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Summary 
 

Under the name Cruden, headquartered in Oude Meer, is the world's leading interactive 

simulation company. Founded in 2004, the company develops, builds, and markets turn 

key interactive simulators for the automotive and entertainment industries. With their  

simulators they cover broad range car racing. 

 

However a motorcycle simulator would expand their field of activity and for that a 

motorcycle tyre model had to be developed. Since the simulator can be driven from any 

real time external physics host, the use of SimMechanics was proposed. Which is a 

Simulink blockset of Matlab. SimMechanics uses spatial operator algebra to solve the 

equations of motion and is ideal for real-time applications, due to the efficiency of the 

algorithm. Moreover the method of building the SimMechanics model is easier than 

representing the same mechanical system in Simulink. An advantage is the flexibility in 

adding components to already created models and to create non-linear systems relatively 

easy without deriving the equations of motion. The construction and validation of a tyre 

model within this software package is the main subject of this thesis.  
 

The internal force elements of the tyre forces are modelled with impact functions. 

Furthermore longitudinal and lateral slip calculations are implemented. After the tyre 

model was build and showed satisfying results it build into a bicycle model. The bicycle 

model considered here is based on a well-established benchmark model that has been 

developed and can be used especially for these kind of validation purposes. Therefore the 

dominant dynamics were identified, in the area of interest. All geometric aspects, of the 

bicycle model was similar to that used in the benchmark, and differed only in the regions 

of the tyres. 

 

As an intermediate step, results are presented of a wheel and a bicycle. Both 

characteristics are determined from a stability analysis.  
 

Several experiments with the tyre were conducted. But most of them were not suited to 

validate the model because of inadequate simulation set-up or because of noise, 

disturbing the signals. The model is optimized by tuning those tyre parameters, which 

were estimated in the first place or depend on simulation conditions. Furthermore a first 

order filter was implemented in order to improve the tyre behaviour and reduce noise. 

The optimized tyre model showed good resemblance at higher speeds. As long as 

simulation conditions are within linear range, both model performs reasonable while the 

bicycle performs nearly as good as the benchmark. 
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1. Introduction. 

 
For this assignment we would like to investigate the possibility to design a motorcycle 

model in a multibody package. 

 

1.1 Problem description 

The aim is to design a simulation model in Matlab/Simulink/SimMechanics. Matlab 

scripts will be simulating the driving characteristics of the motorcycle on a racetrack. In 

order to get a realistic feeling real motorcycle physics should be implemented. The 

simulator should analyze the response to the rider's inputs, torque, brake, and throttle. 

Environmental inputs, like road geometry need to be included as well. 

1.2 Motorcycle dynamics analysis using SimMechanics  

Simulating the dynamics of multibody systems is a common problem in engineering 

and science. Motorcycles are complex machines that can exhibit subtle and interesting 

nonlinear behaviour. Deriving the governing equations of motion by hand is a tedious 

procedure that typically results in errors because of the enormous number of 

manipulations necessary. SimMechanics - a toolbox for the Matlab / Simulink 

environment - is a numerical program which computes the dynamics on the basis of a 

block diagram. Mechanical systems are represented by connected block diagrams. Unlike 

normal Simulink-blocks, which represent mathematical operations, or operate on signals. 

physical modelling blocks represent physical components, and geometric and kinematic 

relationships directly. This is not only more intuitive, it also saves the time and effort to 

derive the equations of motion. SimMechanics models, however, can be interfaced 

seamlessly with ordinary Simulink block diagrams. This enables the user to design e.g. 

the mechanical and the control system in one common environment. 

 

1.3 Further requirements  

In the simulator, the rider should experiences the same physical sensations as those 

perceived during the driving operation of a real motorcycle. This is valid not only in 

terms of visual and the acoustical types of feedback stimuli, but also for perceived sense 

of movements, accelerations and decelerations ones, control movements of the vehicle, 

and in terms of the physical interactions arising with the real mechanical structure of the 

simulator. It is a “motion-based” simulator, i.e. it is equipped with moving parts in order 

to reproduce, with some degree of approximation, the dynamics of a real motorbike. The 

final system presents the human operator seated on a mock-up of a two-wheeled vehicle. 

The mock-up is intended as a rigid structure that is moved with respect to a ground frame 

of reference by a mechanism (actuation system) possessing the required number of 

degrees of freedom. 

 

The most important features of two-wheeled vehicles are handling, stability and comfort. 

They depend on the mechanical characteristics of the vehicle (e.g. steering system 

kinematics, mass distribution, tyre properties) but also on the dynamic properties of the 
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bodies of the rider and passenger, because the ratio between the mass of the passengers 

and the mass of the vehicle is not as small as in other kinds of vehicles. Hence, the rider 

influences the behaviour of the vehicle not only through the voluntary control actions, but 

also through the passive behaviour of his/her body, which responds to the motion 

imposed by the vehicle. 

 

1.4 Functionality of the Toolbox 

This section provides an overview about SimMechanics. The block set is described 

briefly, as well as the different analysis modes and visualization options. More details 

about these topics can be found in [17]. 

 

1.4.1 Physical Modeling Blocks 

As already mentioned, the SimMechanics blocks do not directly model mathematical 

functions but have a definite physical (here: mechanical) meaning. The block set consists 

of block libraries for bodies, joints, sensors and actuators, constraints and drivers, and 

force elements. Standard Simulink blocks have distinct input and output ports. The 

connections between those blocks are called signal lines, and represent inputs to and 

outputs from the mathematical functions. Due to Newton’s third law of action and 

reaction, this concept is not sensible for mechanical systems [20]. Special connection 

lines, anchored at both ends to a connector port have been introduced with this toolbox. 

Unlike signal lines, they cannot be branched, nor can they be connected to standard 

blocks. To do the latter, SimMechanics provides Sensor and Actuator blocks. They are 

the interface to standard Simulink models. Actuator blocks transform input signals in 

motions, forces or torques. Sensor blocks do the opposite; they transform mechanical 

variables into signals. 

 

Obviously, every block corresponds to one mechanical component. The properties 

of the blocks can be entered by double-clicking on them. These are for example mass 

properties, dimensions and orientations for the bodies, the axis of rotation for the 

rotational joint and the spring/ damper coefficients for the spring & damper block. The 

initial conditions are given directly by specifying the initial position and orientations of 

the rigid bodies. 

 
Figure 1: Example of a Pendulum constructed in the SimMechanics body block scheme. 

 

The block diagram solves the problem without the need to derive equations. Let us have a 

closer look at the diagram. With this model and the visualization facilities of 

SimMechanics it is for example possible to animate the motion of a pendulum. This 

pendulum is shown in figure 1. The left block indicated with ‘env’ stands for the 

environment, here one can define the gravity, the ground is the origin of the coordinate 
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system, e.g. (0,0,0). The revolute is a one degree of freedom rotational axis. And finally 

the body or pendulum is shown.  

   

1.4.2 Visualization tools 

SimMechanics offers two ways to visualize and animate machines. One is the build-in 

Handle Graphics tool, which uses the standard Handle Graphics facilities known from 

Matlab with some special features unique to SimMechanics. The visualization tool can 

also be used to animate the motion of the system during simulation. This can be much 

more expressive than ordinary plots of motion variables over time. The drawback is a 

considerably increased computation time if the animation functionality is used. More 

realistic renderings of bodies are possible, with the Matlab Virtual Reality Toolbox. 

Arbitrary virtual worlds can be designed with the Virtual Reality Modeling Language 

(VRML) and interfaced to the SimMechanics model. 

1.4.3 Mathematical aspects 

The structure of the equations of motion depends largely on the choice of coordinates. 

Many commercial software packages for multibody dynamics use the formulation in 

absolute coordinates. In this approach, each body is assigned 6 degrees of freedom first. 

Then, depending on the interaction of bodies due to joints, etc. suitable constraint 

equations are formed. SimMechanics however, uses relative coordinates [20]. In this 

approach, a body is initially given zero degrees of freedom. They are “added” by 

connecting joints to the body. Therefore, far fewer configuration variables and constraint 

equations are required. Acyclic systems can even be simulated without forming any 

constraint equations. The drawback of this approach is the dense mass matrix M, which 

now contains the constraints implicitly, and the more complex constraint equations. 

 

Relative coordinate approaches minimize the number of coordinates necessary for 

representing the configuration by implicitly parameterize certain constraints (for 

example, Joint interactions) between bodies. This re-parameterization is accomplished by 

restricting the relative motion between bodies to an allowable subspace. This typically 

results in far fewer variables in the configuration vector q and a corresponding reduction 

in the number of constraint equations, as compared to the absolute coordinate 

formulation. While the dimension of q and the number of constraint equations is 

significantly reduced, a drawback with this approach is that the mass matrix M(q) now 

becomes dense and the constraint equations more complicated to express. The 

computational cost of constructing and inverting the mass matrix contributes significantly 

to the overall computational cost of the formulation, and so is an important aspect to 

consider. 
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2. Analysis of the problem 

 

In this chapter the problem is analyzed in different steps. The tyre model is explained in 

more detail in §2.1. In §2.2 a simulation with the constructed model is performed. §2.3 

the wheel velocity is analyzed and §2.4 shows the calculation of the wheel radius vector.  
 

2.1 Tyre model 

Already in the early years of vehicle modelling it has been concluded that the behaviour 

of a vehicle strongly depends on the tyre behaviour. This holds especially for 

motorcycles, as single track vehicles are inherent to instabilities which are partly 

governed by the tyre behaviour. Therefore, the quality of a motorcycle model strongly 

depends on the accuracy of the tyre model that is implemented. In the following 

paragraphs the tyre and its modelling will be explained in relation to the multi-body 

package SimMechanics. 

 

2.1.1 Tyre description 

 

In order to describe the behaviour of motorcycle tyres, a tyre model is build. A short 

description of the implementation is given below, more information about the model can 

be found in paragraph 2.3.4.   

 

An important tool in the description of tyre road contact is the contactpoint. 

SimMechanics does not provide a solution for this tyre road intersection in both 

coordinate systems (global and local). Therefore an explicit tyre road contactpoint had to 

be defined. The main difficulty is that this contact point moves in both coordinate 

systems SimMechanics provides. It translates on road surface in the global coordinate 

systems. Secondly a material point on the wheel disc has a fixed location vector. This 

point will describe a cycloid in the global axis system. A point making contact with a flat 

road will have a local position vector that always points vertical from the wheel axis, and 

therefore counter rotates in the local wheel disk coordinate system. 

 

Apart from being on the road surface continuously, this point has to be at a distance r 

from the wheel center. One has to be careful when taking the vertical distance from the 

wheel center to the road surface, due to the fact that in case of wheel camber this distance 

isn’t equal to the wheel radius.  

 

First of all the contact routine uses the position and orientation of the wheel and the road 

profile to determine the position of the contact point within the definitions we use 

[§2.3.5]. 

 

Furthermore, the forces and moments are described in both axis systems. Therefore all 

forces and moments have a “c” or “w” index, which points out with respect to which 

reference axis system they are defined. 
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As described, the contact process between the wheel and road plane there has to be a 

point of contact at which the wheel and road plane intersect. This contact calculation, 

including ‘collision’ detection and ‘collision’ response, is an important area in simulation 

of multi-body systems. However the specific multi-body code SimMechanics does not 

support the contact processing.  

 

One approach of contact processing in multi-body mechanical systems is based on the 

force and torque model of collision [10, 11]. It is assumed that the contacting bodies 

penetrate each other and the separation forces are caused by this penetration. These forces 

try to prevent further penetration and to separate the contacting bodies. The tyre 

behaviour is implemented by means of a constitutive tyre interface. For the wheel and 

wheel plane this means that the wheel penetrates through the road, resulting in a 

deformation. This deviation, or in other words, difference between the wheel radius and 

defined contact point is a measure for the deformation.  

 

The body sensor assesses the wheel position and orientation. Making it possible to give a 

penalty to the wheel. Using a stiffness and damping this is translated into a force which is 

applied on the wheel axle with a force actuator.  

 

When modeling a rolling sphere (ball) - as in the SimMechanics rolling sphere example -

denying the contact point to penetrate the road surface, would be exactly equivalent to 

constraining the center of mass height. However when allowing a narrow disk to have six 

degrees of freedom, it is not possible to constrain the wheel at the height of the center of 

mass, since then it wouldn’t be possible to camber the wheel. So instead of this constraint 

another approach is used. Therefore an imaginary plane or road is defined. In case there 

is no camber angle, the distance from the wheel axle to the contact point should equate 

the wheel radius. If not, e.g. the wheel either penetrates through or comes loose from the 

road. The contact force magnitude depends on the penetration depth and the penetration 

velocity.  

 

Wheel deformation: 

cd = ⋅x n   (2-1) 

 

Wheel deformation velocity: 

s
d = ⋅v nɺ   (2-2) 

The point s denotes the material point on the wheel disc currently in the contact. 

Explanation of the difference between ‘c’ and ‘s’ will be given in paragraph 2.4   

This deviation is defined as the deformation of the wheel which will be discussed in 

paragraph 2.1.5. 
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2.1.2 Axis Systems and Definitions W-Axis System 

The coordinate system conforms to the TYDEX conventions described in the TYDEX-

Format [8]. Two TYDEX coordinate systems with ISO orientation are particularly 

important, the C- and W-axis systems as detailed in the figure below. 

 

Figure 2: Tydex C- and W-axis systems. Where ‘w’ is the coordinate system at road level 

and ‘c’ at the wheel centre. 
 

 

The C-axis system is fixed to the wheel carrier with the longitudinal x c -axis parallel to 

the road and in the wheel plane (x c -z c -plane). The origin O of the C-axis system is the 

wheel center. The origin of the W-axis system is the road contact-point (or ‘point of 

intersection’) C defined by the intersection of the wheel plane, the plane through the 

wheel spindle and the road tangent plane. The orientation of the W-axis system agrees to 

ISO. The forces and torques calculated in the tyre model, which depend on the vertical 

wheel load Fz along the zw -axis and the slip quantities, are projected in the W-axis 

system. The xw – yw - plane is the tangent plane of the road in the contact point C. The 

camber angleγ  is defined by the inclination angle between the wheel plane and the 

normal nr to the road plane (xw – yw -plane). 

 

2.1.3 Tyre road interaction 

The tyre-road contact forces are mainly dependent of the tyre mechanical properties 

(stiffness and damping), the road condition (the friction coefficient between tyre and road, 

the road structure), and the motion of the tyre relative to the road (the amount and 

direction of slip). The requirements to transmit forces in the three perpendicular 

directions (Fx, Fy en Fz) and to cushion the vehicle against road irregularities involve 

secondary factors such as, radial, lateral, and longitudinal distortions and slip. Although 

considered as secondary factors, some of the quantities involved have to be treated as 

input variables into the system which generate the forces. The illustration below presents 

the input and output vectors.  
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Figure 3: Schematic overview of input and output parameters of the tyre model. 
 

In this diagram the tyre is assumed to be uniform and to move over a flat road surface. 

The input vector results from motions of the wheel relative to the road. The forces and 

moments are considered as output quantities of the tyre model. They are assumed to act 

on a rigid disc with inertial properties equal to those of the undeflected tyre.  

 

2.1.4 Construction of wheel element 

In order to perform wheel calculations we need to define a wheel plane. Therefore we 

need to have knowledge of the wheel position and orientation. Based on these parameters 

it is possible to determine positions and orientations. However the body sensor in 

SimMechanics only provides this information for the centre of gravity and not for the 

contactpoint. Therefore the orientation and contactpoint position have to be constructed 

with the aid of vector algebra. Furthermore these vectors in general describe the position 

of the wheel center x, the orientation of the wheel axle e0, specified by the Euler angles 

and the position of the contact point xc. One wheel element has six positions and six 

velocities. Therefore the following states are defined in the SimMechanics model: 

 

The body sensor assesses the wheel position and orientation. The position of the centre of 

gravity is given as a three component vector in the global reference system; the 

orientations are given by the rotation matrix R(q) as depicted in figure 3. And the angular 

velocity is given by an angular velocity vector.  
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Figure 4: Illustration of a 3D wheel element and road surface. 

 
Initial condition of the wheel axle: 

( )*

0 0 1 0
T

e = −   (2-3) 

 

2.1.5 Computing road contact point location 

 

With these states and initial assumptions it is possible to derive an expression for the 
wheel radius vector and therefore the contact point position.  

 
Rotation matrices are used to transform the components of any vector from one 

coordinate system representation to another, rotated coordinate system representation. 
The rotation matrix R describes the rotational motion of the body in terms of rotation of 

the centre of gravity coordinate system axes with respect to the World axes. The product 
of the rotation matrix and initial wheel axle vector results in the rotated wheel axle: 

( ) *

0 0R q=e e   (2-4) 

 

By taking the cross product of the rotated wheel axle and road normal one gets the 
longitudinal vector: 

0= ×l n e   (2-5) 

 

To form a vector base, the vectors should be orthonormal: orthogonal and unit length. In 
Matlab/SimMechanics the vectors are not represented with unit length. Therefore the 

longitudinal vector has to be normalized to obtain a contact point vector basis. 
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long =
l

e
l

 (2-6) 

 
For the lateral direction one follows the same reasoning as for the longitudinal vector. 

Using the cross product of the road normal and normalized longitudinal vector results in 

the lateral direction. The angle between longitudinal and normal is 90°  and thus the 

result of their cross product is automatically unit length.   

lateral long
= ×e n e   (2-7) 

 

In order to calculate the wheel radial direction, the cross product of the longitudinal and 
current wheel axle vector is used. Again automatically becoming unit length. 

0r long
= ×e e e   (2-8) 

 
The wheel radial direction times the length scalar value yields the radius vector: 

rr= ⋅r e   (2-9) 

 
Where r is the position vector drawn from wheel centre. And r is its linear distance from 

the wheel centre to the point of contact.  
 

As explained earlier the rotation matrix is used to describe the rotational motion of the 
wheel axes with respect to the world axes.  

( ) *

0 0R=e p e   (2-10) 

 

The equations allow us to locate the theoretical contact point between the tyre and the 
road, for every wheel attitude. And it travels along the path of the wheel. By summing the 

wheel axle position and wheel radius vector: 

c rr= + ⋅x x e   (2-11) 

For the construction of the wheel vectors [6] uses a scaling factorλ . This rescaling is 

necessary in case the road normal and rotated wheel axle aren’t perpendicular i.e. the 
camberangle is non zero. Even when both vectors have length 1. So when creating a 

longitudinal vector having length 1, means you have to rescale ( )cos γ .  

 

Substitution of equation (2-9)  into  (2-11) 
 

c = +x x r    (2-12) 
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Contact point deformation or penetration depth. Assuming that the road surface is a plane 
through (0,0,0), we could write: 

( )d = + ⋅x r n   (2-13) 

 

Contact point deformation or penetration velocity: 

( )( )
d

d
dt

= + ⋅x r nɺ   (2-14) 

 

The angular velocity vectorω is the rate at which a spinning coordinate system rotates. 

The velocity is tangential to the circular path, i.e. perpendicular to position vector. Using 

the velocity of the wheel axle and the wheel rotation speed it is possible to determine the 
velocity of the material point in the contact.  

s = + ×V x ω rɺ   (2-15) 

The subscript s denotes the location on the wheel plane material point.  
 

To get the slip in longitudinal direction the velocity has to be projected on the 
longitudinal vector: 

1 long sx
s = ⋅e V   (2-16) 

 
The lateral slip can be obtained in the same way as the longitudinal slip. Hence the 

velocity has to be projected on the lateral vector: 

2 lat sy
s = ⋅e V   (2-17) 

 

x long
V = ⋅e V   (2-18) 

Where V is the three dimensional centre of gravity velocity vector. 

x

y

z

 
 

= =  
 
 

V x

ɺ

ɺ ɺ

ɺ

  (2-19) 

In this origin the input variables any tyre model e.g. the ‘Magic Formula’, the vertical 
load Fzw, the longitudinal slip kappa, the side slip angle alpha and the camber or 

inclination angle gamma �are determined by this routine.  
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Figure 5: Difference in wheel velocities at road level. Where Vx and Vy are respectively 

the longitudinal and lateral velocity of the wheel centre and α  the lateral slip angle. Fx 

and Fy are the forces in the contact point. 
 

2.1.6 Slip Ratios 

For the calculation of the slip forces and moments a number of slip ratios will be 

introduced. Various authors think it’s sufficient to define the longitudinal velocity as the 

quantity in the slip definition, so we used xV  to define alpha and kappa. The lateral slip is 

defined as the ratio of lateral slip speed and the forward speed of the wheel centre. In [6] 

a minus is introduced in order to remain consistent with the definitions of longitudinal 
and lateral slip.  

( ) 2tan
x

s

V
α =

 (2-20) 

for small angles we get: 

2

x

s
V

α ≈
 

(2-21) 

The longitudinal slip is defined as the ratio of longitudinal slip and the forward speed of 
the wheel centre. For a locked, sliding tyre, κ = 1. For perfect rolling, κ = 0. 

1

x

s
V

κ =
 (2-22) 

2.1.7 Force Evaluation 

 

Each time step, these input parameters are retrieved from the wheel and used as an input 

for the interface. Furthermore the interface returns the forces and moments in the C-axis 
system as a feedback to the wheel centre. 

 

x F
F C= −

κ
κ   (2-23) 

y F
F C= −

α
α   (2-24) 
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The normal force Fz is calculated assuming a linear spring (stiffness: k) and damper 

(damping constant c), so the next equation holds:  

z
F k d cd= + ɺ

 (2-25) 

The normal compression d  of the tyre on the road can be defined by the tyre free radius 

Where d is the deflection and dɺ  the deflection velocity. 

 
If the tyre loses contact with the road, the tyre deflection and deflection velocity 

become zero, as a consequence the resulting normal force Fz will be negative.  

2.2 Simulation of the model 

For building a SimMechanics model, the same basic procedure can be used as those for 

building a regular Simulink model. From the SimMechanics  library, the blocks needed to 
represent the model can be dragged and dropped into a Simulink model window. When 

creating a model one first starts by selecting a ‘environment’ followed by the ‘ground’. 
Next a joint and body can be selected, The essential result of this step is creation of a 

valid tree block diagram made of: 

Ground -- Joint -- Body -- Joint -- Body -- ... – Body 
 

In which the different names represent: 

• Ground:  
o blocks represent immobile ground points at rest in absolute (inertial) space. 

• Joint:  
o blocks represent relative motions between the Body blocks to which they 

are connected.  

• Body:  
o blocks represent rigid bodies. 

 

With the above mentioned formulas the wheel model is build in SimMechanics as shown 
in Figure 5. Based on the bicycle this process is explained in more detail in APPENDIX  C 
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Figure 6: SimMechanics block diagram representation for the wheel model. 
 

The model is build with respect to an right handed orthogonal axis system (O,x,y,z). The 
origin O of this axis system lies in the contact point between the tyre and the ground 

plane. The gravity g is pointing in the –z direction. The body model is composed of one 
rigid part. 
 

In this study the first aim was to look at rolling motion with a small yaw velocity 

behaviour and investigate the stability. The aim was to have the wheel follow a reference 
profile for the roll angle. 

2.2.1 Tyre parameter estimation 

 

A method for developing a tyre model is to imagine the tyre as a one degree of freedom 
mass-spring system. Mathematically this is defined as 

0mx cx kx+ + =ɺɺ ɺ    (2-26) 

with damping (c) and stiffness (k) 

 
The damping ratio is defined as. 

2

c

km
ζ =   (2-27) 

  

The eigenfrequency is defined as 

n
k

m
ω =   (2-28) 

Substitution of equation (2-28) into (2-27) yields 

2 n

c

m
ζ

ω
=   (2-29) 
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The longitudinal ( )xF  and lateral ( )y
F force are defined as 

x
x F

x

s
F C

V
= −

κ
  (2-30) 

y

y F

x

s
F C

V
= −

α
  (2-31) 

To find out the wheel behaviour the wheel has to be validated. For this purpose we would 

like to use the disk described by Schwab in his dissertation [24]. The discrepancy is that 

the disk described in [24] is rolling without slip over a horizontal plane. However it is 

assumed for both models that this is a infinitesimally thin disk and has an uniformly 

distributed mass m, unit radius r, and a gravitational force field g in the downward 

direction. Since our wheel is constructed with slip and deformation/penetration through 

the road. This would not be a 100% correct validation. A way to approximate this 

kinematic/rigid rolling is to increase the parameters of the tyre to infinity. This procedure 

is explained in more detail in the next paragraph. The problem that occurs is that the step 

size in the solver has to be very close to zero. Hence smaller time steps results in a higher 

accuracy. Resulting in a enormous simulation time or errors. So if we want to find out the 

critical velocity of the wheel where it shows an undamped oscillatory behaviour there 

would be a significant difference in output behaviour compared to the kinematic rolling 

disk.  

 

Another way to validate the wheel model, is with the use of the available linearization 

tool (linmod) in Matlab. That makes it possible to linearise the system and check whether 

the system is stable, based on a root loci plot. However one of the requirements of this 

tool is that the system to be investigated is in equilibrium. Since the wheel can be 

imagined as an inverted pendulum, this is not the case. A different approach by hanging 

the wheel to the road would not be an option since you would like to act the gravitational 

force as an force pointing downwards. Another problem is that the model is complicated 

due to al the output en input needed for the calculation of the forces and moments. For 

that reason we wanted to analyse the model based on a time domain simulation. So based 

on the time period of the oscillation, the frequency is determined. By increasing the 

wheel parameters (stiffnesses) we can verify if the system can be matched (shows the 

same behaviour) with the rigid rolling disk of [24]. 

 

Since only a few eigenfrequencies could be found with the standard linmod tool (an 

command in Matlab to linearize a model) and due to the complex behaviour of the wheel, 

the linmod tool could not give the desired information. For that reason we decided to 

analyze the linearization behaviour based on a convergence plot. (Against a characteristic 

value) So by increasing the parameters with a factor and by calculating the difference in 

eigenfrequency, we are able to see if the eigenfrequency is converging. To do so, the 

eigenfrequency has to be calculated at every oscillation. With the aid of the fit function 

tool in Matlab we are able to calculate the time period at which the wheel is oscillating. 

Based on the time period we can calculate the eigenfrequency.  
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Wheel parameters: 

• Vertical tyre stiffness:  k 

• Damping: c 

• Longitudinal tyre stiffness:  
F

C
κ
 

• Lateral tyre stiffness:  
F

C
α

 

 

Characteristic value:   

1n n

n abs

f f

f

Characteristic value

Characteristic value

ω ω

ω

−
= −

=
 

 

2.2.2 Case 1: non-dimensional experiment dataset 

 

One of the purposes of this research is to investigate the behaviour of the tyre model. 

Therefore, several simulations are conducted at different tyre parameters. In this section 

the results of a simulation with a forward velocity of 1 [m/s] are presented. We will 

assume that the infinitesimally thin wheel has uniformly distributed unit mass, unit radius 

r and a unit gravitational force field g in the downward direction.  

• Inertia matrix: 

0.25 0 0

0 0.5 0

0 0 0.25

 
 
 
  

 

 

Assuming a damping ratio in the order of 25%, a maximum slip force of m*g [N], and a 

forward velocity of 1 [m/s]. Allowing a slip, max max,α κ of 1/1000 results in a slip stiffness 

in the longitudinal and lateral direction in the order of 1000. 

max

1
F

C =κ
κ

  (2-32) 

max

1
F

C =α
α

  (2-33) 

 

Based on the above expressions and for convenience, we take for the disk parameters. 

• Vertical tyre stiffness  k=1000[N/m] 

• Damping c=20 [Ns/m] 

• Longitudinal tyre stiffness  
F

C
κ
=1000 [N] 

• Lateral tyre stiffness  
F

C
α

=1000 [N] 
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Simulation results 
 

If only the qualitative motion of a mechanism is of interest, the animation facilities of 

SimMechanics come into play. Figure 7 shows an example of the automatically generated 

animation window. 

 
Figure 7: Wheel rolling on a horizontal plane. This is a standard visualization tool in 

SimMechanics.   

 
Figure 8: Slip as a function time of respectively the lateral, left figure and longitudinal 

direction, right figure. 

 

Although the visualization of the wheel motion seemed normal, the measured slip angles 

in longitudinal but mainly in lateral direction showed numerical instabilities, as can been 

seen in Figure 8. Therefore another experiment was performed with a new set of 

parameters. 

 

2.2.3 Case 2: bicycle wheel experiment dataset 

For this second experiment the tyre parameters are tuned is such a way that the tyre size 

and weight matches a bicycle wheel.  

• Mass:  1.65 [kg] 

• Wheel radius:  26 [inch] 
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• Inertia matrix:  

0.079 0 0

0 0.158 0

0 0 0.079

 
 
 
  

 [kgm
2
] 

• Gravity:  9.81 [m/s
2
] 

 

The bicyle tyre stiffness is estimated with the aid of [12]: 

• Vertical tyre stiffness  k=50000 [N/m] 

• Damping  c=20 [Ns/m] 

• Longitudinal tyre stiffness  
Fx

C =100 [N] 

• Lateral tyre stiffness  
Fy

C =100 [N] 

Simulation results 

 

 
Snapshot 1   

 

 Snapshot 2 

 
Snapshot 3    

 

 Snapshot 4 
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Figure 9: Snapshots of the wheel on a horizontal plane (wobble). With a initial forward 

velocity of 0.62 [m/s]. The wheel centre is almost standing still while the contact point is 

moving fast.  

This simulation showed a wobbling behaviour with decreasing velocity, the simulation 

tended to crash, due to the time steps taken for the simulation were getting to small, 

making the simulation time growing to infinity. As can be seen in Figure 9, where peaks 

are visible around 8.5 seconds. 

 

Figure 10: Slip as a function time of respectively the lateral, left figure and longitudinal 

direction, right figure. 

It seemed that the problem could be found in the division in the definition of the slips.  

The amount of slip is calculated with the aid of the wheel axle speed (wheel centre). 

During the wobbling motion the wheel centre speed can physically become zero. As a 

consequence the slip ration calculation tends to dividing by zero, which periodically 

makes the numerical integration very (infinite) stiff. That is why simulation data shows 

numerical instabilities. In literature [6] distinction is made between the wheel axle ( )x
V  

and the contact point speed. These differences are described in the next paragraph. 

2.3 Differences in Wheel velocity 

In case a wheel is rolling over a flat road, showing no camber angle or yaw rate ( 0)γψ =ɺ , 

both velocities are equal 
r x

V V= . Where 
r

V is defined as the velocity with which an 

imaginary point that is positioned on the line along the radius vector r and coincides with 

point S at the instant of observation, moves forwards (in x direction) with respect to point 

S that is fixed to the wheel rim.  
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Figure 11 Rolling and slipping of a tyre over an undulated road surface. Where ‘s’ is the 

material contact point. And Vx and Vcx are respectively the wheel center speed and 

propagation speed.  

 

 

For a better understanding of the above figure a few formulas are denoted. 
c

= +V V rɺ   

Where C is the speed of the propagation represented by 
c

V . The velocity vector of point 

S that is fixed to the wheel body results from 
s

= + ×V V ω r  where ω is the angular 

velocity of the wheel body with respect to the inertial frame.  

cx c long
= ⋅V V e   (2-34) 

sx s long
= ⋅V V e   (2-35) 

Where the 
long

e  is defined as the longitudinal vector. 

r cx sx
= −V V V   (2-36) 

 

Pure rolling can even occur for a cambered wheel showing yaw rateψɺ and the wheel 

center 0
x

V = . In that case a linear speed of rolling arises that is equal to 

( )sin
r

V r γ ψ= ɺ and consequently an angular speed of rolling ( )sin
r

ψ γΩ = ɺ . 

 

Furthermore in [6] distinction is made between r and
e

r . Where r is defined as the loaded 

radius and 
e

r  as the effective rolling radius. Since the difference between both radiuses is 

very small and we restrict our self to the physical radius at road level, this variable is not 

taken into account. In practice both radius’s lie close together, therefore we assume they 

are equal. 

 

2.3.1 Defining the contact point velocity 

In stead of the using the wheel center speed we would like to use the propagation speed. 

For this reason the calculation of the propagation has to be calculated and the slip angles 

have to be redefined. The propagation velocity
c

V is constructed out of two velocity 

vectors. for the description of the contact speed Pacejka introduces in [6] the wheel radius 
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derivative: 
c

= +V V rɺ . Respectively the of the wheel center A by b+a. The orientation of 

the wheel spin axis is given by unit vector s and the location of the contact center by 

x.
c

= +V V rɺ . The SimMechanics body sensor gives the wheel centre velocity, so we have 

to calculate the contribution of rɺ .  
 

 
Figure 12: Definition of position, attitude and motion of the wheel and the forces and 

moments acting from the road on the wheel [6]. 

 

2.3.2 Defining the contact point velocity based on scalar projections 

Since r formally is a result of two cross products as described in (2-8), it is not easy to 

determine the derivative of this vector. Another way of describing this velocity is with 

the aid of scalar projections. Although it is hard to get an intuitive feel how all the various 

vectors are acting. For a better understanding of the above mentioned projections, a 

sketch is drawn. 
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Figure 13: Perspective of propagation speed. Right figure, wheel travelling on a 

horizontal road surface. Left figure, close up. Vx and Vcx are respectively the wheel 

center speed and propagation speed. Furthermore γ , the wheel lean, r the wheel radius 

and ψɺ  yaw rate. 

 

 

2.3.3 First approach of determining the wheel radius derivative 

 

The vector xɺ gives the velocity V. The difference between Vcx and Vx should be equal to 

the wheel radius derivative vector, in x direction. The latter equals the instantaneous 

distance to the center of the curve as depicted in top view given in Figure 14.  
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Figure 14: Sketch of wheel radius derivative top view. Where rɺ is the wheel radius 

derivative γ , the wheel lean, r the wheel radius and ψɺ  yaw rate. 

 

The vector is projected onto the road surface with ( )sinr γ . A closer look learns that this 

radius rotates with a velocity equal to the yaw rate. Two parameters which are already 

known are the wheel radius r and ( )sin γ . The wheel camber or wheel inclination angle 

( )γ  is defined as the angle between the wheel-centre-plane and the normal to the road.  

( ) 0sin γ = ⋅n e   (2-37) 

Which results in the road surface projection of the wheel radius vector. For determining 

the contribution of ( )sin γ , this expression needs to be multiplied with the wheel radius. 

After this multiplication the vector has a scalar distance,  

The next component in the calculation is momentarily rotational velocity or yaw rate. The 

angular velocity vector ω  can be obtained using the SimMechanics body sensor block. 

Since we are interested in the yaw rate it seems legitimate to take the third or better 

normal- component of the wheel body rotational velocity: 

ψ = ⋅n ωɺ .   (2-38) 

 



  27 

Derivative of wheel radius vector: cxr sx
V V V= − or 

 

cx x
V V− = ( ) [ ]( )0sin lat longr r= ⋅ ⋅n e e eɺ ɺψ γ ψ   (2-39) 

 

Wheel contact point velocity 

c x
= +V V rɺ   (2-40) 

( )sin
cx x

V V r γ ψ= + ɺ   (2-41) 

 

After summing the velocities, projection of the contact point velocity on the longitudinal 

direction gives . 

cx c long
V = ⋅V e   (2-42) 

Although this gave better results, the formulation is not correct. The calculation of rɺ leads 

to nois in the determination of α and κ as well. The problem lies in the yaw rate 

definition which is described in the next paragraph.  

 

2.3.4 Defining yaw rate 

As explained in the previous paragraph, in the definition of the yaw rate one has to be 

careful. Hence ψɺ may not be confused with the projection of the third component of ω , 

due to a contributing effect of rolling Ω in the z component ofω . For example when a 

wheel is rolling straight and upright the third component of ω is zero. i.e. the trajectory is 

straight and the yaw rate is zero. In a similar situation, again rolling along a straight line, 

but with a cambered wheel, with no steer input or yaw rate. The third component of 

omega is equal the ( )sin γΩ . Hence an increasing camber angle results in a contributing 

effect on the projection in the third component of the wheel rotation. But obviously a 

straight path does not experience yaw rate. Therefore we have to look at the rotation 

which does not coincide with the spinning axis. For an accurate representation of the 

direction of travel, this rotation has to be projected onto the road normal.  

 
According to [6], the yaw rate is defined as the speed of rotation of the line of 

intersection about the z axis normal to the road. In vector notation: 

long lat
= ⋅ψ e eɺ ɺ   (2-43) 

For this we need the time derivative of the longitudinal vector. Which will be derived in 

the next paragraph as an intermediate result. We need to conclude here that the physical 

interpretation of the contact point propagation speed will hardly be beneficial for 

avoiding vector algebra.  
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2.4 Finding the time derivative of the wheel radius vector 

 

In the previous paragraphs we tried to get a correct formulation of the propagation speed,  

based on scalar projections. The wheel radius vector derivative rɺ is not a straight forward 

calculation. [6] does not indicate that the derivative of the wheel radius vector is a result 

of three successive rotations, and scaling effects. Furthermore this scaling effect has to be 

included in the derivation as well. Several steps are taken to get to the solution. We 

already defined: 

( )0long
r= ×r e e   (2-44) 

 

( )0 0long long
r= × + ×r e e e eɺ ɺ ɺ  (2-45) 

Or 

0 0r long long
= × + ×e e e e eɺ ɺ ɺ  (2-46) 

From equation (2-46) it can be seen that for the calculation of the wheel radius derivative 

the derivative of the longitudinal vector is needed. This vector is the result of a cross 

product itself, but it is important to notice that this vector has to be normalized to give the 

vector unit length. Therefore the numerator shows a time dependent term, as the angle 

between the road normal and wheel plane(=camber) can vary.  

long
=

l
e

l
  (2-6) 

Knowing that the length of 0e and n  both are equal to one, we can write  sin=l θ  

sin
long

=
l

e
θ

  (2-47) 

 

In case the angle θ  between the vectors of the road normal vector and wheel axle is 

smaller than 90 degrees. i.e. a decrease of the parallelepiped with adjacent sides 0e and n , 

results in a scaling of 
long

e . This effect has to be compensated in the derivative of the 

wheel radius vector. Moreover the sinθ  term in the numerator of the longitudinal vector 

is time dependant and therefore it must be taken into account. 
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Figure 15: Schematic overview of the contributing effect of θ , due to time dependency 

of the longitudinal vector 
long

e . Which is calculated with the cross product of the rotated 

wheel axle and road normal. 

 

With the relation stated in (2-45) the derivative of equation  (2-8) can be written as:  

0 0
sin sin

r

d

dt

 
= × + × 

 

l l
e e eɺ ɺ

θ θ
  (2-48) 

 

Recalling the quotient rule for derivation of the first term,  

 

2

sin cos

sin sin
long

d
e

dt

− 
= = 

 

l l l ɺɺ
ɺ

θ θθ

θ θ
  (2-49) 

The derivative of the longitudinal vector l 

0 0= × + ×l n e n eɺ ɺ ɺ   (2-50) 

However as stated before the scaling should be taken into account 

2

sin cos
cot

sin sin
long long

−
= = −

l l l
e e

ɺɺ ɺ
ɺɺ

θ θθ
θθ

θ θ
 

(2-51) 

In de expression  (2-50), that will be substituted in  (2-49), 
0

eɺ is required; the time 

derivative of the rotated wheel axle. It can be found in the following quite formal way: 

*
* 0

0 0

dR d
R

dt dt
= +

e
e eɺ   (2-52) 

 

With the orthogonallity property of the rotation tensor 
T

RR I= the expression can be 

rewritten as. *

0 0

TdR
R R

dt
=e eɺ  the last part ( ) *

0R p e  is equal to 0e . 

The relation between the time derivatives of the rotational parameters and the angular 

velocity is known as the Poisson equation. The relation 0×ω e indicates that the action 

×ω is equivalent to 
T

RRɺ  indicating that 
T

RRɺ  is an skew-symmetric tensor. 

long
e

0e

n

θ
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0 0

TdR
R

dt
=e eɺ   (2-53)  

 

T
RR× =ω ɺ   (2-54) 

 

Substitution of (2-53) and  (2-54) into (2-52) yields which could be anticipated but is now 

proven in a more formal framework. 

0 0= ×e ω eɺ   (2-55) 

This result leads to the following lɺ : 

( )0 0= × + × ×l n e n ω eɺ ɺ
 

(2-56)
 

For the second term in equation (2-56) we can use the vector ‘triple product’:  

( ) ( ) ( )× × = ⋅ − ⋅a b c b a c c a b    (2-57) 

That transforms (2-56) into: 

( ) ( )0 0 0= × + ⋅ − ⋅l n e ω n e e n ωɺ ɺ   (2-58) 

And finally lɺsubstituted in  (2-49) leads to: 

( ) ( )( )0 0 0

2

sin cos

sin
long

× + ⋅ − ⋅ −
=

n e ω n e e n ω l
e

ɺɺ
ɺ

θ θθ

θ
 (2-59) 

Or:  

( ) ( )( )0 0 0
cot

sin
long long

× + ⋅ − ⋅
= −

n e ω n e e n ω
e e

ɺ
ɺɺ θθ

θ
 (2-60) 

Now 0eɺ found from  (2-55) can be substituted in  (2-48)  

( )0 0r long long= × + × ×e e e e ω eɺ ɺ   (2-61) 

Substitute (2-59) in the above 

 ( ) ( )( )
( )0 0 0

0 02

sin cos

sin sin
r
 × + ⋅ − ⋅ − 

= × + × × 
  

n e ω n e e n ω l l
r e ω e

ɺɺ
ɺ

θ θθ

θ θ
 (2-62) 

 

Using the general relation (2-49) for the last term in equation (2-58) 

( ) ( )( )0 0 0

0 0 02

sin cos

sin sin sin
r
 × + ⋅ − ⋅ −    

= × + ⋅ − ⋅    
     

n e ω n e e n ω l l l
r e ω e e ω

ɺɺ
ɺ

θ θθ

θ θ θ
 (2-63) 
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Since we are interested in the propagation speed, which has its contribution in the 

longitudinal direction, the derivative of the wheel radius vector has to be projected onto 

the longitudinal vector.  

�
( ) ( )

21

43
0 0 0

0 0 02

sin cos

sin sin sin
long longr

   
   × + ⋅ − ⋅ −          ⋅ = × + ⋅ − ⋅ ⋅   
    
   
    

n e ω n e e n ω l

l l
r e e ω e e ω e

�����
ɺɺ ������������

ɺ

θ θθ

θ θ θ
(2-64) 

In order to simplify the above equation we can use some vector relations and general 

properties. The derivative of n on flat level roads is zero. ( ) 0
c

d

dt
=n  erasing 0×n eɺ

 

See 
1
 in 

(2-64) 

The cross product of a vector with itself is zero. 

0 0
0×e e ≜   (2-65) 

Therefore we lose 
2
 

As the cosine of 90° is zero, the dot product of two orthogonal vectors is always zero. 

* 0 0
l

⋅e e ≜   (2-66) 

Which allows to erase
 3
 and 

4
 Therefore we can write. 

( )0

02

sin cos

sin
long long

r
  ⋅ −

⋅ = × ⋅  
   

ω n e l
r e e e

ɺ
ɺ

θ θθ

θ
  (2-67) 

 

A further simplification is obtained with the last term, being projected on the longitudinal 

direction vector: 

( )
( )0

0 0cot
sin

long long long long
r
 ⋅ 

⋅ = × ⋅ − × ⋅  
   

ω n e
r e e e e e eɺɺ θθ

θ
     

(2-68) 

In the second term the cross product can be identified as the definition of the radial 

direction vector  (2-8). This yields: 

( )0

0 cot
sin

long long r long
r
 ⋅ 

⋅ = × ⋅ − ⋅  
   

ω n e
r e e e e eɺɺ θθ

θ
 

(2-69) 

Now the second term in 

 

(2-69) 

disappears since the dot product of two orthogonal vectors equals zero. 

 

Clearly, scaling a velocity vector means manipulating the length of this vector. In (2-64)
 

we can see the projection of the two orthogonal vectors, therefore we conclude that in 

longitudinal direction there is no velocity contribution due to ignoring or introducing the 

time derivative of the scalingθɺ . Indeed there is a projection on rɺ but this is acting in 
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radial direction and known as the penetration velocity. However we already defined the 

penetration velocity (2-14) direction, therefore we may ignore its contribution.   

 

2.4.1 Defining the slip angles 

 
In the previous paragraph rɺ is determined. Now we are able to redefine and calculate the 

slip angles. 

 
Figure 16:  
 

The lateral slip is defined as the ratio of lateral slip and the forward velocity of the tyre 

contact point. 

( )
2

cx

S

V
α

ε
=

+
  (2-70) 

 

The longitudinal slip is defined as the ratio of longitudinal slip and the forward velocity 

of the tyre contact point. 

( )
1

cx

S

V
κ

ε
=

+
  (2-71) 

 

Additional to the earlier stated speeds we now have the extra contribution of the 

propagation. Finally we have to be robust in our definition, for example when wheel lock 

occurs or in case the angular velocity of the wheel changes sign. For these situations we 

introduce a small factor epsilon and make the velocity absolute.  

 

2.4.2 Validation of propagation speed 

With the redefined slip angles, the SimMechanics model of the second experiment is 

adjusted. We can perform an experiment to validate the correctness. Based on the same 

parameters and initial conditions as the bicycle wheel experiment in paragraph 2.2.3. As 

can be seen in Figure 17, the wheel falls into an almost cyclic motion during the first turn. 

In this motion the centre of mass mainly moves in the downward direction while the 

rotation of the point of contact increases rapidly. The disk eventually will come to the 

singular horizontal rest position in a finite time. This behaviour can be compared with  

the “Euler’s disk”; a smooth edged disk on a slight concave supporting bowl which 

whirrs and shudders to a horizontal rest [26].  
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The centre of mass in Figure 17 shows that the simulation keeps on going even if the 

wheel centre reaches zero velocity. The contactpoint on the other hand show the rapid 

changes in velocity.   

 

 
Figure 17: Velocity as function of time. Simulated with a initial forward velocity of 0.62 

[m/s] centre of mass and contact point respectively.  

 

 

 
Figure 18: Slip as a function time of respectively the lateral, left figure and longitudinal 

direction, right figure. 

 

2.5 Tyre relaxation length 

Simulation of the model showed numerical instabilities. In order to reduce this amount of 

noise on the lateral and longitudinal input forces, we build in a first order filter. However 

a physical correct representation of this filter can act like a tyre relaxation length. 

Furthermore a relaxation length gives more or less a damper in series, which is 

representing the behaviour of friction.  

1
Filtered

s

α
α

τ
=

+
  (2-72) 

Where τ is defined as a time constant which is determined by y

cx
V

σ
. In which

y
σ is a 

constant.  
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y

F F

cxV

σ
α α α= −ɺ   (2-73) 

1

F

y

cx

s
V

α
α

σ
=

+

  (2-74) 

Where the lateral slip angle equals: 

2

cx

s

V
α =   (2-75) 

Substitution of equation (2-75) into (2-74) yields.  

2

y

F cx F

cx

s V
V

σ
α α= −ɺ   (2-76) 

Rearranging and integration of equation (2-76) results in the filtered lateral slip angel.  

2 cx F
F

y

s V α
α

σ

−
= ∫   (2-77) 

The same holds for the longitudinal slip: 

1 cx F
F

x

s V κ
κ

σ

−
= ∫   (2-78) 

This is considered to be a more physically accurate representation. At this stage of 

modelling a constant relaxation length for the tyre is employed. 

 

2.5.1 Turnslip (Pathcurvature) 

 
The turnslip or pathcurvatureϕ is defined as change of heading direction normalized by 

the speed:  

V

ψ
ϕ =

ɺ
  (2-79) 

This equals the path curvature of a piece of trajectory. Literature shows that this is a good 

measure for calculating the friction resistance moment around the normal axis, so using   

(2-76) like in the previous longitudinal and lateral slip calculations, could result in a 

devision by zero. To overcome this problem we can apply a spring in series with the 

damper. This results in a physical interpretation of a first order filter like earlier stated.  

1
Filtered

s

ψ
ψ

τ
=

+
  (2-80) 
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Where τ is defined as a time constant which is determined by 
cx

V
ϕσ

. In which ϕσ is a 

constant.  

F F

cxV

ϕσ
ψ ψ ψ= −   (2-81) 

1
F

cx

s
V

ϕ

ψ
ψ

σ
=

+

  (2-82) 

Where ϕ  is defined as: 

*t

cxV

ψ
ϕ =

ɺ
(see also [6] equation (2-18))   (2-83) 

 

Where: ψ = ⋅n ωɺ  

Substitution of equation  (2-83) into (2-82) yields.  

F t cx F

cx

V
V

ϕσ
ψ ϕ ψ= −ɺ

  

 (2-84) 

Rearranging and integration of equation 

  

 (2-84) results in the filtered turn slip. 

t cx F
F

V

ϕ

ϕ ψ
ψ

σ

−
= ∫   (2-85) 

2.6 Camberthrust 

The tyre side forces depend on the slip and camber angle and on the tyre vertical load. 

Furthermore it has been concluded that for motorcycle tyres, sideslip angles are small and 

cornering is mainly possible by camber thrust [6]. 

 

In order not to fall over, there is a  relation between the side force and normal force with 

respect to lean angle. ( )tanyF m g γ= . In which γ is the lean angle. So this amount of side 

force (Fy), at a certain lean angle is always present. However there is always the desire to 

build up this side force with camber as well. What we therefore would like to do is to 

follow this line. Furthermore due to the laws of friction the tyre is limited.  

w nF F µ=
 

(2-86) 

There are several cases where ( )tan γ µ> . For example it is very likely that if the bike 

lean angle is larger than 45 degrees, the ( )tan 1γ = . i.e. one arrives at the maximum of 

what is possible. So a larger lean angle is only possible if the value of µ is increased. This 

is only the case if the tyre delivers this shortness. Which means that till 45 degrees is 
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covered with camber and an increasing lean angle has to be compensated for with µ .In 

reality however this is much more smooth. A few possibilities are: 

y nF F
γ

γ=
        

(2-87) 

( )siny nF F
γ

γ=
   

(2-88) 

( )1 sin 2
2y nF F

γ
γ=

           
(2-89) 

The linearized behaviour of all these camber thrust proposals is 
y n

F F γ= , therefore the 

camberthrust provides the lateral force needed in stationairy equilibrium for small camber 

angles. All suggested camber forces provide less than the required ( )tany nF F γ= . The 

missing side force will then be generated by sideslipα .  

 

2.7 Erratic simulation data 

 

In a multi-body modeling environment the tyre can be considered as a force element. In 

the direction normal to the road the tyre behaves as a spring/damper. And for motions 

perpendicular to the road plane the tyre develops reaction forces as a result of the relative 

(sliding) motion with respect to the road surface. 

 

Due to the erratic results of our constructed tyre model we proposed to compare the 

behaviour with another tyre model located in the demo toolbox of SimMechanics. The 

constructed model is build with the aid of vector algebra. The example model, located in 

the Matlab library, however uses global coordinates. This is one of the main differences. 

Furthermore the example model consists of a full non linear motorcycle model, based on 

the Autosim code [2]. Since we are only interested in the tyre model, the motorcycle 

model had to be disassembled and adjusted. i.e. constant factors like camber stiffness and 

tyre loads had to be redefined since these were based on forces and moments of a 

complete motorcycle. 

 
Figure 19: SimMechanics block representation of the motorcycle wheel model. 

 

2.8 The critical speed of the wheel 

 

For this we use the rolling disk example which is described in [3]. For determining the 

critical speed we can use the formulas as stated in Appendix A: 
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( )1
criticalv

α

β β
=

+
  (2-90) 

Where v is the dimensionless velocity. This is calculated in appendix B. 

For determining the critical speed we need to have the factors α and β : 

2

0 0

0 0

0 0

I mr

α

β

α

 
 =  
  

  (2-91) 

 

The following mass moment of inertia matrix is given in the example model: 

2

0.3 0 0

0 0.58 0 [ ]

0 0 0.3

examplemodelI kgm

 
 =  
     

(2-92) 

Since the wheel radius and mass are also known, we are able to determine the 

dimensionless factors α and β : 

0.1152

0.2226

α

β

=

=
 

 

Now we can calculate the dimensionless critical speed: 

( )
0.12

0.22 1 0.22
criticalv =

+
 

(2-93) 

0.65 [ ]criticalv = −
 

(2-94) 

 

Speed scales according to gr . 

critical criticalv v gr= ⋅  (2-95) 

0.65 9.81 0.319

1.15

critical

critical

v

m
v

s

= ⋅ ⋅

 
=     

(2-96)  

    

2.9 Stability analysis 

 

The stability of the rectilinear motion of both models at longitudinal speed v is 

investigated by the measurement of the yaw rate.  
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The calculation for the eigenvalues are based on a thin disk. However the motorcycle 

wheel can be seen as a thin ring. In which the mass is located at the outside of the wheel. 

Therefore the limit cases of the eigenvalue calculation are used. 

 
( )
( )
1

1
v v

β β
ω

α α
→∞

+
= ⋅

+
[ ]−  (2-97) 

 

Where the frequency scales according to 1
r

.  

( )
( )
1 1

1 s
v

v

r

β β
ω

α α
→∞

+  
= ⋅  +  

  (2-98) 

 

2.9.1 Motorcycle wheel experiment dataset 

For the experiment the tyre parameters are tuned in such a way that the tyre behaviour 

matches the motorcycle wheel which is given in the SimMechanics example model.  

• Wheel mass (m):  25.6 [kg] 

• Wheel radius (r):  0.3190 [m] 

• Inertia matrix (I): 

0.3 0 0

0 0.58 0

0 0 0.3

 
 
 
  

 [kgm
2
] 

• Gravity (g):  9.81 [m/s
2
] 

 
The tyre parameters are defined as: 

• Vertical tyre stiffness:   k=115000 [N/m] 

• Damping (not included in example model):  c=50 [Ns/m] 

• Longitudinal tyre stiffness:  FxC =2e4[N] 

• Lateral tyre stiffness  
Fy

C =2e4 [N] 

 
Furthermore the natural frequency of the spring mass system is calculated. 

n
k

m
ω =   (2-99) 
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115000
25.6

1
67.02

s

n

n

ω

ω

=

 
=     

(2-100) 

 

The initial conditions for the experiment are defined as follows.  

• Forward velocity:  various 
m

s

 
  

 

• Angular roll velocity:  spin
v

r
ω =

 s

rad 
  

 

• Yaw rate: 0.1 
s

rad 
  

 

 
Figure 20: Schematic representation of the wheel with spin, roll and yaw axis. 

 

2.10 Motorcycle wheel experiments 

With the above stated conditions we can simulate both wheel models. Based on the 

measured data the following degrees of freedom are plotted.  

 

• Lean angle:  γ [ ]°  

• Yaw angle:  ψ  [ ]rad  

• Yaw rate:  ψɺ  s

rad 
  
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For each experiment the simulation time is 10 [s]. Although is some experiments the 

simulation stopped earlier since the wheel was falling over. 

 

Remark regarding the figure names as shown below: 

• Constructed model; refers to the wheel model build according to the vector 

algebra stated in the beginning of this chapter. 

• Example model; refers to the simplified example model in SimMechanics. 

 

Experiment 1.) Forward velocity 0.1
m

s

 
  

 

 
Figure 21: The wheel lean angle γ versus time, during a simulation (left constructed, right 

example model). 

 

 
Figure 22: The wheel yaw angle ψ versus time, during a simulation (left constructed, 

right example model). 
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Figure 23: The wheel yaw rateψɺ during a simulation, (left constructed, right example 

model). 

 

Measured frequency: Measured frequency: 

vω →∞ = - ω = - 

Calculated frequency: 

1
0.46

s
vω →∞

 
=   

 

Experiment 2.) Forward velocity 0.75
m

s

 
  

 

 
Figure 24: The wheel lean angle γ during a simulation (left constructed, right example 

model). 
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Figure 25: The wheel yaw angle ψ during a simulation (left constructed, right example 

model). 

 
Figure 26: The wheel yaw rate ψɺ during a simulation (left constructed, right example 

model). 

Measured frequency: Measured frequency: 

1.3
s

rad
ω

 
≈   

 ω = - 

Calculated frequency: 

1
3.42

s
vω →∞

 
=   

 

Experiment 3.) Forward velocity 1.15
m

s

 
  
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Figure 27: The wheel lean angle γ during a simulation (left constructed, right example 

model). 

 

 
Figure 28: The wheel yaw angleψ during a simulation (left constructed, right example 

model). 

 

 
Figure 29: The wheel yaw rate ψɺ during a simulation (left constructed, right example 

model). 

Measured frequency: Measured frequency: 

2
s

rad
ω

 
≈   

 vω →∞ = - 
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Calculated frequency: 

1
5.25

s
vω →∞

 
=     

Experiment 4.) Forward velocity 2.25
m

s

 
  

 

 
Figure 30: The wheel lean angle γ during a simulation (left constructed, right example 

model). 

 
Figure 31: The wheel yaw angle ψ during a simulation (left constructed, right example 

model). 
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Figure 32: The wheel yaw rate ψɺ during a simulation with a [ ]0.1 / s
initial

radψ =ɺ  (left 

constructed, right example model). 

 

Measured frequency: Measured frequency: 

8.9
s

rad
ω

 
≈   

 8.5
s

rad
ω

 
≈   

 

 

Calculated frequency: 

1
10.27

s
v

ω →∞

 
=   

 

 

Experiment 5.) Forward velocity 3.5
m

s

 
  

 

 
Figure 33: The wheel lean angle during a simulation (left constructed, right example 

model). 

 

 
Figure 34: The wheel yaw angle ψ during a simulation (left constructed, right example 

model). 
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Figure 35: The wheel yaw rate ψɺ during a simulation with a [ ]0.1 / s

initial
radψ =ɺ  (left 

constructed, right example model). 

 

Measured frequency: Measured frequency: 

14.7
s

rad
ω

 
≈   

 15.3
s

rad
ω

 
≈   

 

 

Calculated frequency: 

1
15.97

s
v

ω →∞

 
=   

 

 

2.11 Parameter variations 

In the previous measurement data the instability increased with time. For the following 

experiment we will start with the initial tyre parameters and focus on measurement 

instabilities due to parameter variations. Therefore a simple experiment with different 

tyre parameters is set up. By multiplying the tyre parameters with a factor ½ or 2 we 

should get an idea of their influence. Furthermore an experiment with different 

integration methods is performed. 

 

2.11.1 Different tyre parameters 

For this experiment the same tyre parameters are used as for the case where the model of 

Sharp is compared with the constructed tyre. Furthermore one specific case (vcritical) is 

taken from the experiment and tested. 

• Mass: 25.6 [kg] 

• Wheel radius:  0.3190 [m] 

• Inertia matrix:  

0.3 0 0

0 0.58 0

0 0 0.3

 
 
 
  

 [kgm
2
] 

• Gravity:  9.81 [m/s
2
] 
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The motorcyle tyre stiffness are taken from [19]: 

• Vertical tyre stiffness:  k=115000 [N/m] 

• Damping:  c=500 [Ns/m] 

• Longitudinal tyre stiffness: 
Fx

C =20000 [N] 

• Lateral tyre stiffness: 
Fy

C =20000 [N] 

The initial conditions for the experiment are defined as follows. Where the yaw rate was 

also sinusoidal but with a different amplitude and frequency. 

• Forward velocity (critical speed):  1.15 
m

s

 
  

 

• Angular roll velocity
spin

ω : 3.61 
s

rad 
  

 

• Yaw rate:  0.1 
s

rad 
  

 

2.11.2 Simulation results 

 

In our first vehicle experiment we consider simulated low tyre stiffness. In the second 

experiment we repeat the modeling from the first experiment, but now with simulated 

high tyre stiffness. Each time the damping, vertical, longitudinal and lateral tyre stiffness 

are multiplied with a factor ½ and 2 respectively. At first the measured data of the initial 

tyre parameters is shown and secondly the two adjusted ones.  

 

The first set of figures show the speed of the center of mass (cm). Especially in these 

figures the growing instability is clearly visible. 

 

 

 

 

 

 

 

 

 

 
Figure 36: Wheel centre of mass with an initial forward velocity of 1.15 [m/s].  
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The velocity of the centre of mass shows already numerical instabilities with the initial 

tyre parameter settings. And this instability rises in time. Since the movement of the 

wheel changes from an upright position, into falling over and next rising up again. 

Especially during straight running the numerical instability is large. The velocity of the 

center of mass the falling over motion increases very rapidly. And the velocity of the 

contact point increases even more. Since the instability of the contact point velocity was 

not clearly visible this plot is not shown. 

 
Figure 37: Initial forward velocity centre Figure 38: Initial forward velocity centre. 

of mass v=1.15 [m/s] (low stiffness). of mass v=1.15 [m/s] (high stiffness). 

 

The second set of figures shows the yaw rate of the wheel.  

 

 

 

 

 

 

 

 
 

Figure 39: Wheel yaw rate ψɺ , [ ]0.1 / s
initial

radψ =ɺ . 

 

The measurement data of the yaw rate does not depends largely on the tyre parameter 

choice. However for both cases, the initial and low stiffness, the yaw rate declines. Which 

is not the case when the stiffness is twice as high or when the yaw rate is almost constant 

during the simulation.  
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Figure 40: Wheel yaw rate ψɺ  (low stiffness), Figure 41: Wheel yaw rate ψɺ  (high 

[ ]0.1 / s
initial

radψ =ɺ . stiffness), [ ]0.1 / s
initial

radψ =ɺ . 

 
The third and final set of figures show the lateral slip angle. 

 
Figure 42: Wheel lateral slip angle α . 

 

The measurement data of the lateral slip angle depends largely on the tyre parameter 

choice. Regardless of the noisy behaviour of the measurement data, Figure 42 clearly 

shows that an increase of the stiffness results in a ill conditioned systems.  

 
Figure 43: Wheel lateral slip angle α   Figure 44: Wheel lateral slip angle α  

(low stiffness).  (high stiffness). 
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2.12 Concluding remarks 

In the described experiments we considered low and high tyre stiffness. In both 

experiments there was a significant difference when altering the tyre parameters. Another 

experiment was performed in order to take a closer look at the separate tyre parameters. 

Changing only the vertical tyre stiffness seemed to had little influence on the measured 

data. Although the change in undamped natural frequency was visible in the vertical force, 

which is a penalty for the penetration of the contact point through the road plane.  

Variations in the longitudinal and lateral tyre stiffness however were clearly visible. 

Nevertheless for a good impression of the influence we altered the tyre parameters at 

once.  

 

2.13 Integration methods 

The next step is to investigate the integration performance of the SimMechanics toolbox 

and for this we performed a simulation. The differences in the computation time between 

the solvers are more obvious as complexity of the model increases. This is probably 

caused by the mathematical model that has to be derived by the software before the 

integration of the ordinary differential equation system can begin.  

 

Furthermore SimMechanics provides 4 types of motion analysis. The default is the 

forward dynamics type:  

1) Forward dynamics  

2) Linearization 

3) Trimming 

4) Inverse dynamics 

 

The modes corresponding to these types of analysis are: 

• Forward dynamics 

i. Computes the positions and velocities of a system’s bodies at each time step, 

given the initial positions and velocities of its bodies and any forces applied to 

the system. 

• Forward dynamics 

i. Computes the effect of small perturbations on system motion through the 

Simulink linmod command. 

• Trimming 

i. Enables the Simulink trim command to compute steady-state solutions of system 
motion. 

• Inverse dynamics 

i. Computes the forces required to produce a specified velocity for each body of an 

open-loop system. 

• Kinematics 

i. Computes the forces required to produce a specified velocity for each body of an 

closed-loop system. 
 

A SimMechanics simulation interprets the machine’s purely mechanical aspects through 

machine assembly and a constraint solver. Simulink controls the purely mathematical 

aspects of the simulation through the chosen Simulink solver. A SimMechanics model 
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uses one of the ordinary differential equation solvers of Simulink to solve a system’s 

equations of motion.  

 

The equations of motion for an arbitrary system [20]. 

( )=q H q vɶɺ   (2-101) 

( ) ( ) ( ) ( ), , ,
T T

t t= +M q v f q v H q G q λɶɺ   (2-102) 

( ), 0g t =q   (2-103) 

 

Equation (2-101)expresses the kinematic relationship between the derivatives of the 

configuration variables q and the velocity variables v. In the most simple cases Hɶ is the 

identity matrix. The second equation  (2-102) is the motion equation with the positive 

definite mass matrix M, the acceleration vɺ , the contribution of the centrifugal, Coriolis 

and external forces f, and the contribution of reaction forces due to kinematic constraints  

which is expressed by the last term on the right side. Finally equation (2-103) represents 

kinematical constraints between the configuration variables.  

 

The main problem arising from equations (2-101) and (2-103) is that they form an index-

3 differential algebraic equation (DAE) because of the constraints in equation (2-103) . 

Currently, Simulink is designed to simulate systems described by ODE’s and a restricted 

class of index-1 DAE’s, so the multibody dynamics problem is not solvable directly. 

 

In order to avoid the presence of constraints the differential algebraic system of equations 

can be transformed into a system of ordinary differential equations. This can be achieved 

through techniques such as constraint regularization or constraint reduction [23]. The 

approach taken by SimMechanics is to differentiate the constraint equation (2-103) twice 

and solve for the Lagrange multiplier λ. Near singularities of the mechanism, i.e. near 

points where the number of independent constraint equations is decreased and the 

solution for λ is no longer unique, numerical difficulties arise. To deal with this problem, 

the user can choose between two solvers. One, based on Cholesky decomposition (the 

default), which is generally faster, and one based on QR decomposition.  

Coordinate Projection is used after each time step. The computed solution 
n

qɶ of time-step 

tn is projected on the invariant manifold qn, given by g(qn, tn) = 0. This prevents the 

solution from drifting away. For example, the projection approach is appropriate for a 

one-step method used to compute an approximate solution at time tn+1 from a solution at 

tn. The step size is h, and tn+1  tn+h Finally, stabilization is based on adding stabilization 

parameters to the reduced ODE, which makes it more attractive to the manifold. 

 

The SimMechanics user has the choice between coordinate projection and stabilization. 

Coordinate projection is more exact, while the stabilization algorithms are faster and 

suitable for real-time applications. 

 



  52 

2.13.1 Solver type with a fixed time step 

The Dormand-Prince solver (ode45), with a variable time step, that Simulink uses by 

default works well for many mechanical systems. However since the wheel model is slow 

and inaccurate we tried a different solver with a fixed time step. Moreover we want to 

perform real time Hardware in the loop simulation for that reason the time to integrate 

one time step must be predictable. 

 

The initial conditions for the experiment are defined as follows: 

 

• Forward velocity (critical speed):  2.25
m

s

 
  

 

• Angular roll velocity
spin

ω :  3.61 
s

rad 
  

 

• Yaw rate:  0.1 
s

rad 
  

 

• Fixed step size:  0.01 - 0.0001 [ ]s  

 
Figure 45: Wheel yaw rate ,ψɺ   Figure 46: Wheel yaw rate ,ψɺ   

time step=1
e-3 

, [ ]0.1 / s
initial

radψ =ɺ  time step=1
e-4 

, [ ]0.1 / s
initial

radψ =ɺ  

 

A first attempt with a fixed time step is performed with the Runge-Kutta solver (ode4), 

based on a time step of 1
e-2 

seconds. This simulation data could not be shown due to a 

simulation crash. Figure 23 shows a fixed time of 1 millisecond. In this case the 

simulation runs normal. However the signal shows a noisy behaviour during the entire 

simulation time. Decreasing the simulation time with a factor 10 shows much better 

results. There are no spikes visible in figure 24 and the yaw rate is slightly decreasing. 

One major disadvantage of this time step is the total simulation time, because this can be 

easily run up to 5 minutes.  
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3. SimMechanics joint block modeling 

Several problems are encountered during the simulation of the wheel model. One of these 

problems was a singularity error. In most simulation diagnostic errors, the error was 

caused by the custom joint block. This type of error will be discussed in more detail, 

based on the previous modeled wheel. Finally, two solutions to this problem are given 

and a comparison is made. 

 

3.1 Euler angles 

In rigid body mechanics we need to keep track of points for each body. The motion of 

such a body can be decomposed into a translation and a rotation. Here we focus on the 

rotational part. A number of such sets of parameters have been described in literature, but 

the most common and useful way to describe the rotation (the change in orientation) of 

rigid bodies are the Euler or Eulerian angles. The body can be oriented with respect to the 

space fixed coordinate system by means of three successive rotations. However these 

rotations are limited.  

 

These limitations or angle ranges are given below: 

• x and z range are defined modulo 2π radians. A valid range could be [-π, π).  
• y range covers π radians (but can't be said to be modulo π). For example could be 

[0, π] or [-π/2, π/2]. 

 

In case of the xyz-convention the y-axis, as stated in the angle ranges, is limited in its 

rotational movement. For the xyz-convention this means we have to avoid large rotations 

on the second position. This will be explained in the next paragraph.  
 

Desired sequence.  

When building a custom joint block for vehicle modeling we can firstly state that, the 

rolling motion of the wheel has to rotate around the y-axis (roll). Therefore this axis has 

to be able to rotate over 2π radians. Secondly the x-axis (lean) - since if the lean angle is 

90 degrees or larger the wheel would be parallel with the road surface. Finally when the 

wheel is spinning around the z-axis this rotation could be large as well. This results in the 

following Euler angle sequence z-x-y. 

 

Brief description of sequence illustration 

The various stages of this convention are often illustrated with respect to the space fixed 

coordinate system by means of three successive rotations. However these stages and the 

corresponding drawings are rather complex. Therefore we used another way of 

illustrating this sequence. Namely the sequence of rotations about different axes by the so 

called cans in series [29]. Each rotation about an axis is represented by a pair of cans 

rotating with respect to one another. The drawing of the cans in series can be looked upon 

as an exploded view of the materialization of the Euler angles and by such demonstrates 

the proper operation of the process. The different stages of the intermediate coordinate 

system are now located at the end of the first two pairs of cans. For the z-x-y sequence as 

illustrated in Figure 47 this means that between the z & x ‘cans’ the first coordinate 
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system is placed. The second one is placed between x & y ‘cans’ and the last is placed on 

top of the z ‘can’. 

 

 
Figure 47: Euler angle sequence with ‘cans’ in series: z-x-y. As illustrated in this figure 

large rotations occur around the wheel rolling axis which is located on the third position 

of the Euler sequence.  

 

3.2 Angle sequence in SimMechanics 

Choosing this angle sequence in SimMechanics appeared to be difficult. The relative 

coordinates approach where a body is initially given zero degrees of freedom, enables the 

designer to use different kinds of joint blocks. The problem however with these joint 

blocks is that at first we could not locate this rotational representation in the 

documentation. A closer look learned that there are various rotation representations, 

which was very useful but one still does not know which type of joint is corresponds with 

what representation. In this case we were interested in the custom joint block, which is 

described next.  

 

A Joint block represents the relative degrees of freedom between two bodies, not the 

bodies themselves. Any Joint block must be connected to two body blocks, the base and 

the follower. All Joints have two connector ports for these connections, defining the 

direction of joint motion (base to follower).  

 
Figure 48: schematic overview of input and output parameters. Where te focus lies on the 

custom joint block. 
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Each side of the Joint block is connected to these Body blocks at a Body coordinate 

system (CS) port. Furthermore  the base (B)-follower (F) Body sequence determines the 

sense of positive motion: 

• Positive translation is the follower moving in the direction of the translation axis. 

• Positive rotation is the follower rotating in the right-hand-rule about the rotation 

axis. 

 

By selecting a custom joint block, one gets the scheme below. The specification of the 

joint primitive axes, if any, take place in the joint dialog. One gets by default one 

rotational axis and can “add”, prismatic and rotational, primitives to the block. 

 

 
Figure 49: Scheme of custom joint. Where five degrees of freedom are added (R2, R3 P1, 

P2 and R3). 

 

It turned out that the sequence in which they are presented in the custom joint block 

equals the Euler angle sequence. So by adding the primitives R1, R2 and R3 in the custom 

joint block, one unintentionally defines the rotation sequence of the body, although the 

primitive name is of no influence. For the ‘Axis of Action’ in the custom joint this means 

that the first primitive equals the first body rotation. 

 

 

 



  56 

  
Figure 50: Euler angle sequence with ‘cans’ in series: x-y-z. As illustrated in this figure 

large rotations occur around the wheel rolling axis which is located on the second 

position of the Euler sequence. Gravity acts in z-direction. 

 

3.3 Problems with joint block / Error type 

A simulation performed with the xyz-convention results in the following singularity error.   

 

 
Figure 51: Motion singularity error produced by Matlab diagnostics. 

 

 
Figure 52: Singularity error in solution produced by Matlab diagnostics. 

 

The problem that occurred is two distinct revolute axes are aligned during the simulation  

and a translational or rotational degree of freedom is lost. Such a singularity error is also 

known as "gimbal lock." Two of the three revolute primitive axes in the Gimbal block 
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become parallel, reducing the number of independent degrees of freedom in the Joint 

from three to two. In order to avoid singularity errors caused by large rotations, we have 

to change the sequence in which the Euler angles are represented. For this we have two 

options. 

 

Resolving the singularity 

Now we know cause of the singularity, there are two options to solve this. 

• Changing the world axis. 

 

Basically the error can be solved by changing the gravity. At first we had the xyz-

convention and gravity pointing downwards in z direction. Instead of gravity in z-

direction it is now acting in y-direction.  

 
Figure 53: Euler angle sequence with ‘cans’ in series: x-y-z. As illustrated in this figure 

large rotations occur around the wheel rolling axis which is located on the second 

position of the Euler sequence. Gravity acts in y-direction. 

 

• Changing the custom joint block sequence 

 

In the automotive world (SAE/ISO sign conventions) it is common to use the x-axis as 

the heading direction of the vehicle. And the y-axis is used to define the pitch movement 

or wheel rotation. The vehicle axis system used in this report is consistent with the ISO 

sign convention. Obviously it is recommended to change the sequence of the Euler angles, 

in that way every world orientation possible.  

 

3.4 Buiding a model based on the Six-DoF joint (Quarternion) 

One reason for the use of the custom joint block was the ability to directly specify the 

initial position and velocity of the wheel. Namely the joint initial condition allows us to 

set the initial linear/angular position and velocity of some or all the primitives in a joint. 

Moreover the joint initial condition blocks let the user define arbitrary conditions. For the 

bicycle however this ability is less important since the perturbation occurs in a different 

way.  
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The Six-DoF block represents a composite joint with three translational degrees of 

freedom as three prismatic primitives and three rotational degrees of freedom as one 

spherical primitives. There are no constraints among the primitives. Unlike Bushing, Six-

DoF represents the rotational degrees of freedom as one spherical, rather than as three 

revolutes. The motion of prismatic primitives is specified in linear units. The motion of 

spherical primitives is specified by a dimensionless quaternion. To be certain that these 

two joint block options had the same result an experiment was performed. 

 

3.5 Wheel comparison between Custom and Six-DoF joint at 2.5 [m/s] 

In the previous wheel experiment we used an initial velocity around the z-axis (yaw), in 

order to perturb the motion. But as explained for the Six-DoF joint it is not possible to 

specify initial conditions in the joint block. Therefore we had to use another approach to 

perturb the wheel model in order to look at the oscillatory trajectory. This perturbation is 

performed with the use of a lateral force on the wheel center. 

 

Remark: for this experiment the lateral perturbation force was 5 [N]. And is applied from  

1-2 seconds.  

 
Figure 54: The wheel yaw rate of the custom joint Figure 55: The wheel yaw rate Six-

DoF joint block. 

1
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As before the same procedure for data fitting is used. This procedure will be explained in 

paragraph 4.7.  

 

3.6 Concluding remarks 

Depending on the purpose one can choose a Six-DoF or a custom joint block. Though for 

the latter one has to be careful in defining the order of primitives. Problems due to an 

incorrect primitive sequence are mainly caused by: singularities.  

 



  59 

4. Bicycle  

4.1 Introduction to the bicycle model 

Now the wheel model is completed and the singularities solved. We can continue with 

the modeling of a bicycle. One of the most basic mechanical models of a bicycle is 

described in [28]. This Whiple model consists of four rigid bodies, i.e. the rear frame 

with the rider body rigidly attached to it, the front frame being the front fork, the front an 

rear wheels. Furthermore in [27] this model is described in detail and known as the 

bicycle benchmark. The advantage of the benchmark is that anyone working in the areas 

of bicycle or motorcycle handling or control can use these equations directly or verify 

their own underlying equations. In this case the detailed description enables us to analyze 

and validate the SimMechanics model regarding stability. 

 

4.2 Construction of the bicycle model 

With the use of sensors we can measure the variables and sent this data to the Matlab 

workspace for further processing. This can be done by adding Sensor blocks and Joint 

Initial Condition blocks. With their help, a model which is functionally completely 

equivalent to the Whiple model can be build. The Joint Initial Condition blocks let the 

user define arbitrary initial conditions, and the Joint Sensor blocks measure the position, 

velocity, and acceleration of the two independent motion variables. 

If desired, the forces and torques transmitted by the joints can be sensed, too. 

 
Figure 56: Configuration and dynamic variables. The 7-dimensional accessible 

configuration space is parameterized here by the x and y coordinates of the rear contact 

P, measured relative to a global fixed coordinate system, and 5 angles represented by a 

sequence of hinges (gimbals). The hinges are drawn as a pair of cans which rotate with 

respect to each other. [27]. 
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The Bicycle Benchmark design is fully characterized by 25 parameters described below. 

Table 1 lists the numerical values used for the numerical benchmark. Most numerical 

values are representative of real bicycles, but some values (e.g., wheel inertial thickness 

as represented by (IRxx > IRyy /2) are exaggerated to guarantee a detectable 

role in the benchmark numerical studies. The bicycle design parameters are defined 

in an upright reference configuration with both wheels on the level flat ground and with 

zero steer angle. 
 

 

Table 1: Parameters for the benchmark bicycle [27]. 

 

With the above stated parameters and the tyre model we are able to build the bicycle in 

SimMechanics.  
 

4.3 Basic bicycle design  

An idealized, rigid, uncontrolled bicycle with rigid rider has four eigenvalues and, 

depending on the forward speed, they are either: all real (non-oscillatory); two real 

plus a complex pair representing oscillatory motion; or in rare cases two complex 

pairs. (Idealized means that the bodies are perfectly rigid and symmetrical about the 

midplane, the joints are frictionless, and it rolls on knife-edge wheels without loss due 

to friction and without slipping on a smooth, rigid, horizontal plane.) The SimMechanics 

model however uses tyres. Consequently the contacpoint has a certain amount of slip, and 

performs differently in comparison with knife-edge wheels.  
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4.4 Eigenvalue analysis  

Analysis of the eigenvalues and their corresponding eigenvectors reveals the 

natural modes of the bicycle: the eigenmodes. See the plot below of eigenvalues for a 

typical utility bicycle that demonstrates the common characteristics. 

 

 
Figure 57: Eigenvalues λ from the linearized stability analysis for the benchmark bicycle 

The solid lines correspond to the real part of the eigenvalues and the dashed line 

corresponds to the imaginary part of the eigenvalues, in the forward speed range of 

0 ≤ v ≤ 10 m/s [27]. 

 

At low forward speeds, starting at zero, the eigenvalues come in two positive and 

negative pairs and represent the instability of an inverted pendulum. Depending on 

the particular parameters of the bicycle, lean and steer can have the same or opposite 

signs, which represent steering away from lean or towards lean, respectively. Also, 

their rates are positive and so increasing. At sufficiently higher speed, the two positive 

real eigenvalues commonly merge to form a complex conjugate pair with positive real 

parts. This represents unstable oscillatory motion and is referred to as the weave mode. 

The bicycle leans and steers from side to side. 

 

As forward speed increases, the frequency of this weave increases, as is indicated by the 

increasing magnitude of the imaginary parts of the complex conjugate eigenvalues. This 

increase in magnitude becomes nearly linear with the increase in forward speed, and so 

the wavelength of the weave is nearly constant.  

 

For certain bicycle configurations, at a higher speed still, this pair crosses the real 

axis and the weave motion becomes stable. This is the beginning of the range of 

forward speeds for which the bicycle is self-stable. In the corresponding eigenvector, the 

lean angle and steer angle have opposite signs, the bicycle is leaning and steering in the 

same direction Of the two initially-negative eigenvalues, the smaller one corresponds to 
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the capsize mode. For many bicycle configurations, it becomes positive (unstable) at a 

speed above the weave speed, marking the end of the self-stable range of speeds. In the 

corresponding eigenvector, the lean angle and steer angle have opposite signs and the 

bicycle is leaning and steering in the same direction. However, while lean rate is positive, 

steer rate is negative. Finally, the eigenvalue initially most negative has an eigenvector 

dominated by steer rate and represents the castor mode: the tendency of the front wheel to 

steer in the direction the bicycle is moving. It only becomes more negative and so more 

stable as forward speed increases. 

4.5 Building the bicycle model 

In the benchmark linearized equations of motion for the Whipple bicycle model are 

presented, consisting of four rigid laterally-symmetric ideally-hinged parts: two wheels, a 

frame and a front assembly. The wheels are also axisymmetric and make ideal knife-edge 

rolling point-contact with the level ground. The mass distribution and geometry are 

otherwise arbitrary. This conservative non-holonomic system has a 7-dimensional 

accessible configuration space and three velocity degrees of freedom parameterized 

by rates of frame lean, steer angle and rear-wheel rotation [27].  

 

The first step of modelling is to describe the rigid parts and the joints connecting the parts, 

where a part is described by its mass, inertia and orientation. Specifically, in the bicycle 

model considered here the frame is constrained by a custom six-dof joint, which is driven 

by a translational motion, and the wheels are constrained by rotational joints and driven 

by a angular motion. The next step is the addition of internal force elements to represent 

the tyre forces. The tyres are modelled with impact functions that switch on as soon as 

the distance between the wheel centre and the tyre becomes less than the wheel radius. 

 

With the aid of the bicycle parameters as stated in table 1 and the tyre model from 

chapter 2 we are able to build the SimMechanics bicycle model. In the same way as the 

tyre model, the body blocks and joints are placed in a Simulink window. A more detailed 

description can be found in appendix c.  

 

4.6 Problems with the bicycle model 

After the bicycle model was build a few simulations were performed. However regardless 

the initial speed or perturbing force the bicycle became instantly unstable. At first we 

thought the error could be found in a misinterpretation of a sign convention of the front 

and rear wheel. e.g. introducing a plus in the rear wheel and a correct minus sign in the 

front wheel configuration, could result in a self exciter of the rear end. But this was not 

the case. Since the error could not be found in the bicycle configuration or parameters, it 

was presumably caused in the tyre model.  

 

For the disk initially a rotational damper (around the z-axis) was build in the wheel model 

for stability reasons. Namely, the wheel showed some kind of perpetual behaviour. 

Therefore this damper was taken out of the model. This seemed to be the key to a 

successful simulation. So we had to find out what the effect of such a damper had on 

stability. Already in 1971 Sharp [24] introduced lag in the tyre side force by a first order 
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relaxation model, which seems of large influence on the dynamic behaviour of a 

motorcycle.  

  

In our case the use of a rotational damper seemed to destabilize  the bicycle. This resulted 

in the following conclusion. Using a damper for the turnslip according to  (2-79) 

 leads to a model which is unstable. Another possibility is the use of a damper in 

combination with a spring, in other words a relaxation length, also used for the 

longitudinal and lateral stiffness (2-77), (2-78). Introducing a damper for a disk results in 

a more realistic Euler disk behaviour. But it makes a bicycle unstable. Pacejka uses κ ∗
[6, 

Chapter 6], in order to overcome the shimmy effect and to increase the range of stability 

or to decrease the unstable area of the shimmy. But in our case introducing turnslip 

resistance does the exact opposite. When turnslip moments are incorporated as some kind 

of a frictional damper, the bicycle becomes unstable. However in series with a spring, 

resulting in a relaxation filter, the turnslip works properly.  

 

4.7 Lateral pertubation (CG) 

One side effect of a simulation performed in a idealistic world, such as SimMechanics, is 

that the bicycle acts in an unstable equilibrium. Therefore the bicycle has to be brought 

out of this equilibrium in order to perform stability measurements.  
 

To overcome this problem we purposely initiated a dynamic response by applying an 

impulse in lateral direction to the bicycles centre of gravity. The SimMechanics scheme 

of this perturbation is depicted in Figure 58. The impuls consists of signal with unit 

height , next this multiplied with a gain of 20 in order to get a force of 20 [N]. The 

bicycle  response to this perturbation was sufficiently for the measurements. 

  

 

  
Figure 58: Scheme of perturbation signal, Figure 59: Block signal given by the signal  

with the signal builder, gain and actuator builder in the Simulink toolbox. 
 

To be sure all vertical dynamics are canceled out during a simulation the bicycle was 

initially driving forward with the given velocity and after 4 till 6 seconds a lateral 

perturbation force acted on the centre of gravity of the bicycle. As explained earlier the 
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lean and steer rate are used to determine the eigenvalues at a certain velocity. However 

for a better visualization the lean is shown. 

 

4.7.1 Bicycle comparison between Custom and Six-DoF joint at 4.292 [m/s] 

Before continuing with the bicycle simululations, we wanted to make sure there is no 

distinction between the SimMechanics custom and the Six-DoF joint. So the same 

reasoning as for the disk was followed, in order to compare both joints. The same 

procedure for data fitting as before is used, which is explained in paragraph 4.6. 

 

Based on custom joint:  

Measured lambda: 
1

3.4363
s

λ
 

=     

(4-1) 

 

Based on Six_DoF joint: 

Measured lambda: 
1

3.4386
s

λ
 

=     

(4-2) 

Since the eigenvalue difference of both joints is in the order of 1/1000, we may conclude 

that this is negligible. 

 

4.7.2 Bicycle simulations 

The variables that we wanted to measure for an adequate validation areδ the steer angle, 

δɺ  the steer angle rate, γ  the lean (roll) angle,γɺ  the lean (roll) angle rate, and v the 

forward speed (which would range from 0 to 10 m/s). With these variables we could then 

compare the measured values to the calculated values. Below four characteristic speeds 

are discussed in more detail. In each case the lean and steer rate is shown, since the lean 

rate was a very compact figure and needed some up scaling.  

 

Energy conservation 

When an uncontrolled bicycle is within its stable speed range, lean and steer 

perturbations die away in a seemingly damped fashion. However, the system has no 

true damping and conserves energy. The energy in the lean and steer oscillations is 

transferred to the forward speed rather than being dissipated. As the forward speed 

is affected only to second order, linearized equations do not capture this energy 

conservation. [27].  

 

First the unstable weave speed is taken followed by the stable weave. 
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Figure 60: Bicycle lean versus time Figure 61: Bicycle steer rate versus time 

at an unstable weave velocity v=4.0 [m/s].  at an unstable weave velocity v=4.0 [m/s] 

 

Figure 60 and Figure 61 represents the unstable oscillatory motion and is referred to as 

the weave mode. The bicycle leans and steers from side to side. The increasing 

(undamped behaviour) for lean and steer are in accordance with the linearized benchmark 

model since this speed is located in the unstable speed region.  

 

 
Figure 62: Bicycle lean versus time Figure 63: Bicycle steer rate versus time 

at a stable weave velocity v ≈ 4.3 [m/s].  at a stable weave velocity v ≈ 4.3 [m/s]. 

 

Figure 62 shows a simulation of the weave speed at approximately 4.3 m/s. After the 

perturbing force the bicycle shows a slightly damped oscillatory behaviour. The same 

holds for the steer rate. As this typically speed is located in the stable speed region of the 

bicycle this oscillatory behaviour will damp out. 
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Figure 64: Bicycle lean  versus time Figure 65: Bicycle steer rate versus time 

at capsize velocity v ≈ 6.0 [m/s]                         at capsize velocity v ≈ 6.0 [m/s] 

 

With an increasing speed however, the bicycle stabilizing effect is increasing. As can be 

seen in Figure 64. This speed is defined as the capsize motion at capsize speed and is 

situated at approximately 6 m/s. At this the speed one can see there are only two 

oscillations left in the lean.  

 

 
Figure 66: Bicycle lean  versus time Figure 67: Bicycle steer rate versus time 

at a velocity v=8.0 [m/s]                                    at a velocity v=8.0 [m/s] 

 

Further increase of the speed leads to an unstable bicycle motion. Figure 66 shows that 

after the perturbation, the oscillation is damped almost immediately. The lean and steer 

however are increasing after seven seconds, causing the bicycle to fall over. Although the 

SimMechanics bicycle model has deformable tyres, we can say that the eigenvalues at 

this stage correspond reasonable with the benchmark.  

 

4.7.3 Simulation challenges 

 

In total sixteen runs were carried out starting from 3 to 10 [m/s], plus two typically 

speeds. At a lower velocities (< 3 [m/s]) the bicycle was to unstable to be kept upright for 

long enough to be able to carry out any form of test. 

 

The lack of lateral dynamics in the motion of the bicycle at higher speeds due to the 

stability of the bicycle presented a problem. The changes in sensor output for the freely 
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coasting bicycle were very small, making it difficult to fit any data. This also made it 

difficult to locate the starting point and end point of the free coasting part of the 

measurement. Figure 66 shows an example of such a simulation where the bicycle had 

practically no lateral dynamics.  

 

Perturbing the bicycle at a velocity of 4 m/s shows a clearly oscillatory behaviour of the 

lean rate. However at increasing velocity (> 6 [m/s]) this oscillation is damped out very 

rapidly as can be seen in Figure 66, even so fast it is not possible anymore to fit the 

function. Increasing the perturbation force to 50 [N], and even 100 [N] did not give the 

desired effect and mainly influenced the lean angle of the bicycle. 

 

4.7.4 Steer rate 

Due to the high damping in this speed region and the unstable steer rate data in figure 43 

making it difficult to fit any data. For that reason another experiment was performed with 

a perturbation on the steer. With the use of an actuator it is possible to apply a moment on 

the steering axis. This is done in a similar way as for the saddle perturbation, the steer 

perturbation is build. The SimMechanics scheme of this perturbation is depicted in Figure 

68. Since the head tube is a revolute joint only one signal is needed, this in opposite to the 

saddle perturbation where three input signals are used (3D force vector). Furthermore the 

signal has a duration of 0.1 second and the applied torque ranges from 2-5 [Nm]. 

Dependently on the bicycle dynamics the torque was adjusted. 

 

 

  
Figure 68: Scheme of perturbation signal Figure 69: Block signal given by the signal 

with the signal builder, gain and actuator builder in the Simulink toolbox. 

 

Since these simulations showed excellent results at higher speeds we decided to simulate 

the lower speeds as well, in order to compare the results with the saddle perturbation. 

However at decreasing speed (around 4 m/s) the steer influence is substantial. Resulting 

in a unstable simulation. Nevertheless these lower speeds were already covered by the 

saddle perturbation simulations. 

 

Steer perturbation 8 m/s  
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Figure 70: Bicycle steer rate v=8.0 [m/s] 

 

4.8 Data analysis 

Once the simulations were carried out, the collected data was analyzed in detail. To 

validate the linearised model we compared the eigenvalues of the linearised model with 

those that could be extracted from the measured data. To extract eigenvalues from the 

measured data, non-linear fit optimisations were carried out.  

 

4.8.1 Data Processing 

To fit the non linear function, we used the Matlab function fitfun. Ideally we wanted to 

calculate the eigenvalues of the bicycle for each speed between 0 and 10 [m/s], and based 

on a routine which had to be programmed, determine all the eigenvalues. However due to 

the perturbing action and varying bicycle behaviour, this was rather ambiguous. 

Therefore each simulation had to be analyzed separately. We assumed that the measured 

lean rate was only a function of the weave mode. For this approach only the real and 

imaginary parts of the weave motion were assumed to be present in the measured signal. 

The eigenvalues can be written as 
1,2

x iλ ω= +  for the weave motion, 3
capsizet

e
λ

λ = for the 

capsize motion and 4 castor
λ λ=  for the stable castering mode. With the use Euler formula, 

the imaginary part of the weave can be written as: 

( ) ( )cos sin
ix

e x i x= +  (4-3)  

 

We used the following function in the non-linear fit: 

( ) ( )( ) ( )1 2 3cos sin capsizetxt
y C e C t C t e

λ
λ λ= + + +  (4-4) 

Given the nonlinear parameter ( λ ) and the data (t and y), fitfun( λ ,t,y) returns the error 

between the data and the values computed by the current function of λ . 

A = zeros(length(t),length( λ )); 

for i = 1:length(λ ) 

 A(:,i) = exp(-(i)*t); 

end 

c = A\y; 
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z = A*c; 

err = norm(z-y); 

 

Castor mode 

Since the castor mode is largely negative and its motion is damped out very rapidly, 

minimizing the contribution to the total lean rate. We did not try to reconstruct 

the caster mode from the gathered data. A similar situation was expected in the low speed 

range (0 to 4 m/s) for the capsize eigenvalue. In this range the capsize eigenvalue is about 

-3 and thus expected to be damped out swiftly. At higher speeds the capsize eigenvalue 

becomes very small (initially slightly smaller than zero and from about 8 m/s 

onwards, slightly larger than zero) thus the capsize mode is not heavily damped. 

 

4.8.2 Interpolation 

Interpolation is a method of constructing new data points from a discrete set of known 

data points. This can be helpful when a data set presented that does not have the desired 

resolution or is not equidistant. Interpolating a data set can also give the effect of 

“smoothing” out a data set. 

 

4.8.3 Mean zero 

Although the lean and steer rate are taken for the non linear fit, we had to be sure the data 

is averaged. For that reason the zero-mean of the simulation data had to be taken. To 

calculate the mean and standard deviation of each column of the data. The next step is to 

subtract the mean of each column. While it would be possible to do this using Matlab's 

for loops, it would be very slow. It is much more efficient to use matrix operations. What 

is required is to subtract a matrix where every entry in the ith column is the mean of that 

column. This can be constructed by adding the following lines to the file: 

e = ones(n, 1);  (4-5) 

y = x - e*mu;  (4-6) 

Now y is a data matrix where each variable has zero mean. 

 

The results for the eigenvalue fits are shown in Figure 71 to Figure 74 for the lean and 

steering rate respectively.  
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Figure 71: Bicycle lean  v ≈ 4.3 [m/s] this figure shows such a fit process of the bicycle 

after a saddle perturbation. First we tried to optimize the fit, this was done by changing 

the time window and simply judging by eye how well the fit followed the data. Since at 

this speed sufficient lateral dynamics are present, one can even take several time intervals 

to make sure the error is small. 

 

 

 

 
Figure 72: The non-linear fit of the lean. As illustrated with the rectangle in figure 49.  

The red dots describe the function and onto these dots the assumed function is fitted. 

Since this is a clear sinusoidal movement the fit follows the function very well. 

 
Due to the lack of lateral dynamics at higher speeds, as described in paragraph 4.6.3, the 

steer perturbation was introduced. As before the same method is used. Although the 

oscillation is died out very rapidly, sufficiently data is available to capture one period. 

The selected window and fit are shown in Figure 74. 
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Figure 73: Bicycle steer rate  v=8.0 [m/s]. As in the previous fit procedure , the same 

method is used. Again we first tried to optimize the fit, this was done by changing the 

time window. However as can be seen the oscillation is damped out in a short time and 

the sudden peaks caused by the perturbation have to be avoided in the fit. Thus a window 

around six seconds was the best option. 

 
Figure 74: The non-linear fit of the steer rate. As illustrated with the rectangle in figure 

49, the figure on the right side shows the selected window. The red dots describe the 

function and onto these dots the function is fitted. 

 

Dependently on the simulation data an  initial estimate of lambda (starting value) has to 

be given. Like in this figure one has to careful choose this value, otherwise the fit is 

inaccurate. However for this initial starting value we can use the linearized stability 

analysis from [27] table 2.  

 

Standard Deviation 
The Matlab fitfunction calculates the error of the fit. In order to use this in a more 

quantitative way we have to look at the deviation. With this we are able to determine the 

accuracy of a fit. These calculations are performed on simulations which showed a good 

dynamic behaviour. Next we used the standard deviation of each fit as a measure for its 

accuracy. The standard deviation for each fit was found by:  
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x x
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σ
=

= −∑  (4-7) 

where ix is the simulation data, x  is the non-linear fit and N the number of data 

points in the window. Below the standard deviation is given for the four simulations. 

V=4.0 m/s σ  =  3.4061e-005 

v ≈ 4.3 m/s σ  =  1.4322e-006 

v ≈ 6.0 m/s σ  =  2.5981e-005 

v=8.0 m/s  σ  =  2.3511e-006 

 

4.9 Simulation results 

For each simulation the data was send to the Matlab workspace. Once all the simulations 

were completed, we were able to fit the data and finally compare the eigenvalues with 

those of the benchmark model. This is shown in Figure 75.  

 
Figure 75: Eigenvalue  plot. On the imaginary yellow line two different dot colors are 

shown. The black and red dots represent the eigenvalues based on the saddle and steer 

perturbation. The black and blue star show respectively the weave speed at approximately 

4.3 [m/s] and the capsize speed at approximately 6.0 [m/s]. Furthermore the red dots 

show the eigenvalues based on the steer perturbation.  

 

Both the weave and capsize modes were fit as well as only the weave mode 
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on the measured data. At high speeds the calculated eigenvalues for the weave 

motion matched those of the model very well. It was thought that the short 

measurement window available during the low speed runs was the cause for the 

poor comparison to the model at low speed. The lean angle signal turned out 

to be the best signal for the non-linear fit. 
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5. Model structure and features 

 
The goal of this assignment was to develop a motorcycle simulator model in 

SimMechanics. At this stage we designed and validated a bicycle model. Basically a 

bicycle and a motorcycle are very similar. The motorcycle is modeled as a system of six 

bodies: the front and rear wheels, the rear assembly (including frame, engine and fuel 

tank), the front assembly (including steering column, handle-bar and front fork), the rear 

swinging arm and the unsprung front mass (including fork and brake pliers). The driver is 

considered to be rigidly attached to the rear assembly; front and rear assembly are linked 

by means of the steering mechanism. The front suspension is a telescopic type and the 

rear suspension is a swinging arm type. This vehicle model has eleven degrees of 

freedom, which can be associated to the coordinates of the rear assembly center of mass, 

the yaw angle, the roll angle, the pitch angle, the steering angle, the travel of front and 

rear suspension and the spin rotation of both wheels. 

 
The multibody model of Koenen is build with respect to an orthogonal axis system 

(O,x,y,z). The origin ‘O’ of this axis system lies in the contact point between the rear tyre 

and the ground plane. The gravity g is pointing in the z direction. The multibody model is 

composed of eight rigid parts, interconnected by kinematic constraints. This model, 

together with its sign conventions, is depicted in Figure 76. All the joints in the model are 

one degree of freedom revolute joints, except for the front suspension which is a one 

degree of freedom translational joint. 

 

 
Figure 76:  

 
All parts that are shown in Figure 76 are assumed to be infinitely stiff. The most relevant 

elasticity property of the frame is accounted for in the ’twist’ degree of freedom. The 

main frame (2) of the motorcycle forms the basis part of the model. In the SimMechanics 

model, the connection to the ground plane is made with this body by means of a 6 Degree 

of freedom joint i.e. the motorcycle can freely with respect to the inertial frame. In some 

studies concerning motorcycle dynamics the rider body is assumed to be rigid and rigidly 

connected to the main frame, which gives a poor representation of the reality. To avoid 
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too large differences between the model and reality, in this case the rider body is split up 

in two parts. The lower segment of the rider body is assumed to be rigidly attached to the 

main frame (2), the upper part (3) to rotate about an axis which is horizontal in the initial 

condition, see Figure 76 This rotation is both sprung and damped. Furthermore, the rear 

wheel (2) is connected to the main mass with a sprung and damped swing arm. This 

massless swing arm makes it possible for the rear wheel to rotate around a point on 

the main body and in the plane of symmetry, the ’pitch’ movement. Instead of a  joint for 

the pitch motion at the rear suspension, a swing arm can be used, which is also commonly 

used in motorcycle models. The rear wheel (2w) is of course also given a Degree of 

freedom in such a way that it is able to rotate around its own axle. At the front end of the 

main mass the steer pivot is located. The steer body (1), twist body (1s), front unsprung 

mass (1u) and front wheel (1w) together rotate as a whole relative to the main mass, 

about an inclined steering axis. As said, the main elastic property of the frame has been 

accounted for in the twist degree of freedom. The twist axis, which is perpendicular to the 

steering axis, allows the twist body (1s), front unsprung mass (1a) and front wheel (1w) 

to rotate out of the plane of symmetry of the motorcycle. Also this rotation is sprung and 

damped. The front suspension is modelled as a translatory movement of the front 

unsprung mass (1u) and front wheel (1w) perpendicular to the steering axis if no twist 

angle is present. Again this movement is both sprung and damped. Finally, the front 

wheel (1w) is given one degree of freedom, to be able to rotate around its spindle.  

 

Figure 77:   

 

Additional to the parts of the model that are depicted in Figure 77, the environment of the 

motorcycle needs to be modelled. This comprises the road surface and the air through 

which the vehicle moves. The road surface is assumed to be a flat and even plane 

perpendicular to the direction of the local gravitational field. The air surrounding the 

vehicle is assumed to be initially still relative to this ground plane. The motion of the 

vehicle will give rise to both stationary and non-stationary forces acting on it. From these 

forces only two components are regarded, the stationary drag and lift forces. The 

direction and lines of application of these forces can be seen in Figure 77. The 

motorcycle is modelled in such a way that the aerodynamic forces act at a specified point 

of the main mass (2). 
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6. Conclusions 

 

Objective of this thesis has been to build a motorcycle tyre model for real time purposes. 

To evaluate the tyre behaviour a tyre model is developed in a Matlab/Simulink toolbox 

SimMechanics. The parameters for the tyre models were at first estimated and later on 

taken from motorcycle measurements.  

 

Due to an initially ill conditioned system, several experiments showed noise and could 

not be used. With the use of real motorcycle tyre parameters the simulation showed less 

disturbance. However the simulation time were enormous, which could indicate a stiff 

problem. Therefore another experiment was performed by varying the tyre stiffness. Next 

relaxation lengths were implemented which improved the tyre behaviour. This enabled us 

to perform some validations based on the rolling disk. At high speeds, the simulations 

performed reasonable but at low speeds the data was still erratic and could not be used 

analyzed.  

 

Another problem was encountered with a singularity error. A closer look at the custom 

joint structure learned that the problem could be found in assigning degrees of freedom 

within the block. This appeared of great influence on the modeling. With this knowledge 

we were able to build and test the bicycle model. The first indicative simulations showed 

poor results caused by highly unstable bicycle behaviour. This however could be 

addressed to the way the turnslip or path curvature was implemented. Resolving this 

resulted into a successful simulation and from there on we could analyze and validate the 

stability against the bicycle benchmark.  

 

Due to insufficient simulation data at low speeds (< 3.5 [m/s]), no eigenvalues are 

calculated. Moreover at high speeds the calculated eigenvalues for the weave motion, are 

based on the steer perturbation and the lower speeds are based on the saddle pertuation. 

However between 3.5 and 9.0 [m/s] the extracted eigenvalue clearly showed good 

resemblance with linearised bicycle model, showing that the tyres have little influence on 

the stability. 
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APPENDIX  A 

   

 

 

 
Figure: The ISO sign conventions

1
 

 

                                                
1 The SimMechanics example model uses the SAE sign conventions where Y and Z are in opposite direction 



  80 

APPENDIX  B 

 
The linearized equations of motion of a rolling disk with the eigenfrequencies as function 

of the forward velocity [3]: 

0( ) 0Mq Cvq K g q+ + =ɺɺ ɺ  

The linearized state equations: 
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Dimension analysis with m=1 g=1 and r=1. Times scales with r
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Characteristic equation: 
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The eigenvalues: 
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The frequency above the critical velocity can be calculated as: 
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Limit cases: 
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The scaling from the dimensionless quantity.  

Time scales with: 
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The disk radius with [ ]r m=  and the eigenfrequency: 

[ ]ω = −  

1
sec

ω  =
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=

+
   

For determining the critical speed we need to have the factors α and β : 
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The inertia for a disk: 
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So transferring the disk into non dimensionless: 
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Filling in the values for the disk inertia: 
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Rearranging and substitution of the earlier stated yields: 
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APPENDIX  C 

Creating SimMechanics Models 

The most important special terms used in this guide are summarized in the Understanding 

Mechanical Concepts chapter in Summary of Technical Vocabulary. In the online tutorials, special 

terms occurring in the text (such as coordinate system and reference frame) are linked to 

definitions in the Glossary. 

Essential Steps to Build a Model [17] 

The same basic procedure is used for building a SimMechanics model regardless of its 

complexity. The steps are similar to those for building a regular Simulink model. More 

complex models add steps without changing these basics. 

 
Figure 78: SimMechanics representation of bicycle model (Top level) 

 

Let us have a closer look at this diagram. Every block corresponds to one mechanical 

component. The properties of the blocks can be entered by double-clicking on them. Next 

all the different blocks and there properties  are visualized.  

 

1. Select Ground, Body, and Joint blocks. From the Bodies and Joints libraries, drag 

and drop the Body and Joint blocks needed to represent your machine, including 

at least one Ground block, into a Simulink model window.  
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Figure 79: SimMechanics representation of ‘Env_Ground_Six-DoF’ block as shown in 

the bicycle top level. 

 

Positioning and connecting blocks: 
The Joint and Body blocks are placed in proper relative position in the model window 

and connected right order. The essential result of this step is creation of a valid tree block 

diagram made of: 

 

• Machine Env — Ground — Joint — Body — Joint — Body — ... — Body  

 
Figure 80: Properties of the ‘env’ block parameters machine environment. The Machine 

Environment block represents your machine’s mechanical settings. 

 

 
Figure 81: Properties of the ground block. Ground blocks represent immobile ground 

points at rest in absolute (inertial) space. 
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Figure 82: Properties of the joint initial condition. The initial conditions are given directly 

by specifying the initial position and orientations of the rigid bodies. The Joint Initial 

Condition blocks let the user define arbitrary initial conditions. 

 

 

 
Figure 83: Properties of the custom joint block. Represents general user defined joint 

with multiple degrees of freedom. A Body can have more than two Joints attached, 

marking a branching of the sequence. But Joints must be attached to two and only two 

Bodies. 
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Figure 84: Properties of the body mainframe block. Represents a user defined rigid body. 

In the Body block the mass properties (masses and moments of inertia) are specified,  as 

well as the position and orient of the Body and Grounds relative to the World coordinate 

system (CS) or to other CSs. 

 

 
Figure 85: Properties of the joint initial condition. The initial conditions for the wheel are 

given directly by specifying the velocity of the rigid body. 
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Figure 86: Properties of the revolute. Constraint between pairs of Body blocks. Restrict 

the relative motion between the two respective bodies of each constrained pair. In this 

case it forms the constraint between the mainframe and rear wheel. 

 

 
Figure 87: Properties of the body rear wheel. Represents a user defined rigid body. In the 

Body block the mass properties (masses and moments of inertia) are specified,  as well as 

the position and orient of the Body and Grounds relative to the World coordinate system 

(CS) or to other CSs. 
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Actuator and Sensor blocks connect SimMechanics blocks to non-SimMechanics 

Simulink blocks. SimMechanics blocks cannot be connected to regular Simulink blocks 

otherwise. Actuator blocks take import signals from normal Simulink blocks (for 

example, from the Simulink sources library) to actuate motion.  

The Joint Sensor blocks measure the position, velocity, and acceleration of the two 

independent motion variables. 
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Figure 88: SimMechanics representation of tyre model (overview). The structure of this 

tyre model is illustrated in detail further on. 
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Figure 89: Properties of the headtube (revolute). Constraint between pairs of Body 

blocks. Restrict the relative motion between the two respective bodies of each 

constrained pair. In this case it forms the constraint between the mainframe and front 

fork. 

 

 
Figure 90: Properties of the front fork. Represents a user defined rigid body. In the Body 

block the mass properties (masses and moments of inertia) are specified, as well as the 

position and orient of the Body and Grounds relative to the World coordinate system 

(CS) or to other CSs. 

 



  90 

 
Figure 91: Properties of the joint initial condition. The initial conditions are given directly 

by specifying the initial position and orientations of the rigid bodies. The Joint Initial 

Condition blocks let the user define arbitrary initial conditions. 

 

 
Figure 92: Properties of the revolute. Constraint between pairs of Body blocks. Restrict 

the relative motion between the two respective bodies of each constrained pair. In this 

case it forms the constraint between the front fork and front wheel. 
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Figure 93: Properties of the front wheel. Represents a user defined rigid body. In the 

Body block the mass properties (masses and moments of inertia) are specified,  as well as 

the position and orient of the Body and Grounds relative to the World coordinate system 

(CS) or to other CSs. 

 

 

 

 

 

 



  92 

 
Figure 94: SimMechanics representation of front tyre model (overview). 
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Figure 95: Represents the calculation of the material contact speed.  

 

 
Figure 96: Represents the calculation of the vertical force. 

 

 
Figure 97: Represents the calculation of the different vector calculations as discussed in 

chapter 2. 
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Figure 98: Represents the summation of all body forces and moments, transferred to the 

wheel centre.  

 

 
Figure 99: Represents the physical interpretation of the relaxation length (lateral). 
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Figure 100: Represents the physical interpretation of the relaxation length (longitudinal). 

 

 
Figure 101: Represents a relaxation length for the turnslip or pathcurvature. 

 

 
Figure 102: Represents the calculation of the camber or lean thrust. 
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Sensor blocks: 
To measure the motion of a body, a connection has to be made with one  or more 

Simulink Scope blocks to the model. The SimMechanics library of Actuators and Sensor 

blocks gives you the means to input and output Simulink signals to and from  

SimMechanics models. Furthermore it is possible to apply forces and motions with an 

actuator body.  

The Body, Joint, and Constraint/Driver blocks need to be reconfigure (by adding ports) to 

accept Sensor and Actuator connections. Specify control signals (applied forces/torques 

or motions) through Actuators and measure motions through Sensors.  

 
Figure 103: Block parameters of a body actuator. Actuator blocks specify forces, 

motions, variable masses and inertias, or initial conditions applied to bodies, joints, and 

drivers.  

 
Figure 104: Block parameters of a joint sensor. Sensor blocks measure the forces on and 

motions of bodies, joints, and drivers. 


