to control the system. After showing the successful function of the segway set-up, a Lego

Bike has been made. This report shows the characteristics of the NXTbike-GS, as well as the control

scheme, JBike6 parameters and future developments.

2 Preparation
To build the NXTbike-GS, read the NXTbike-GS Building Instructions.

You need to download Embedded Coder Robot NXT from the following URL because it is used as

Model-Based Design Environment in this document.

http://www.mathworks.com/matlabcentral/fileexchange/13399
Read Embedded Coder Robot NXT Instruction Manual (Embedded Coder Robot NXT Instruction

En.pdf) and test sample models / programs preliminarily. The software versions used in this

document are as follows.

Software Version

Embedded Coder Robot NXT 3.14

nxtOSEK (previous name is LEJOS OSEK) 2.03

GNU ARM 4.0.2

Cygwin 1.5.24

Commercial software

- for the NXTbike-GS, release R2008b is used

- Real Time Workshop Embedded Coder is not included in TU Delft package. Get it yourself!

Product Version

MATLAB® 7.5.0

Control System Toolbox 8.0.1

Simulink® 7.0

Real-Time Workshop® 7.0

Real-Time Workshop® Embedded Coder 5.0

Fixed-Point Toolbox (N1) 2.1

Simulink® Fixed Point (N1) 5.5

Virtual Reality Toolbox (N2) 4.6

You can simulate original NXTway-GS models and generate codes from it without the products (N1)

and (N2). The meaning of these notes:

(N1) : It is required to run fixed-point arithmetic controller model (nxtway_gs_controller_fixpt.mdl).

(N2) : It is required to run 3D visualization (nxtway_gs_vr.mdl).

Required files:

File Description

Nxtbike_controller.m* NXTBike-GS model

iswall.m M-function for detecting wall in map

mywritevrtrack.m M-function for generating map file (track.wrl)

Simulink® 7.0

nxtway_gs.mdl NXTway-GS model (It does not require Virtual Reality Toolbox)

nxtway_gs_controller.mdl NXTway-GS controller model (single precision floating-point)

nxtway_gs_controller_fixpt.mdl NXTway-GS controller model (fixed-point)

nxtway_gs_plant.mdl NXTway-GS plant model

nxtway_gs_vr.mdl NXTway-GS model (It requires Virtual Reality Toolbox)

param_controller.m M-script for controller parameters

param_controller_fixpt.m M-script for fixed-point settings (Simulink.NumericType)

param_nxtway_gs.m M-script for NXTway-GS parameters (It calls param_***.m)

param_plant.m M-script for plant parameters

param_sim.m M-script for simulation parameters

track.bmp map image file

track.wrl map VRML file

vrnxtwaytrack.wrl map & NXTway-GS VRML file

∗ The only new file added to the NXTway-GS package. This file contains the whole bicycle

controller.

3 NXTbike-GS system

This chapter describes the structure and sensors/actuators of the NXTbike-GS.

3.1 Structure

The figure above shows the active parts of the NXTbike-GS. A Hitechnics Gyro Sensor measures the

angular roll velocity. The Steer DC Motor is able to actively steer the NXTbike-GS. Because of friction

in the motor, the steer is not freely rotating and therefore the natural stability of a bicycle in a

certain velocity region will not occur.

3.2 Sensors and actuators

The table underneath shows the used sensors in the NXTbike-GS set-up.

Sensor Output Unit Data type Max Sample / sec

Rotary Encoder angle deg Int32 1000

Gyro Sensor Angular velocity Deg/sec Uint16 300

The next table shows the used actuators.

Actuator Input Unit Data type Max Sample / sec

DC Motor PWM % Int8 500

Please take into account that sensors are different individually and the gyro sensor has gyro offset

(the value when the system does not rotate) and gyro drift (the time variation of the gyro offset)

Steer DC Motor

Gyro Sensor

Brick CPU

Throttle DC Motor

4 NXTbike-GS modeling
For the modeling of a normal bicycle, the JBike6 model is often used. For this model, the parameters

are given in the next table.

Physical parameter Unit Description

g=9.81 [m/sec
2
] Gravity acceleration

m=0.03 [kg] Mass of wheel

R=0.04 [m] Radius of wheel

M=0.678 [kg] Total weight of NXTbike-GS

M_front=0.2 [kg] Weight on front wheel

M_rear=0.478 [kg] Weight on rear wheel

L_base =0.225 [m] Wheel base

L_trail =0.011 [m] Trail

Head_angle =67 [deg] Head angle

V=0.6 [m/sec] Velocity of NXTbike-GS

5 Control scheme

This chapter shows the control scheme behind the NXTbike-GS.

Used variables

Parameter Unit Description

theta [deg] Rear wheel position

thetadot [deg/sec] Rear wheel speed

phi [deg] Body roll angle

phidot [deg/sec] Body roll angular velocity

phidotdot [deg/sec
2
]

Body roll angular acceleration

delta [deg] Steer angle

X1 [array] [phi phidot phidotdot] state variables

Inputs and Outputs

Input Sensor Description

Theta DC Motor Rear wheel position

Delta DC Motor Steer position

Phidot Gyro Sensor Angular roll velocity

Output Actuator Description

PWM_theta DC Motor Rear wheel voltage

PWM_delta DC Motor Steer voltage

Stability

Off course the NXTbike-GS is not stable without any control. The NXTbike-GS has to steer into the

same direction as in which it is falling. This is done with proportional gain on the roll angular velocity

into the steer DC motor.

5.1 Main control scheme

The Simulink environment below is exactly the same as the one of the NXTway-GS. Off course, one

DC motor is added for the rear wheel. On the left and right side, one can clearly distinguish the

in/outputs. In this window, code generation, building and downloading through USB interface is

easily done.

Now the next scheme shows the global controller layout, with the inputs and outputs. Also notice

signals leading to data logging, this is a datalog connection over Bluetooth. The DC Motor A and B

both receive the same PWM control.

In the next window, the control scheme is shown. Go here through :

nxtway_app / Balance & Drive control / Balance & Drive control / Controller

The upper Gain: k_thetadot is used to P control the speed of the rear wheel to the setpoint of

thetadot_ref. The second Gain is multiplied with the error signal (x1_ref – x1). Since x1= [phi phidot

phidotdot], this is actually a PID control on the body roll angular velocity.

Now I have used [-0.01 -8 -0.01] as second Gain value. This means there is no I and no D action.

However, the bicycle has shown to be pretty stabile, although there is a mechanical play in the

steering wheel.

How to determine the reference

Here phi_cmd, the commanded roll angle is 0. However, when this angle would be changed, for

example with the gamepad input, we could be able to steer.

Also thetadot_cmd is determined here. With a switch it is now set to the constant value. Also this

speed could be adjusted by the gamepad, via Bluetooth.

How to evaluate the input signals

As presented in the next scheme, the theta_in (rear wheel position) is converted into rad and

differentiated, to obtain the speed thetadot (rad/sec). The derivative is done with respect to the

sample time (0.004 ms), to obtain the speed in (rad/sec).

Delta_in, the feedback of the steer position, is not used. Therefore, when the bicycle fell down, it

might keep rotating the steering wheel.

Gyro signal is corrected by its measured offset and then transformed into the x1 array. This is done

by differentiating to phi_dotdot and integrating to phi. Both with respect to the sample time.

How the PWM signals are made

Now it is visible how the PWM volumes are corrected with the actual battery voltages, using an

experimental formula. Also there is a friction compensation and signal limitation.

6 Challenges for further research
- Backlash in steering servo causes disturbances

- Path following by roll angle offset (I control)

- Dynamic gain, related to NXTbike-GS velocity

- Simulation in Matlab / Simulink with JBike6

- Performing a ‘wheelie’

