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On the rolling contact of two clastic bodies

in the presence of dry friction

by J.J. Kulker

Errata.

page 23. formula number (2.10) should read (2.20)

page 56. eq. (3.38) 4(A_B)2 = etc. should read

4(A-B)2 = (.!.; _~) 2 + (~_~) 2 +
R1 R2 R, R2

+ 2 (.!.; - ;) (~ - ~) cos2w
R, R2 R, R2

page 66. formulae (4.6) and (4.7)
(v+ - V-) should read (V- - v+)
-u -u -u -u

page 78. 2nd eq. (4.38)
v +~x should read v +~Xi
y Y
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Samenvatting.

Twee zuiver elastische. volkamen gladde omwentelingslichamen

worden op elkaar gedrukt. zodat een eindig contactgebied ontstaat.

Vervolgens worden zij om hun assen gewenteld zodat zij over elkaar

rollen. Indien men een koppel aanbrengt op het ene lichaam en a~­

neemt van het andere. dan blijken de amtreksnelheden van de lichamen

niet gelijk te zijn. zelfs indien de overgebrachte kracht kleiner is

dan het produkt van wrijvingscoefficient en normaalkracht~ nit ver­

schij'nsel wordt de "gem.iddelde slip" (Engels: creepage) van de

lichwnen genoemd. Is er loodrecht op het contactvlak een component

van rotatie van de lichamen ten opzichte van elkaar. dan spreekt men

van "spin". In deze dissertatie worden de verschijnselen in het con­

tactvlak bestudeerd; in het bijzon~r W9rdt dejPetrekking gezocht
~.

die het verband aangeeft tussen de gemiddelde slip en spin enerzijds

en de totale tangentiele kracht. die de lichamen op elkaar uitoefenen.

anderzijds.

Na een historische inleiding in Hoofdstuk 1. worden in Hoofdstuk

2 en Hoofdst,Jk 3 een aantal wiskundige hulpmiddelen besproken. die

voor de hier gegeven behandeling van het probleem noodzakelijk zijn.

Wat betrett het elastische gedrag worden de omwentelingslichamen door

elastische halfruimten benaderd en wij zullen dus de elastische ver­

plaatsingen onderzoeken, die worden teweeggebracht door verdeelde

belastingen van verschillende aard, die aangrijpen in een elliptisch

gebied gelegen in het overigens spanningsvrije oppervlak van een

elastische halfruimte. nit onderzoek leidt tot het opstellen van een

stelsel lineaire vergelijkingen waarmee de verplaatsingen in de be­

lasting kunnen worden uitgedrukt. nit stelsel is geschikt om de

randvoorwaardeproblemen uit de elasticiteitstheorie op te lossen.

waartoe sommige contactproblem.en aanleiding geven.

In Hoofdstuk 4 keren wij terug tot het oorspronkelijke probleem.

De randvoorwaarden worden opgesteld, en het aantal parameters dat het

probleem bepaalt. wordt tot vijf teruggebracht. Tevens worden een aan­

tal symmetrie eigenschappen besproken. Hoofdstuk 4 is verder gewijd

aan de theorie van twee grensgevallen, t.w. het grval van zeer kleine

(infinitesimale) gemiddelde slip en spin, en het geval van zeer grote

IV.



gemiddelde slip en spin (volledig doorglijden). De behandelings­

methode van het eerste geval is afkomstig v~ DE PATER [1J, en werd

door KAIKER [1] toegepast op cirkelvormige contactgebieden. De

methode wordt hier toegepast op elliptische contactgebieden, waarbij

de "theorie van Hoofdstuk 2 wordt gebruikt~ Het geval van volledig

doorglijden werd reeds behandeld door LUTZ [1,2,3J en WERNITZ [1,2J.

Zij losten het probleem op voor het geval dat de gemiddelde slip de

richting van een der hoofdassen van de contactellips heeft. De

theorie van Hoofdstuk 4 is niet aan deze beperking onderhevig.

In Hoofdstuk 5 wordt een numerieke methode beschreven voor het

algemene geval van eindige gemiddelde slip en spin, waarbij al dan

niet volledig doorglijden optreedt. Het probleem wordt eerst terugge­

bracht tot de minimalisatie van een oppervlakte-integraal. Daarna

wordt een numerieke methode besproken waa~ee de integraal kan worden

geminimaliseerd. Er wordt vervolgens uitvoerig ingegaan op het reken­

machineprogramma dat de numerieke methode verwezenlijkt en tens lotte

worden de resultaten toegelicht. Er bestaat een redelijke overeen­

stemming met het experiment.

In Hoofdstuk 6 worden een santal conclusies getrokken en enige

projecten voor nader onderzoek aangeduid.
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Smnmary.

Two purely elastic, perfectly smooth bodies of revolution are

pressed together, so that a finite contact area forms. Then they are

rotated about their axes, so that they rollover each other. If a

couple is applied to one body and taken from the other, the

circumferential velocities of the bodies appear to be no longer

equal, even in case the force transmitted is smaller than the product

of the coefficient of friction and the normal force. This phenomenon

was called "creepaee1i by CARTER [1J. If there is, perpendicular to

the contact area, a component of rotation of the bodies with respect

to each other, "spin" is said to be present. In this thesis p the

phenomena in the contact area are studied and in particular the

relationship is sought which connects the creepage and the spin on

the one hand, and the total tangential force which the bodies exert

upon each other on the other hand.

After a historical introduction in chapter 1, we discuss in

chapter 2 and chapter 3 a number of mathematical tools which are

needed for our treatment of the problem. As far as the elastic

behaviour is concerned, the bodies are approximated by elastic llalf­

spaces. So we investigate the elastic displacements which are due to

distributed loads of different types acting in an elliptical area of

the surface of an elastic half-space, while outside the elliptical

area the surface is free of traction. This investigation leads to the

construction of a system of linear equations by means of which the

displacements can be expressed in terms of the surface tractions.

This system enables us to solve the boundary value problems of the

theory of elasticity which correspond to several contact problems.

Chapter 3 finishes with an application of this methqd to a number of

well-known contact problems.

In chapter 4 we return uo the original problem. The boundary

conditions are set up, and the number of parameters defining the

problem is reduced to five. Also, a number of symmetry properties is

discussed. The remainder of chapter 4 contains the theory of two

limiting cases, viz. the case of very small (infinitesimal) creepage

and spin, and the case of very large creepage and sRin (bodily

VI.



sliding). The method of treatment of the former case is due to DE

PATER [1J, and it was applied by KALKER [1J to circular contact

areas. Here, the method is applied to elliptical contact areas, using

the theory of chapter 2. The case of bodily sliding has been treated

by LUTZ [1,2,3J and WERNITZ [1.2]. They solved the problem for the

case that the creepage has the direction of one of the principal

axes of the contact ellipse. In chapter 4, this restriction is

removed.

In cha.pter 5 a. numerical method is given for the gener6.l ca.se of

finite creepage .and spin, with or without bodily sliding. The problem

is first reduced to the minimalisation of a surface integral. Next,

a numerical method is discussed by means of which the integral can be

minimized. Then we consider the computer programme which realises the

numerical method, and finally we discuss the results. These appear to

agree reasonably well with the experimental evidence.

In chapter 6 certain conclusions are drawn, and some projects

for further research are indicated.

VII.





1. Introduction.

Consider two purely elastic, perfectly smooth bodies of

revolution, see Fig. 1. They are pressed together with a force N.

I M > ~""\f: y+ I~
z y

x

'N
tMz

----Fx
".,- ''\ ~

Fy

Fig. 1. Two bodies rolling over each other.

as a consequence of which a contact area comes into being along

which the bodies touch. According to the theory of HERTZ (see

LOVE [1], pg. 193 sqq.). this contact area is an ellipse when

the bodies are counterformal. SUbsequently. the bodies are

rotated about their axes. so that they rollover each other. As

a consequence of dry friction. the bodies can exert tangential

forces upon each other at the contact area. If a couple is

exerted on one body, and taken off fram the other, it is found

that the circumferential velocities of the bodies are no longer

the same. without the occurrence of gross sliding. This

difference in the circumferential velocities of the bodies.

divided by the rolling velocity. is called the creepage of the

bodies. If also the rotations of the bodies about an axis

perpendicular to the contact area are different. we speak of



spin. The problem is, to investigate what takes place in the

contact area, and in particular to find the connection between

the two components of creepage (one in the direction of rolling:

longitudinal creepage, and one in a direction perpendicular to

the rolling direction: lateral creepage) and the spin on the

one hand, and the two components of the total tangential force

and the moment about an axis perpendicular to the contact area

on the other hand.

It.is assumed in this work that the law of dry friction

(COULOMB's law) with constant coefficient of friction connects

the tangential traction at a point of the contact area, and the

local velocity of the bodies with respect to each other (the

slip), and that a steady state is reached.

1.1. Historical outline.

=\J
X

The problem which we just stated was treated first by

CARTER [1J in 1926. He considered the case of two cylinders with

parallel axes, in which creepage only occurs in the direction of

rolling, and he gave a complete solution of the problem. The

tangential stress distribution is found as the difference of two

stress distributions which are semicircular when the scale is

properly chosen, see fig. 2. One of the stress distributions is

acting over the whole contact width, and the other over a part

of the contact width, viz. over the region where the local slip

is zero: the area of adhesion, or locked area ~. The area of

adhesion is determined by the creepage, here defined as

- +V - V
, + _ '

-;dv +V )

where V+ and V- are the circumferential velocities of the

rolling cylinders. The velocity -~(V++V-) which occurs in the

dencminator of (1.1), is the rolling velocity. The semicircular

traction distribution over the whole contact area equals IJ Z,

where Z is the nonnal pressure distribution and lJ is the

coefficient of friction. It is a consequence of the semicircular

2.



a: half width of the contact area,l

+ - '" J(1.2)R , R : rad~~ of cyl~nders,

positive when they are convex•

roLLing direction

Fig. 2. The tangential stress distribution according to CARTER,

traction distribution over the area of adhesion, that the slip

vanishes in the area of adhesion, while the total tangential

traction falls below the bound ~Z given by the law of friction.

It is seen from Fig. 2 that the adhesion area borders on the

leading edge x = a of the contact area. No explanation of this

phenomenon was given by CARTER, but it was supplied in 1950 by

CAIN [I] in a discussion of a paper by PORITSKY. If the area

of adhesion does not border on the leading edge, there would be

an area of slip there; but CAIN showed that in that area of slip,

the slip does not match the tangential traction as far as the

direction is concerned, so that it cannot occur. In the area of

slip behind the adhesion area, slip and traction do match in

that respect.

The coordinate b of the trailing edge of the contact area

is given by

Iv Ip
b/a = 2~a - 1,

~ = ~ (~+~)
.R R /

3.



It is seen from (1.2) that when the creepage vanishes, then

bla = -1, so that the area of adhesion covers the whole contact

area, and the tangential traction vanishes. This is called free

rolling, in which there is no dissipation by surface friction.

There can be dissipation by elastic hysteresis, but such e~fects

are not considered in this work. When the creepage increases,

b/a increases, so that the area of adhesion diminishes. When

loxlphla = 4, b reaches the leading edge of the contact area,

and when the creepage increases further, b passes the leading

edge. This should be interpreted as follows: no area of adhesion

forms at all. The tangential traction equals llZ everywhere, and

the slip matches it. This is called gross sliding.

We will give same impression of the magnitude of the

creepage in the range we are interested in. When the cylinders

have the same radius, then the characteristic length p is the

diameter of the cylinders. In that case, a representative value

of pia is 200, the contact width being dependent on the normal

load. A representative value of the coefficient of friction is

0.3. So, when iL this example 10 I = 0.003, the adhesion area
x

covers half of the contact area, and gross sliding sets in when

/0 I = 0.006.x
In the region between free rolling and the first onset of

gross sliding, the total force F exerted on the lower body is
x

given by a parabola which is tangent to the line F = llN, seex
Fig. 3. In the region of gross sliding, F has the maximum valuex

4.

1 (0 p)
F ="77' \.IN ~

x 10 lla

10 Ip
if __x_ < 4

llB -

\0 Ip
if __x_ > 4
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1-25
Fx

iJ.Nt ,,00

0·75

o-so

0·25

0·8 3·2 4·8

UxP
Fig. 3. The total force Fx/~N vs. the creepage~ according to

CARTER.

Progress was made by JOHNSON in a number of papers. JOHNSON

performed a number of experiments in order to determine the

connection between the total tangential force and the torsional

moment on the one hand, and creepage and spin on the other hand.

In [1J and [5J he also gives a theory of creepage without

spin, which is a direct generalisation of CARTER's theory. In

this theory, JOHNSON approximates the area of adhesion by an

elliptical area which is similar to the contact area, and is

similarly oriented. It touches the boundary of the contact area

at its foremost point, see Fig. 4. Here also the traction

distribution is found in the form of a difference between a

semi-ellipsoidal traction distribution acting over the entire

contact area, and another, which acts over the adhesion area

alone. However, there is a serious flaw in this theory: in the

region shown shaded in Fig. 4, the slip and the tangential

traction do not match. In fact, if we define the slip as the

local velocity of the upper body with respect to the lower,

and consider the traction exerted on the lower body, the slip

and traction are almost opposite in the shaded area, violating

the friction law. In the slip region outside the shaded area,

the traction and the slip are almost in the same sense; in fact,

they make a small angle, and this is another, smaller, objection

5.



-1-----.j---+------4---x

y

Fig. 4. Areas of adhesion and sli:p according to JOHNSON.

against the theory. The conclusion we draw from the shaded area

of error is, that the area of adhesion is given incorrectly in

JOHNSON's theory. If JOHNSON's theoretical results are com:pared

with the experiment, it appears that the theoretical value of the

creepage at a certain value of the total force :parameter

(F, F )/~N is lower than the experimental value. This differencex y
is at most 25%, so that JOHNSON's theory can be used very well as

an approximative theory, especially since the values of the

coefficient of friction ~ differ considerably from one case to

another.

Another theory is given by HAINES and OLLEmON [1]. Only

creepage in the rolling direction is taken into consideration,

and it is assumed "t;hat in narrow strips :parallel to the rolling

direction, CARTER's traction distribution is valid. It then

a:ppears that the area of adhesion is given by a lemon sha:ped

area the leading edge of which coincides with the leading edge

of the contact area, see Fig. 5. The trailing edge of the

adhesion is an arc which, measured along the rolling direction,

has a constant distance to the trailing edge of the contact

area, in other terms, it is the trailing edge of the contact

6.



-t----+---+-------+-x

y

Fig. 5. Areas of adhesion and slip according to HAINES and

OLLERTON.

area shifted parallel to itself in the rolling direction. This

theory can in principle be used only for contact areas which are

slender, with the minor axis in the rolling direction. However,

HAINES and OLLERTON have also done photoelastic work from which

it appeared that the theoretical form of the area of adhesion

was in good agreement with practice, also when the contact area

was not slender.

Recently, the theory of HAINES and OLLERTON was generalized

by KALKER [2J so, that lateral creepage and, to a limited extent,

also spin can be accounted for. In this theory, the elasticity

equations are integrated approximately. This approximation is

best when the contact ellipse is slender, with the minor

semi-axis in the direction of rolling. With this approximate

solution of the elasticity equations it is accomplished that

,0. there is no slip in the adhesion area; 2°. that the

tangential traction in the slip area has the value llZ; but 3°.

there generally remains an angle between traction and slip in

the slip area. This angle is small almost everywhere in case of

pure creepage and when the spin is small, but deteriorates when



the spin increases. When for a slender contact ellipse the total

force is compared with the results of ch. 5 of this dissertation,

it is found that there is excellent agreement in the case of pure

creepage, but in pure spin there are relative errors of up to 20%.

For spin there is a smaller amount of theory than for pure

creepage. We just mentioned the theory of K.ALKER [2J. Aside from

that, there are only theories on the two asymptotic cases, viz.

very large creepage and spin, and infinitesimal creepage and

spin. Experimental work on spin has been done by JOHNSON [2, 3J
both on pure spin and on spin in combination with lateral

creepage, by LEE and OLLERTON [1 J, and by POON [1J•
The case of very large creepage and spin was treated by LUTZ

[1, 2, 3J and WERNITZ [1, 2J. In their theory, they assume that

the creepage and spin are so large, that the influence of the

elastic deformation on the local slip can be neglected. As a

consequence, there is no area of adhesion, and the local slip is

completely specified by creepage and spin alone: there is no

effect of the tangential traction on the slip. So, the direction

of the local slip is known, and hence the direction of the local

-e-raction, its magnitude being given by \lZ. The total tangential

force and the torsional moment follow from integration. LUTZ [2J
treated the case of a circular contact area, and WERNITZ [1J the

case of an elliptical area. The latter case was treated, however,

with a restriction on the components (0 , 0 ) of the creepage:x y
either 0 == 0, or 0 = 0. This is the case in friction drivesx y
which LUTZ and WERNITZ considered,. We will treat the case of

very large creepage and spin without this restriction in sec.

4.4 of this dissertation.

The opposite case is the case of infinitesimal creepage and

spin. Here it is assumed that the adhesion area covers the

entire contact area. For a circular contact area, this case was

treated by DE PATER G] for POISSON's ratio 0 == 0, and by KALKER

~J without this restriction on o. In sec. 4.3 sqq. of this

dissertation, this theory is generalized to elliptical contact

areas. Earlier, JOHNSON [2J treated the case of infinitesimal

8.



spin for a circular contact area and arbitrary POISSON's ratio.

In KALKER [1], a comparison is made between the theories of

KALKER [1J, JOHNSON [2J, and JOHNSON's experiments [2J. There

appears to be a fairly large discrepancy between the theories,

and KALKER' s theory was found to be most in agreement with the

experimental results.

In chapter 5 of this dissertation, a numerical theory is

developed. which can be used for arbitrary creepage and spin.

This theory is mainly of academic interest in the case of pure

creepage, owing to the fact that the approximative theories are

of good quality. In the case of non-vanishing spin, the theory

of chapter 5 provides the comparison needed for the safe use of

the strip theory; such a comparison is made in KALKER [2J. For

values of the spin not covered by the strip theory, the numerical

theory of chapter 5 is the only one available. It can also be

used to judge, when creepage and spin are large enough so that

the theory of LUTZ [1, 2,3J and WERNITZ [1, 2J can be used.

1.2. Two simplifying assumptions. outline of the thesis.

As far as the theory elasticity is concerned, the lower and

the upper body are approximated by half-spaces. In the Cartesian

coordinate system (0, x, y, z) which we will adopt, the lower

body occupies the half-space z ~ 0, and the upper occupies z ~ o.
Quantities pertaining to the lower body are distinguished by a

+superscript added to the symbol :from the analogous quantity of

the upper body which carries a superscript • The normal

pressure is denoted by Z, while we define the tangential

tractions (X, Y) as the local tangential (frictional) force per

unit area exerted on the lower body by the upper body.

The contact area E and the distribution of normal pressure

Z are determined by the boundary conditions of the HERTZ theory;

see LOVE [1J pg. 193 sqq.:

w(x,y} - w+(x,y,o}-w-(x,y,O): -Ax2-By2+a, Z ~ o inside E, ( 1. 4a)

w(x,y} - w+(x,y,O)-w-(x,y,O) > -Ax2-By2t-a, z=o on z=O,

outside E, ( 1. 4b)

9.



where w± is the displacement component in the z-directi on, while

w(x,y) is called the displacement difference in the z-direction.

A and B are determined by the radii of curvature of the bodies,

see (3.38), and a is the penetration of the bodies.

In the first place, we will assmne that the tangential

traction distribution (X,Y) acting between the bodies does not

disturb the displacement difference w(x,y). Such an assmnption

was already made by MINDLIN [1] in 1949. It was shown by DE PATER

[1J p~. 33, that the assmnption is completely correct in the case

that both bodies have the same elastic constants. A discussion of

the error of the approximation when the elastic constants are

different will be given in sec. 2.1. The assmnption implies that

neither the contact area E nor the nor.mal pressure Z are disturbed

by the tangential tractions. ConseCluently, E and Z are given by

the HERTZ tlfeory of frictionless contact. According to that

theory, which is treated in some detail in sec. 3.221, the

contact area E is elliptical in shape, so that we can choose our

origin and x and y axes so that

E = { x,y,z: z = 0, (x/a)2 + (y/b)2 51} ,

while the normal pressure Z is given by

3N! 2 2
Z = 2nab l-(x/a) - (y/b) inside E,

( 1. 5a)

= 0

N: total normal load.

on z = 0, outside E,

The local slip at a point is defined as the local velocity

of the upper body with respect to the lower body. We ordinarily

use the relative slip (s ,s ), which is eClual to the local slipx y
divided by the rolling velocity. We will show in sec. 4.1 of this

dissertation that when steady rolling takes place in the x­

direction, the relative slip is given by (4.15):

. with

10.

s = U -<fly + ~
x x ax ' s = u +~x + !!.

y y ax '
( 1.6a)



(u , u ): the creepage, ~: the spin,x y

u = {u+(x,y,o)-u-(x,y,O)}, v = {v+(x,y,o)-v-(x,y,O)}

u±, v±: (x,y) displacement components in lower/upper body.

We will also assume that the normal pressure distribution Z

does not disturb the displacement differences (u,v). Such an

assumption was made by MINDLnr [1] in 1949. It was shmm by DE

PATER [1], pg. 33 that this second assumption is completely

correct in the case that the bodies have the same elastic

constants. A discussion of the error of the approximation when

the elastic constants are different will be given in sec. 2.1.

As a consequence of the assumed independence of w on (X, y) ,

the problem falls apart into a normal problem which completely

determines the normal pressure and the contact area, and a

tangential problem which uses the results of the normal problem

as data. The reason for the assumed independence of (u,v) on Z

lies in the fact that the case of equal elastic constants is

technically the most important, while the theory becomes somewhat

simpl~r, and the coefficient of friction does not figure as an

independent parameter in the calculation.

A method to obtain a better approximation was indicated by

JOHNSON [4J, pg. 18 sqq. JOHNSON proposes to retain the

assumption that w is independent of (X,Y), but to take the

dependence of (u,v) on Z into account. The value of this method

consists of the fact that the dependence of (u,v) on Z is much

more important than the dependence of w on (X,Y), especially when

the coefficient of friction ~ is small, see sec. 2.1. The

advantage over the rigorous theory is, that the normal problem

remains the same, and that the tangential problem changes only

in that a term is added to the formula for the relative slip,

the term being explicitly known, and being independent of the

creepage and the spin. This method is not investigated further

in this thesis, where we will retain the two assumptions of

MI:NDLIN.
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The tangential problem is determined by the following conditions.

(X,Y) and (u,v) are connected by the elasticity equations}

for the half-space, in which stresses and displacements (1.7)

vanish at infinity, while X = Y = ° on z = 0, outside E;

(X.Y) = ~z(w ,w ), w = sis. w = sis. s = I s2 + s2 }xy x x y y x y

in the area of slip E ; (1.8a)
g

s =s =0, I(X,Y)I~~ZintheareaofadhesionEh' (1.8b)x y

We see from (1.7) and (1.8) that the tangential problem naturally

falls into two parts. In the first part, we must stUdy the effect

of the traction distribution (X,Y) on the displacement differences

(u,v). in order to get the connection between the traction and the

slip. We solve this problem by giving this connection for certain

standard traction distributions which form a complete system. In

the second part we superimpose the standard tractions so as to fit

(approximately) the boundary conditions (1.8). It should be noted

that the division of the contact area into areas of slip and

adhesion is not known beforehand, but must result from the

calculat ions.

In chapters 2 and 3 of the thesis, we attack the first sub­

problem, viz. finding a complete set of tractions with their

corresponding displacements differences. Apart from the

tangential problem in which (X,Y) are given ~d Z is unimportant

as we have here, we also treat the normal problem where <x.y) are

unimportant, Z is arbitrarily prescribed. This is done because it

widens the scope of chapters 2 and 3, while it is done without

much trouble, since a normal problem is equiValent to a

tangential problem in which POISSON's ratio a vanishes.

In chapter 2, we give the theory of tractions of the form

1 M
(X,Y,Z) = {1_(x/a)2_(yjb)2}-2 L: (d ,e ,f )xPyq. (1.9)

p+q=O pq pq pq

It is shown in 2.2 that to the tractions (1.9) surface displace­

ment differences belong

12.



(1.10)
M

(u,v,w) = l
m+n=O

The remainder of chapter 2 is devoted to the connection between

the (a ,b ,c ) and the (d ,e ,f ). This connection is given
mn mn mn pC! pC! pC!

in the form of a square set of linear equations, which we call

the load-displacement equations. They express (a ,b ,c )
mn mn mn

explicitly in (d ,e ,f ).
pC! pC! pC!

In chapter 3, we treat special cases or the load displace-

ment eC!uations. In 3.1, we consider the special case that (X,Y,Z)

vanish at the edge of the contact area, and have the form

1 M-2
(X,y,Z)={1-(x/a)2_(y/b)2}+~ l (d ,e ,f )xPy

q (1.11)
p+C!=0 pC! pq pq

Again, (u,v,w) are given by (1.10). The coefficients of the load­

displacement equations appear to undergo only minor changes. In

3.2, we treat a number of examples, viz. a rigid, flat die of

elliptic circumference pressed into a half-space (3.211), the

problem of CATTANEO and MINDLIN without slip (3.212), the problem

of HERTZ, fairly detailed because it is used later on (3.221),

and finally the problem of CATTANEO and MINDLIN with slip,

without twist (3.222).

In chapters 4 and 5, we attack the second subproblem, viz.

the fitting of the boundary conditions (1.8), by means of the

theory of chapters 2 and 3. In 4.1, the boundary conditions are

derived; this is followed by considerations of symmetry in 4.2.

The remainder of chapter 4 is devoted to the two limiting cases,

viz. infinitesimal creepage and spin (sec. 4.3), and very large

creepage and spin (sec. 4.4). The case of infinitesimal creepage

and spin, which was treated before by DE PATER [1] and KALKER [1]
is extended to the case of an elliptical contact area. Tractions

of the form (1.9) are used. The case of very large creepage and

spin, which was treated by WERNITZ for elliptical areas only

when u =0 or u =0, is here extended to the case of arbitrary
x y

creepage. The method of LUTZ and WERNI'l'Z is retained, and the

theory of chapters 2 and 3 is not used.

13.



In chapter 5 we treat the case of arbitrary creepage and

spin. The procedure is, to write the boundary conditions (1.8)

in the form

I=Jf {1-(x/a)2_(y/b)2}{X'_w )2+(y'_w )2}{s 2+s 2}dxdy=O}
E x y x y (1. 12a)

l(x'.Y')1~1 •

with (X.Y) = ~Z(X'.y,)= ~~:b {1_(x/a)2_(Y/b)2}+~ (x,.y,)}

M (1.12b)
(X'.y')= I (d.e )xPy\M+"'.

p+q=O pq pq

It should be observed that (1.12a) can only be satisfied i:r at

every point of the contact area at least one of the factors of

the integrand vanishes. The first factor does not vanish except

on the edge of the contact area; if the second factor vanishes,

(1.8a) is satisfied, and the point belongs to the area of slip; if

the second factor vanishes. then (1.8b) is satisfied. and the

point belongs to the area of adhesion. The inequality I(X' ,Y') I~ 1

ensures that the maximum ~Z of the tangential traction is not

exceeded. We see from (1.12b) that the tractions (1.11) of sec.

3.1 are used. This is done with the purpose to enter a rudiment

of the inequality into the integral. In practice, we take M = 3

in (1.12b), and minimize I with respect to (d ,e ), since thepq pq
positive definite integral I vanishes only for infinite M. The

inequality of (1.12a) will be verified a:fterwards. It is seen

that in this method the difference between the locked areas ~

and the slip areas E disappears frcm the problem. The domain
g

of slip can, however, be identified with the area in which

{(X'-w }2+(y'_w }2}«{s 2+s 2), and the domain of adhesion K
x y x yh

is that in which {(X'-w }2+(y'_w }2}»{s 2+s 2). This distinction
x y x Y

is especially sharp in the case of pure creepage. The calculations

were performed for a large number of parameter combinations \) •x
\) , ~. and alb (= ratio of the axes of the contact ellipse). In

y
5.1 sqq. the theory is discussed; in 5.2 sqq, we present same

considerations on the ccmputer programme with special emphasis on

the optimalisation of the programme and the verification of the

14.



inequality t and in 5.3 sqq. we devote our attention to the

numerical results.

The dissertation finishes with a conclusion in which the

results achieved are summarized. and in which we make some

remarks regarding further research.

15.



w(x,y)

2. Two elastic half-spaces under normal and shearing loads acting

in an elliptical contact area.

In the present chapter, we will consider the stresses and

displacement differences that arise when two half-spaces are in

contact. Throughout the chapter we assume that contact takes

place along an elliptical contact area E.

We introduce a cartesian coordinate system (O,x,y,z), the

origin of which lies in the centre of the contact ellipse. The

direc"\;ions of x and y are the axes of the ellipse, and the axis

of z is directed along the inner normal of the lower half-space.

We denote the surface tractions by (X,Y,Z), the elastic displace-
. (+ + +) .ment ~n the lower half-space z ~ 0 by u ,v ,w ,and the elast~c

displacement in the upper half-space z ~ °by (u-,v-,w-).

We saw in the previous chapter that as a consequence of our

assumptions. we could decompose the problem into two partial

problems, viz. the normal and the tangential problem.

The normal problem has to be solved first, and it is

equivalent to a contact problem without friction. Its boundary

conditions are formulated in terms of Z and the displacement

difference w(x,y)=w+(x,y,O)-w-(x,y,O), and the most important

condition is that w(x,y) takes on a prescribed value in E. We

can schematize the elasticity part of the problem by solving the

following

Normal problem: The shear tractions (X, Y) vanish identically

on the whole of the boundary z = 0, and the normal traction

Z vanishes outside the elliptical area E. The surface dis­

placement difference w(x,y) is given at E as a polynomial of

degree M in x and y:

M M-m
I I c xmyn inside E.

m=O n=O mn

Find the normal traction Z acting at the area E.

This problem seems to be artificial. The reason why we

restrict ourselves to polynomial displacement differences is,

that for such a displacement we can find the normal traction Z

by solving a finite set of linear equations. Moreover, we observe

16.



that the polynomials are complete in the sense that they can

approximate any continuous function as well as one likes.

Finally, in several problems, e.g. the problem of HERTZ (sec.

3.221), and the problem of a flat rigid die of elliptical

circumference that is pressed into a half-space (sec. 3.211),

the displacement difference w is actually a polynomial.

Making use of the results of the normal problem, we proceed

to solve the tangential problem. From a point of view of elastic­

ity alone, this problem is equivalent to a problem in which there

is no normal load at the boundary, as a consequence of the second

assumption of MINDLIN, see sec. 1.2. The most important boundary

condition in the area of adhesion is the (almost complete) pre­

scription of (u(x,y), v(x,y)) = (u+(x,y,O)-u-(x,y,O), v+(x,y,O)+

-~(x,y,O)) in it. Hence it is desirable to solve the following

Tangential Problem: The normal traction Z vanishes

identically on the entire boundary z = 0, and the

tangential surface traction (X,Y) vanishes outsid~

the elliptical area E. The displacement differences

(u(x,y), v(x,y)) are given in E as polynomials of

degree M in x and y:

M M-m
(u(x,y), v(x,y) = L I (a ,b ) xmyn inside E. (2.2)

m=O n=O mn mn

Find the tangential traction (X,Y) acting at E.

This problem, too, can be solved explicity, in the same way

as the normal problem. As in the norm.al problem, there is an

example in which (u,v) are actually polynomials: it is the

problem of CATTANEO [1J and MINDLIN [1], in which two bodies are

pressed together and then are shifted or twisted, while slip is

assumed to be absent. This problem is treated in sec. 3.212.

We finally observe that both problems reduce to problems of

the single half-space, when one of the two elastic half-spaces is

assumed to be perfectly rigid.

2.1. Formulation of the problems as integral equations.

The connection of the surface tractions and the displacement

17.



(2.6)

of a half-space can be given by an integral representation. In order

to find it,.we observe that the displacement in the lower half-space

due to a concentrated load of magnitude Z acting at the origin in the

direction of the positive z-axis is given by LOVE [1J, par. 135, pg.

191, as follows:

+ Z xz Z xu =--- -
41Tll r 3 41T(A+ll) r( z+r)

+ =....!-~- z Y (2.3)V

41Tll r 3 41TO.+ll) r(z+r)

+ Z 70 2 Z(H211) 1 Ix2+y2+z2w =---+ - , r
41Tll r 3 41Tll(Hll) r

where A and II are LAME's constants, which are connected with the

modulus of rigidity G and POISSON's ratio a by the relations

2O'G G 2G( 1-0')
II = G, A =~ , A+ll = -;::20 , A+211 = 1-20' (2.4)

SOt (2.3) becomes
+

+ Z {XZ _ (1-20' ) X }

U = 41TG+ r 3 r(7o+r) t

v+ Z {Z! _ (1-20 + )y

= 41TG+ r 3 r(7o+r)

w+ = _Z_ { ~ + 2(1-0'+) }

41TG+ r 3 r

The displacement in the lower body due to a distributed pressure

Z(x,y) in the z-di~ection is then given by superposition:

+-
u+(x,y,z)=~ Jf Z(x' ,y'){ (x-x')7o (1-20') (x-x') dx'dy'

41TG E r 3 r(z+r)
+

v+(x,Yt z )=~ JJ Z(x',y'){ (y-y')z (1-2(1 )(y-y') "} dx'dy'
41TG E r 3 r(z+r)

+( ) 1 JJ {Z2 2(1-O'+)}w x,y,z = --+- Z(x',y') - + dx'dy',
41TG E r 3 r

r = I(x-x' )2+(y_y' )2+ 70 2, 70 ;: O.

We must also have the displacement in the upper body. It is due to

the reaction of Z(xtY), and conse~uently it is given by the same

e~uations, but in a coordinate system (xty,z')t where 70' -70. To

find it in our coordinate system (x,y,z), we must change 70 to 1701,

18.



+and w to -w everywhere. This gives for the displacement in both

half-spaces:

+( ) 1 If Z(xl.y'){ (x-x') Iziu x,Y,z = --_ •
47fG+ E r

3

(1-2('+) (x-x')
} dx1dy't

r( Iz I+r)

+ 1 If { (y-y') Iz Iv (x,Ytz)= -- Z(x' tY')
47fG+ E r

3

+
(1-2er )(Y-Y') ) dx'dy',

r( IZ I+r)

w+(xtY,z)= ....£.l..- If Z(x' .Y'){ ~ + 2(1-0+) } dx'dy',

47fG+ E r 3 r

r = l(x_x')2+(y_y l )2+ z2. upper and lower sign as z < O. Z > O.

From this we see that in case G and er are the samp. in both bodies

(elastic symrnet:r;r).

+
U (x,Ytz)

(2.8)if X = Y 0
+v (x.y,z) = v-(xty.-z)t

w+(xtY.z)= -w-(x.y.-z)t

a result due to DE PATER [1J. pg. 33.

The displacement differences t which are prescribed in the normal

and tangential problems t are:

U(xtY) = {u+(xtYto)-u-(x.Yt O)}

+ -
=h{1-2er _1-2er } Ifz(x',y')

7f G+ G- E

v(x.y) = {v+(x.YtO)-v-(xty,O)! =

x'-x
dx'dy' •

R2

+ -__ 1 {1-2er _ 1-2er } Jf ( ) v'-v
T'""" Z x', y , "'--"-2 dx ' dy I ,
't7f G+ G- E R

w(x,Y) = {w+(x,y,o)-w-(x.y,O)} =

+ -
=_1 {.l=£.... + .l=£.... } JJ Z(x' ,y') dx'dy'

27f G+ G- E R

X = Y = 0, R = I(x-x' )2+(y_y' )2.

+ - +-We combine er t er and G , G in the following manner:

+ - +-
.1. =.1. (_1 + _1 ). ~ =.1. ( er

G
+ + er

G
_ ), K = +. G (1-2G~ - 1-G2~ ). (2. 10 )

G 2 G+ G- G 2 't
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+ -It is easy to see that G lies between G and G • and tha.t 0 lies

between 0+ and C1 in the case of elastic symmetry.

+G-. 0 = C1 = 0 • K = O. (2.10a)

The constant K vanishes in case of elastic symmetry. and also when

both bodies are incompressible. Its maximum is 0.5. but in practice

it is mostly small. e.g. 0.03 for steel on brass. and 0.09 for steel

on aluminium. In terms of th~ constants of (2.10). the displ'3.cement

differences became

u(x.y) = K If Z(x'.y') x-x' dx'dy' ( a)- 'ITG
E R2 •

K If
,

v(x.y) = - 'ITG Z(x' .y') ::l::JL- dx' dy' • (b) (2.11)
E R2

( ) 1-0 JJ Z(x' .y' ) dx'dy' (c)w x.y = 'ITG
E R

If w is prescribed in the contact area E. (2.11c) is an integral

equation for the unknown normal pressure Z(x,y).

The procedure for the tangential problem is very nearly the

same. We start with the displac~ment in the lower body due to a

concentrated load of magnitude X acting at the origin in the

direction of the positive x-axis. see LOVE [1]. par. 166, pg. 243.

+ X ( A+3lJ 1 X
2 ) X 1 + X (1 X

2
)

u = 4'ITlJ A+lJ r +;3 - 2'IT(A+lJ) r j~'IT(A+lJ) "'Z'+'r - r(z+r)2 •

+_X.& X xy
v - 4iTii r 3 4'IT(A+lJ)' r(z+r)2 • (2.12)

w+ =~~ + X _""x,--_
4'ITlJ r 3 4'IT().+lJ) r(z+r)

r = Ix2+y2+z2.

The effect of a distributed shear stress X(x.y) in the x-direction is

found by superposition. The displacement due to a load Y in the y­

direction is found from (2.12) by cyclic interchange of x and y. u

and v. X and Y. The displacement in the upper he.lf-space is given by

(2.12) in a coordinate system (x,y,z'), with z' = -z. However, we

must take into account that the shearing traction on the uppFlr body

has the opposite sign. So we find the displacement in the coordinate

system (x,y,z) by replacing X by -X, Y by -Y, z by Izl, w+ by -w-,
and it is for both half-spaces
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:+:
u (x,y,z)

= :+: _1_ JJ
4nG+ E

+ Y(x',y'){

:+:

[ {
1 1-20+ (x-x')2 (1-20 lex_x' )2 } +

X(x',y') ;+lzl+r+ r 3 r(lzl+r)2

(x-x'}(y-y') (1_20=F)(x_X')(y_y')}] dx'dy',
r 3 r( Iz l+r)2

+v (x,y,z) =
= +_1_ Jf [X(x',y'){ (x-x')(y-y') _ (1-20+)(x-x')(y-y') } +

- 3 I I I' \?+ E r r~ jZ ...rr
4nG ~ -

+ y(x' ,y' ){ 1. + 1-20 + (y-y') 2 _ (1-20+)(y-y') 2 }] dx' dy' ,
r Iz I+r r 3 rei z I+r )2

w+(x,y,z)

=~ JJ [x(x',y'){ (x-x') Izi + (1-2rr+)(x-x') }+

4
+ E r 3 r ( Iz I+r)

nG _

+ y(x',y'){ (y-y')lzl + (1-20+)(y-y') }] dx'dy',
r 3 r( Iz I+r)

r = /'-(-x_-x-'-)-=-2+-(y---y-,--:)2=-+-z-=Z, Z = o.

Upper sign: upper half-space, lower sign: lower half-space.
(2.13)

From this we see that in case G and (J are the same in both bodies

(elastic symmetry).

u:ex.y,z) = -u-ex,y,-z),}

v+(x.y.z) = -v~(x.y,-z), if Z = 0, (2.14)

w (x.y.z) = +w (x,y,-z).

a result due to DE PATER [1J, pg. 33.

The displacement differences ~(xIY)' v(y.,y). w(x,y), which are

prescribed in the normal and tangential problems, become with the

definition (2.10) of G, 0, and K,

u(x,y) =
= _1 II [x(x' y,>{1-0 + o(x-x')z}+y(x' y') o(x-x'}(y-y')J dx'd '

nG E ' R R3 ' R3 Y ,
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V(xIY) =

= _1 II [X(x' y') a(x-x')(y-y') + Y(x' y,){1-a + a(y-y,)2 1]dx'dY'
lTG E I R3 'R R3

1 (j2.R 1 (j2R
= lTG II [- a X(X'IY') + Y(x',y'){ - - a -- }]dx'dY'1

ax' ay' R ay,2

w(x,y) = ~ JI [x(x' IY') x-R~' + Y(x' IY')
lTG E

Z = 0, R = l(x_x')2.+(y_y')2..

tl. ]dx'dy'R2 I

(2.15b)

(2.15c)

(2.16)

If Z == 0, and u and v are prescribed in the contact area, (2.15a) and

(2.15b) are two, imultaneous integral equations for the unknown

tangential tractions (XI Y).

According to (2.11) and (2.15), we see that a rough estimate of

(u,v,w) in the COl.' act area is

u = O(F IGs) + O(aF IGs) + o(KN/Gs).
x Y

v= O(aF IGs) + O(F IGs) + o(KN/Gs),
x Y

w= O(KF IGs) + O(KF IGs) + 0(C1-a)N/Gs),x y

F , F , N: total force in the x.y,z-directions,x y
s: half diamf!ter of the contact area.

Throughout the present work we will neglect the influence of the

small constant K. This leads to exact results in the technically

important case of elastic symmetry, and also when both bodies are

incompressible.

It :would seem that our approximation leads to a high precision

in the case of w. since F and F are the most of the order ~Nx y
(~: coefficient of friction), so that the influence of X and Y on w

is of o(~KN/Gs), which seems to be negligible with respect to the

influence of Z, which is of 0(1-a)N/Gs). But neglecting the

influence of Z on (u,v) can lead to serious errors: this influence

can be of o(KN/Gs), while the influence of the tangential traction

is of O( ~N/Gs). Hence we would obtain a good second approximation by

taking the influence of Z on (u,v) into account, and neglecting the

influence of (X.Y) on w. The division of the problems into a normal.

and a tangential problem is then retained. This second approximat.ion
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was worked out by JOHNSON [4J for CARTER's problem. and he compared

his results with the exact theory (see JOHNSON [4J. fig. 7). from

which it appeared that the error of the second approximation is small.

We finally observe that the problem is governed by three elastic

constants. viz. G. a. and K. That is one less than one would expect,
+ - +since in principle the four constants G • G • a ,a can be

arbitrarily chosen. We also see t,hat G can bE eliminated by

introducing dimensionless tractions. So the elastic properties are

taken into account by the two dimensionless parameters K and a. one

of which we set, equal to zero.

2. 2. The fundament al lemma.

As we saw in the previous section, the normal and tangential

problems can be formulated as the integral equations (2.11 c) and

(2.15a,b). They are

u(x,y) =

=..L IJ [X(x',y,){1-a + a(x-x')2} + Y(x'.y') a(x-x')~Y-Y')]dx'dyi.
lTG E R R3 R

v(x.y) =

= _1 If
lTG E

__ 1-0 Jf dx' dy'w(x.y) Z(x' .y') .=o.:R::-=--
1TG E

with

(2.10)

We will now prove the following

Fundamental Lemma:

Let

H(x.y)

J(x.y)

K(x.y)

k a-k/R2H1 .. .
x y • k and R, posltlve lntegers. 29.. .:: k;

,
{1-(x/a)2 _ (y/b)2}-2; R2 = x2+y2;

M M-p
l:: l:: d xPy\ d a.rbitrary const ants;

p=O q=O pq pq

(2.21a)
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I(x.y) = fJ J(x' .y' )K(x' .y' )H(x-x' ,y-y' )dx'dy'.
E

then, if (x.y) lies in E = {x.y: x2/a2+y2/b2 ~ 1} •

..

Iv1 M-m m n
I(x.y) = r r a x y •

m=O n=O mn

that is. I(x.y) is a polynomial ln x.y of the same degree

as K(x.y).

(2.21b)

The lemma was established by GALIN [1J. ch. 2. sec. 8. in the

special case that k=~=O. by means of LAME's functions. Its

significance for the solution of the integral equations (2.18) and

(2.19) i~ the following. We see that all functions of (x~x') and

C"y') that occur in the integrands of (2.18) and (2.19) are of the

form H(x-x'.y-y'). If we suppose that the tractions X.Y.Z are of the

form J(x,y)K(x.y). then it follows that the displacement differences

u.v,w inside the elliptical area are polynomials in x and y of the

same degree as that of K(x.y ). But that means that there are as many

parameters in the displacement differences as there are in the

tractions. There is a strong presumption x) • borne out by our

numerical work. that the displacement fields are independent of each

other. It follows that we may invert the argument. and say that when

u. v and ware given as polynomials inside E, the tractions X.Y,Z

must be of the form J(x.y)K(x,y). Clearly, the connection between

the constants d and a is linear. owing to the linearity of thepq mn
equations. Summarizing, we see that the lemma presumably implies

that

(2.22)

M M-m m n
r r (amn , bmn , c ) x y inside E

m=O n=O mn
(u.v,w)

M M-p P q
~(X.Y.Z)=J(x,y)G r r (d .e ,1' )x y •

p=O q=O pq pq pq

where the constants (a .b .c ) are connected with (d .e ,1' )mn mn mn pg pq pq

x) KIRCHHOFF's uniqueness theorem does not hold when the stresses

go to infinity. as they do here.
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by linear equations.

We now turn to the

Proof of the Lemma.

Consider a typical term of the polynomial K(x,y), viz. xPyq.

Then the lemma is proved, if we can show that

ff J(x' ,y' )x,Py,q H(x-x' ,y-y' )dx'dy' = Pp+q(x,y),
E

where P (x,y) denotes an arbitrary polynomial in x,y of degree m. We
m

introduce polar coordinates R, ~ about the point (x,y):

x'-x = Rcos~, y'-y = Rsin~, dx'dy' = RdRd~, (2.24)

and we introduce a new notation: F (~) is an unspecified function ofm
~. independent of R. x, and y, for which

(2.25)

H(x-x' .y-y')

For example. sin~ = F1(~)' cos~ = F1(~)' Multiplication of functions

F (~) is governed by the law that F (~)F (~) = F + (~). Now.m m n m n

( ,)k( , )2R.-k/R2H1x-x y-y • so.

1
H(x-x',y-y') = R Fo(~)' (2.26)

We must write the fa~tor 1_(x'/a)2_(y'/b)2 in polar coordinates:

1_(x'/a)2_(y'/b)2 = 1 _ (RcosW+x)2 _ (Rsin~+y)2 =
a2 b 2

(1- x2 _ JI3.. )-2R( xcoslji + ysinlji )_R2 ( cos2t + sin2lji )=
a2 b2 a2 b2 a2 b2

- A {R2+2DR-C} = - A {(R+D)2_C-D2} = A {B2_(R+D)2}.

with

A = r.os
2

lji + sin2t = F (~) > 0,
a2 b2 a

c =i {1_x2 /a2_ y2/b2 }.

D = .l ( xcost +~ )
A a2 b 2 '

B( Tr+~),

(x'/a)2_(y'/b)2 = A{B2_(R+D)2}.
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As to the limits of integration. ~ goes from 0 to 2n. since

(x.y) lies inside the area of integration, and R goes from 0 to the

positive zero of 1_(x'(a)2_(y'(b)2. that is, to -D+B. So we get from

(2.24). (2.26). and (2.27) that (2.23) becomes

II J(x' .y' )x,Py,qH(x-x' ,y-y' )dx'dy' = )

E (2.28)

= J2n F (~)d~ J
B

-
D

(x+Rcos~)P(Y+Rsinw)q dR = P (x,y)
o 0 0 /B2_(R+D)2 p+q

where the factor 1(fA and RH(x-x' .y-y') have been taken together

into the single term F (~).
o

W~ can expand the term (x+Rcos~)P(y+Rsin~)qto a finite double

sum by means of the binomial theorem. twice applied. A typical term
. i+j p.-i q-j . i j. 't i+j ()
~s A.. R r y s~n ~cos ~. WhlCh can be wrl ten as R F,+. ~ x

~J 1 J

x xP-iyq-j. Inserting this into the integral (2.::::8). we see thA.t it

is sufficient to prove that

2n B-D
p-i q-j I Jx Y F.+, (~)d~

o ~ J 0

Setting i+j=m, we see that (2.29) is satisfied when
2n B-D m

I F (lj»dlj> I R dR = P (x,y).
o m 0 IB2_(R+D)2 m

now we introduce the variable t=R+D instead of R. Then. dR=dt. and

the limits are from D to B:

I2n
F (lj»dW IB

(t_D)mdt = P (x,y). (2.30)
o m D ~ m

We evaluate the term (t_D)m again with the binomial theorem. A

typical term is A t qJfl-q. If into this we introduce the value of D
q

from (2.27). we obtain

A tqDm- q = F (W)tq ( xcosw +~ )m-
q

•
q 0 a2 b2

Here again we ~valuate the right-hand side with the binomial

theorem; a typical term is
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Inserting this in (2.30), we get for a typical tenn:

211
P m-p-q fx y

o
and this is satisfied if

211 B tqdtf F (1/I)d1/l J = p (x,y).
o q D yj32_t 2 q

(2.31)

= °t

Now there are two possibilities: either q is odd; or q is even,

q=2m+1 is odd. (2.31) becomes then

211 B 2m+1
J F (1/I)d1/l J t dt =
o 1 D yj32_t 2

211 B2 tmdt
= J F (1/1) d1/l f -- =

o 1 D2 h2=t
11 B2 m B2

= J F (1/1) d1/l {J t dt - J
o 1 D2 1B2_t D2

since by (2.27),

D2 (1/J+11) = D2 (1/I) , B2 (1/I+11) = B2(~). So, the odd values of q do not

contribute at all to the integral.

q=2m is even. (2.31) becomes then

211 B 2m . 211 1 ~2m

J F (1/1) d1/l f t dt = J F (1/1) d1/l J t dt =
o 0 D /.B2_t 2 0 0 D/B 11_t2

211 1 2m 11 D/B -D/B t 2mdt
= f F (1/I)B

2m
d1/l J ~- J F (ljI)B

2m
dljl {J + J }-- ,

o 0 0 l1_t2 0 0 0 0 h_t2

and the latter two terms vanish, because t 2m/l1_t 2 is an even

function of t. As to the first term,

1 2mf _t_ dt
o 11_t2

is a constant, so that we must consider

211
J F (1/I)B

2m
dljl;

o 0

but B2 is a second degree polynomial in x and y, with coefficients

depending upon 1/1. So B2m is a (2m)-degree polynomial in x and y,
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=

=

and (2.31) becomes

2 'IT

J F2m(~)B2md~ = P2m(x.y).
o

which establishes the lemma.

2.3. DOVNOROVICH's method.

In the previous section we showed tbat if

M M-p
(X.Y.Z) GJ(x.y) ~O ~~O (dp~.ep~.fp~)xPy~.

~ -1

with J(x.y) = 11_(x/a)2_(y/b)2 then and (presumably)

only then

with E = {x,y: (x/a)2+(y/b)2 ~ 1}.

where the coefficients (d.e.f) on the one hand. and (a.b.c) on the

other hand are connF.cted ~ith each other by the integral represent­

ations (2.15a.b) and (2.11c). In order to find the e~uations

connecting (a.b.c) and (d.e.f) explicitly. it is, of course.

possible to follow exactly the road indicated by the proof of the

fundamental lemma. However, we prefer the road followed by

DOVlWROVICR [1J in his treatment of the normal problem. DOVNOROVICH

uses the lemma only in the form prove~ by GALIN, that is for

H(x,y) = 1/R. Hp. calculates c by differentiating the integral
mn

representation (2.11c) m times with respect to x Rnd n times with

respect to y. and then he sets x = y = 0:

[
am+n MM-j , kJ

m!n!c = L L C'kxJy
mn axmayn j=O k=O J x = Y = 0

= [ a:+
n

n
1-0 JJ Z(x' ,y') dx'dy' ]

ax ay 1TG E R x = Y = 0

[
am+n 1-0 ~ M~p n n dx'dy'j

= m n L L fp~ JI J(x',y')x'.t'y'''- R-
ax ay 1T p=O ~=o E x = Y = 0

Sin~e the values of ~ and q for which p+q < m+n give rise to
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polynomials of a degree lower than m+n. these values do not give any

contribution to cmn ' hence

M ]1) n dx'dy'I f If J(x' .y' )x'·y' "- R •
p+cer.l+n.p~O.ceO pq E x=y==O

As we will prove later in this section, we may interchange different­

iation and integration in this expression. so that

m!n!c
mn

M
= 1-0 I

1T
p+~m+n.

P2:°.~o

f JI J(x y)x,Py,q tam
+

n
R-

1
] dxdy =

Pn' m n
"- E ax' ay' x'=y'=O

1

1T

1-0=--
M

I
p+cem+n •
P~O.ceo

r = /x2+y2.

(2.33)

In exactly the same way, we find from (2.15a.b), and (2.32) that

r..!n%amn
1 M

= - I
7f

p+cem+n •
P~O.q;:O

(_1)m+n II J(x,y)xPyq
E

m1n%b =mn

1 M
= - I

1T
p+cem+n.
p;:o.~o

(2.34)

+ epq

m+n -1a r

axmayn

r = Ix2+y2. E = {x.y: x2ja2+y2jb2 ~ 1}.

The integrals
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are fairly easy to ca10ulate; we will do that in the next section.

The remainder of this section is devoted to the proof of the

validity of the equation

when

II f(X.y)H(X-X"y-yl)dxdY]
E x'=y'=O

m+n ( )
= (_l)m+n II f(x.y) a H x.y dXdy.

E axmayn

h 1
f(x.y) = J(x,y)~yq. E(x.y) = (x2+y2) -2,

2h+p+q-m-n > -1.

=

Proof. We divide the domain of integration into a small squa.re

about the origin. and the rest E-D of E. When the point (x'.y') is

close enough' to the origin, say

it lies in the square D. and then all derivatives of H(x-x'.y-y')

with respect to x' and y' exist and are continuous in E-D. Hence we

may interchange differentiation and integration in E-D, so that

= (_nm+n ff
E-D

(2.40)

We will now show that the contribution of the square D to both the

right hand side and the left hand side of (2.36) vanishef:' as ° -+- 0,

that is

° °A = I I
-0 -0

am
+

n fO 1°B = -'--- f(x,y)H(x-x' ,y-y' )dxdy -+- 0 as ° -+- 0
ax,may,n -0 -0

Evidently this will eRtablish (2.36).
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2h+p+q-m-n )
r dr -+ a as 0 -+ 0.

20
d1jJ J

o

am+nr2h-l ( 2h-l-m-n)
As to (2.41). we observe that = C r ; more-

axmayn

so that the integrand of A isover. f(x.y)=J(x.y)xPy
q

= O(r
p

+
q

).
o(r2h-1+p+q-m-n) • and

2'IT
A = o( J

a
when 2h+p+q-m-n>-1. (2.43)

As to (2.42). let us consider the case that m=1. n=O. Evidently.

o [ ] x=oH(x-x' .y-y')dx - J dy f(x.y)H(x-x' .y-y')
-0 x=-o

= Lim
k-+O

= Lim
k-+O

o
= I

-0

o 0
J dy J

-0 -0

{ / dy [ / r(X+k.y~-f(X.Y) H(x-x' .y-y')dx +
-0 -0

-0
+ t J

-o-k

- ~ / f(x+k.y)H(x-x' .y-y' )mJ} =
o-k :J
15

dy J Clr(x.y)
-0 ax

or. summarizing.

a 0 0
ax' J dy J f(x.y)H(x-x'.y-y')dx =

-0 0 -0 0

= ! dy_! af(~~Y) H(x-x'.y-y') dx + (2.44)

_- / [f(X.y)H(X-X' .y_y' )JX=O dy.
-0 x=-e

We observe in passing that the right hand side of (2.44) is formally

I ( ) aH. . Th"'equal to - f x.y ax dxdy. ~ntegrated part1ally. 1S 1ntegral.

however. is not absolutely convergent when h=O. unless x'=y'=O.

The first integral on the right hand side of (2.44) is analogous

to the orir,inal integral II f(x.y)H(x-x'.y-y')dxdy; when we
D

differentiate it further, we obtain forms analogous to (2.44). The

second integral may be differentiated under the integral sign, since

H(te-x' .y-y') has continuous derivatives of any order with respect
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m-1

I
i=O ([

to x' and y', when x' and y' satisfy (2.39). So we find, by differ­

entiating first m times with respect to x', and then n times with

respect to y', that

o 0
J J f(x,y)H(x-x',y-y')dxdy =

-0 -0
o am+nf( )J x.y H dxdy +

m n
-0 ax ay

am+n- i - 1H Jx=o
• 1 dy +

" ,m-l- ",n J:aX ay X=-u

n-1 JO [am+if(X!y) an- i - 1 H ]Y=~
I m l n-l-1 J:'

i=O -0 ax ay ay' y=-u

m+n...
. . " (-1 )m+n JJ .f(x.y) a 11 dxdy partl"allyJust as If we had lntegrated •

D axmayn
with respect to x and y. It follows from the definition (2.36) of

f(x,y) and H(x-x' ,y-y') that

[

m+n-i-1 ]a H 0 (02h+i-m-n) ,
ax,m-i-i ay,n x=±o =

so that the line integrals of (2.45)

[

an-i-1 H

n-i-1ay

are all

o
o J 02h+p+q-m-n dy = 0 (o2h+1+p+q-m-n) •

-0

The surface integral of (2.45) behaves as

o 0f J 02h-1+p+q-m-n dxdy = 0 (02h+ 1+p+Q-m.-n) •

-0 -0

Hence all terms of (2.45) are o(02h+1+p+q-m-n) , which vanishes as

O~. when 2h+p+q-m-n>-1.

2.4. The load-displacement equations.

We saw in the previous section that when
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M M-m
(u,v,w) = L l

m=O n=O

M M-p
(X,Y,Z) = GJ(x,y) \ \ (d ,e ,f )xPyq,

p~o q~O pq pq pq

then is, according to (2.34), (2.33), and (2.35),

(2.46)

Crd E1;pq +e (Eo;pq_OE1;pq )JL pq m+l,n+1 pq mn m,n+2'

a
mn

b
mn

[
d (EO;pq-
pq mn

E1;pq) E,1 ;pq 1o -oem+2,n pq m+1,n+1'
..J

(2.47a)

c
mn

= 2( 1-0)
m1n%

M

l
p+q>m+n,
p::o:q::o

(2.47c)

with, as we recall,

( _1 )m+n am+nr2h-1
Eh;pq = II J(x,y)xPyq dxdy,

mn 2rr E axf!layD

when 2h+p+q-m-n:O, (2.48)

= a

r = Ix2+y2, J(x,y)

else.

We call the equations (2.47) the load-displacement equations.

We can clarify the structure and the connection between (u,v,w)

and (X,Y,Z) by.using index notation. We set

i=1 to HM+1) (M+2)

•••• , bOM'

y~ =
~

Zi = fOO,fl0,f01'

x. 1,x,y,x2,xy,y2,
~

•••• , COM'

•••• , dOM'

.... ,

••• " fOM'

M
•••• , y
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2 Q'pqThe square matrix -,-, E' ,adapted to this order, we call A .. ,
m.n. ron ~J

h t · 2 E1;pq. 2 1;pq. dt e rna r~x -,-, +'2 ~s B.. , -,-, F. +1 +1 ~s H.. , anm.n. m ,n ~J m.n. m ,n ~J

2 E1~pq . D F' 11 use the summation co~vention: whenm!n! m,n+2 ~s ij' ~na y we
two indices in an expression are the S8llle, summation from 1 to

~(M+1)(M+2) is understood. Then we have:

x = GJ(x,y)X.x., Y = GJ(x,y)Y.x., Z
~ ~ ~ ~

and the load-displacement equations are

GJ(x,y)Z.x.,
~ ~

u. (A.• -OB .. )X.-oH .. Y.,
~ ~J ~J J ~J J

v. = -oH .. X. + (A.. -oD'.. )Y"
~ ~J J ~J ~J J

w. = (1-0) A.. Z.,
~ ~J J

so that

) (2.51 )

1.1 = x. {(A..-oB .. )X.-oH .. Y.},
~ ~J ~J J ~J J

v = x.{-ClH ..X. + (A.. -oD.. )Y.},
~ ~J J ~J ~J J

w = x. (1-0)A.. Z.•
~ ~J J

We note that only x. is position dependent. For illustration, we
~

write out the quantities connected with Z for M=1:

(Xi) = (1,x,y); (Zi) = (fOO,f10,f01); wi (cOO,c10,c01)'

Z = GJ(l,x,y) [fOO] . w = (1,x,y)

rOOj ·f 10 c10
f 01 c01

1
(1,x,y) EO;OO EO; 10 EO;01 f OO2 ( 1-0) w = 00 00 00

EO;OO EO; 1° EO;01 f 1010 10 10

EO;OO EO;10 EO;01 f
01 01 01 01

We consider again the constants Eh ;pq which we defined as
mn

integrals in (2.48). Since the integrand is an odd function of x

when (p+m) is odd, and since the domain of integration

E = {x,y: (x/a)2+(y/b)2~1} is symmetric about the'x-axis,
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Eh ; pq = 0 when (p+m) is odd. In the s arne way t we find that
mn

Eh;pq = 0 when (q+n) is odd. So,
mn

(_1)m+n am+nr2h-1
Eh;pq = If J(x,y)~yq dxdYt

mn 21l E a?dyn

when (p+m) and (q+n) are even, and 2h+p+q-m-n~O, (2.53)
= 0 in all other cases.

The fact that Eh ;pq = 0 unless (p+m) and (q+n) are even, has an
mn

important practical consequence for numerical calculations. This

consequence is, that the load-displacement equations for u and v, and

also those for wt can be decomposed into 4 independent systems.

In order to show this, we bring out the parity of p,qtm and n

by writing for p: 2p+~, or 2p+~' as the case may be, for q: 2q+w or

2q+w', for m: 2m+~, or 2m+~', and for n: 2n+w or 2n+w'. Here, ~ and w

take on the values 0 or 1 only, while ~, and w' correspond to ~ and w

by the equations ~+~'=1, w+w'=1, so that when '~=1, then £'=0, and

when w=1, w'=O, and vice versa. Further we will consider the case

that the degree M of the polynomials is given by 2K+v, (v=0,1;

v+v '=1):
lF2K+v, ~=0,1; W=0,1; v=Ot1; ~+E'=w+w'=v+v'=1. (2.54)

It follows from a consideration of the 8 cases v=Ot1; E=Ot1; w=O,1,

that the ranges of the summation can be represented in the formulae

2m+2n+~+w ~ 2p+2q+~+w ~ 2K+v

~ m+n ~ p+q ~ K-v£w+v'(~lw'-1)t

2m+2n+E+w ~ 2p+2q+~' +w I ~ 2K+v

while
2m+l+£=2(m+~)+~'t 2n+1+w=2(n+w)+w'.

So we find from (2.47):

a(2m+£)%(2n+w)! a2m+£.2n+w =

K-v£w+v'(E'w'-1)
= I d (EO ;2p+£ ,2q+w E1;2p+~ ,2q+w ) +

2P+E t2q+w 2m+E,2n+w-a 2(m+l)+~,2q+wp+q=m+n,
p~O,~O

K-v~lw'+v'(Ew-l)
\ E1 ;2p+~' ,2q+w'

- a L e2P+~',2q+w' 2(m+d+~'t2(n+w)+w"
p+q=m+n+l-w'-~',

p~O,~O
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~(2m+c'):(2n+w'): b2 + ' 2 + 'm c , n w

K-vcw+v'(c'w'-1)
= _ (j \ d E1•2p+c ,2q+w

L 2.,.,+c 2q+w 2(m+c')+c,2(n+w')+w+
p+q=m+n+1-c-w, '"
p~O,~o

K-vc'w'+v'(cw-1) 0'2p+c' 2q+w' 1'2p+c' 2q+w'
+ I e2p+c ' 2q+w,(E '2m+c,'2n+w,-OE '2m+c,'2(n+1)+w'),

p+q=m+n ' , ,
p~o,~o

~(2m+c):(2n+w): c2m+c,2n+w =

K-vcw+v'(c'w'-1)
= (1-0) \ f EO;2p+c,2q+w

L 2p+c,2q+w 2m+E,2n+w'
p+q=m+n,
p;O,q;O

We see immediately from these equations that the systems (2.56a) and

(2.56b), taken together form a closed system of equations for each of

the four possible choices for (E,W). viz. (E,W)=(O,O), (0,1), (1,0),

(1,1). The same can be said of the system (2.56c). Moreover, when

0=0, there is no longer any intere,ction between Y and u, and between

X and v, se that the equations (2.56a) can be solved independently

of (2.56b); in fact, (2.56a) and (2.561J) get the same form as

(2.56c) with 0=0.

After these general considerations, we will determine

Eh ;2p+E,2q+w.; th xt subsections.
2m+E.2n+w.n e ne

2.).1. A differentiation formula.

In the present SUbsection, we derive the following different­

iation formula:

am+n (x2+y2)a =

axmayn

m n
= I I

k~m/2 R..~n/2

(-1 )k+R. (-a)kH m~n: 2 2 a-k-R. 2k-m 2R.-n
(m-k):(n-R.):(2k-m):(2R.-n):(x +y) (2x) (2y) ,

(2.57 )

in which we use the notation (z).:
J

(z)j = r~(:i) ; (z)0=1; (z)j=Z(Z+1) ••• (z+j-1), j=1,2,3, •••
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Proof. We expand {(x+u)2+(y+v)2}a about (x2+y2). f-ccording to

TAYLOR's theorem. we have that

from zero.

am+n (x2+y2)a

axmayn

which differs

m n
u v

mIn!
H = {(x+u)2+(y+v)2}a = L L

m=O n=O

This expansion has a radius of convergence

when (x2+y2) 1 o.
On the other hand. we can expand H by means of the binomial

theorem:

H =

=
00 k

L L
k=O J/,=O

In this double sum. we interchan~e the sun~ation. The s~ation

ranges are then O~J/,<oo. J/,~k<oo. Then. we replace k by k+J/,. which gives

us an expression for H which is symmetric in k and J/,:

H = L L
J/,=O k=O

In order to get umvn in this sum. we replace m by m-k, and n by n-J/,:

2k 2J/,
L I I L

J/,=O k=O m=k n=R.
(2k-m):(m-k):(2J/,-n):(n-t): x

x (x2+y2)a-k-J/, (2X)2k-m (2y)2J/,-n.

We bring the s~ation over m and n in front. The range of s~ation

H =

of k and m was: O~k<oo. k~m~2k; this becomes O~m~oo. ~m~k~m. So.

H

00 m

L L r
m=O n=O k?m/2

(2.60)

Comparing this with (2.59). we see. that indeed
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am+n (x2+y2)C1 =

axmayn

m n
= L L

k>m/2 i>n/2 (m-k)!(n-i)l(2k-m)l(2i-n)l

}

as we set out to prove.

2.42. The coefficients of the load-displacement equations as finite

sums of complete elliptic integrals.

,We use the differentiation formula (2. 57) to calculate the

integrals

Eh ;2p+e:,2q+w =
2m+e:,2n+w

(-1) e:+w ,,2m+2n+e:+wr 2h-1
= JJ J(x,y)x2p+e:lq+w CJ dxdy,

211" E ax2m+e: ay2n+w

where

e:=0,1; w=0. 1; h+p+q-m-n>-~ (2.62)

see (2.53), in which the coefficients of the load-displacement

equations (2.56) are expressed.

We call lei the excentricity of the contact ellipse

(x/a)2+(y/b)2 = 1, 0~lel~1; g = 11_e2 is the ratio of the axes. When

a is the minor semi-axis, we take e.:;O. We will denote the minor semi­

axis by s:
1

e>O: s=a=gb~b=s/g, J={1_(x/s)2_(gy/s)2}-2.
1

e<O: s=b=ga~a=s/g, J={1_(gx/s)2_(y/s)2}-2,

g = 11-e2 • Ie I = 11_g2 •

We interchange in (2.61) x and y. p and q. m and n. e: and w. Taking

(2.63) into account, we see that

~;2p+e:,2q+w (e) = Eh ;2q+w.2p+e: (-e). (2.64)
2m+e:,2n+w 2n+w,2m+e:

So, without loss of generality, we consider the case of e>O only.

We substitute the differentiation formula (2.57) into (2.61).

This gives:
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Eh ;2p+E.2q+w =
2m+E.2n+w

( )k+ l!.+e:+w, ) ( ) ( )2m+e: 2n+w -1 (2-h k+" 2m+E 1 2n+w 1
=.l... I I " X

2n k=m+e: l!.=n+w (2m+e:-k):(2n+w-l!.):(2k-2m-E)1(2l!.-2n-w):

22k+2l!.-2m-2n-e:-w II ( ) 2k+2p-2m 2l!.+2q-2n( 2 2)h-~-k-l!.x J x.y x Y x +y
E ,

with J(x.y) = {1_(x/s)2_(gy/s)2}-2.

dxdy.

In the double integral (2.65) we introduce polar coordinates:

x = srcos~. y = srsin~. dxdy = s2rdrd~.

The form J(x.y) becomes
, ,

J(x.y)={1_r2cos2~_r2g2sin2~}-2 = {1_D2r 2}-2. D = /1_e2sin2~. (2.66 )

The integration is taken over all points x and Y. for which J(x.y) is

real. That is. the limits are in polar coordinates: O~$<2TI. O~r~1!D.

If we set 2k+2p-2m=2i. 2l!.+2q-2n=2j in (2.65). we see that a typical

integral of (2.65) becomes

(2.68)

l!.+q-n. d = h+p+q-m-n.k+p-m. ji

2n 1/D 2i. 2· 2d
I = s2d+1 J d~ J cos ~s~n J~r dr

o 0 )
Changing the variable to t = D2r 2 • with dr =~ • we obtain

2DIt
2n 2i" 2j 1 d' ,

I = s2d+1 J cos ~s~n pd~ J t -2(1_t)-2 dt.
o 2D2d+1 0

The integral over t in (2.68) is a complete Beta function.
1

B(xty) = I t x- 1 (1_t)y-1 dt = r(x)r(y)!r(x+y).
o

As to ~. we may restrict ourselves to the interval O~~~n/2. owing to

the sYmmetry of the integrand. So we get from (2.66). (2.68). and

(2. 69). that

I =
2i 2"

JJ J(x.y) x y J dxdy
E (x2+y2)i+j-d+~

2s2d+1r(d+~)r(~) In!2 cos2i~sin2jpdw.
. d+fr(d+1) 0 (1_e2sin21j1)

This is a complete elliptic integral of a general type. which can.
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n/2
I(d.i.j.\cl)=I(d.j.i.-\e!)= d'., O-d),+, I

~ J 0,
d! = 0 when d = -1, -2, -3••••

in principle. be reduced to a combination of elliptic integrals of

the first and second kind. We sUbstitute (2.70) into (2.65). setting

i=k+p-m. j=R.+q-n. Then.

Eh ;2P+€.2q+w (Ie\) = ih;2q+w.2p+€ (-lei) =
2m+€.2n+w 2n+w.2m+€

, 2m+€ 2n+w (_1)k+t+€+W(~_h)k+t(2m+€)!(2n+w)!4k+~m-n2-€-w

=2iT L L x
k=m+€ t=n+w (2m+€-k)!(2n+w-t)!(2k-2m-€)!(2~2n-w)!

x 2s2d+'r(d+~)r(~) J~/2 (cos2p)k+p-m(sin2p)t+q-ndP
d+'d! 0 ( , _e2sin2ljJ) l!

d = h+p+q-m-n~O.

We replace k by k+m+€. t by R.+n+w. The limits of summation then

became O~k~. O~t~n. Making use of the formulae of the Gamma function

r(~+z)r(~-z) = ~/cos(nz). r(~) = /-IT. (z)j = r~(:~) • (2.72)

it is easy to see that (~-h)k+1r(d+~)r(~) in (2.71) becomes

(~-h) r(d+')r(') = r(~-h+m+n+k+t+€+w)r(~)n =
k+t+m+n+€+w 2 ~ r(~-h)r(~-d)cosnd

rO-d+F7~+kH+€+W) ~ r(~n) '11" =
= r ~-d) cos'Jt'd r

= (-1) p+q-m-nnO_d)p+q+kH+e:+wO)h

So. (2.71) becom!;!s

~;2p+€.2q+w (e) =
2m+E.2n+w

=(~) (_2)€+w ~ ~ 4
kH

(2m+e:)! (2n+w) !s2d+1 ( )
" h L. L. I d,k+:p+€ .t+q+w ,e ,

k=O t=o (m-k)!(n-t)!(2k+€)!(2t+w)!

with

(_cos 2p)i(_sin2lj1)jdljl }
d+' •(1_e2sin2ljJ) 2

(2.74)

which is valid when d = h+p+q-m-n>-~. When h is an integer, as it is

in the load displacement equations. d is also an integer. and then

(2.73) is a finite sum of complete elliptic integrals of a general

type which can be reduced to complete elliptic integrals of the first
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and second kind.

It is useful for the purpose of numerical calculations, to know

beforehand what elliptic integrals (2.74) actually occur in the load­

displacement equations (2.56). Let the degree of the polynomials

(2.46) be 2k+v, with v = 0 or ,. Then it can be shown that

M=2k+v, v=O,' ~ 0 < d ~ k, d ~ i+j < 2k+v-d, i > 0, j > 0,1
for w (eq. 2.56c) and for u,v when cr = 0 (eq.-2.56a,~), J (2.75)

and

M=2k+v, v=O,1 ~ 0 ~ d ~ k, d ~ i+j < 2k+1+v-d, i > 0, j >

for u,v (eq. 2.56a,b), cr # O.

2.43. Transformation to another metric.

O,} (2.76)

We will consider the case that we transform the coordinate

system (x,y,z) to another coordinate system (x,y,i) with the same

origin and axes, but with another metri c:

x = AX, Y= Ay, 'Z = AZ, 5 = AS, (A constant). (2.77)

We distinguiSh quantities taken with respect to (x,y,'Z) from the

corresponding quantities in (x,y,z) by a bar over the letter. Clearly,

we have

Also,
,...--..,...----- -1 -1

J(x,y) A-Cx!a)2-CY/b)2 = 11_(x/a)2_(y!b)2

g = g, e = e.

J(x,y), }

(2.78)

(ii,v,w)

It is easy to see that

M M-m

I I
m=O n=O

M M-m
I I

m=O n=O

= A(u, v,w)

m+n (- - - ) m nA a ,b ,c x ymn mn mn

from which it follows that

a
mn

A. 1- m- n
cmn ' (2.80)
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(d e f )iP y-q
pq' pq' pq =

(X,Y,Z)!G = J(x,y)

(X,Y,Z)!G = J(i,y)

and it follows in the same way from

M 1Ji-p

I I
p=o q=O

M M-p
I I

p=0 q=O

that

d = A-P- q d e = A-P- q e f = A-P- q f • (2.81)
pq pq' pq pq' Pli pq

From (2.73) and (2.74) we see with the aid of (2.77) and (2.79) that

h'pn 2d+1 h'pn
E''''" = A E ' "'" 2d = 2h+p+n-m-n.ron mn' "'"

(2.82)

If (a ,b ,c ) and (d ,e .f ) are such that the (unbarred)mn ron mn pq pq pq
load-displacement equations are satisfied, we see immediately from

(2.47) that the barred load-displacement equations are satisfied by

= 1-m-n ( )A a ,b ,c ,ron mn ron

A-P- q (d e f )
pq' pq' pq ,

that is, by the same parameters as in (2.80) and (2.81). So, solving

the load-displacement equations for one value of A, means solving them

for all A.
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3. Special cases of the load-displacement equations.

In section 3.1 of the present chapter, we develop the theory of

the load-displacement equations further. In fact, we will study the

special case that the traction behaves as h_(x/a)2_(y/b)2 as one

approacbes the edge of the contact area, rather than as

·!1_(x/a)2_(y/b)2 -1, as we had in chapter 2, see eq. (2.32). This is

of importance in some applications of \'Thich we will name the normal

problem of HERTZ, which is treated in 3.221, and the tangential

problem of CATTANEO [1J, and MINDLIN [1J, which is treated in section

3.222. Since for a general polynomi~l displacement the traction goes

to infinity at the edge, the demand that the ~raction must vanish

constitutes a restraint on the displacement, in other terms, the

displacement must have a special form in order to meet it. In the

HERTZ case this special form results from the adaptation of form and

size of the contact ellipse; similarly, in the ~rrNDLIN-CATTANEO

problem of section 3.222, and in CARTER's [1J problem, the area of

adhesion is so adapted.

One can perhaps say that in tangential problems in which slip is

actually present, but is neglected in the calculation, the load­

displacement equations of section 2.4 must be used: the infinity of

the traction at the edge of the contact area indicates an area of

slip. This is the case, at any rate, in the MINDLIN-CATTANEO problem

without slip (sec. 3.212), in DE PATER's [1J treatment of the problem

of the rolling contact between two cylinders with parallel axes with

infinitesimal longitudinal creepage, and in the treatment of the

problem of rolling contact with infinitesimal creepage and Jpin of

section 4.3. In that section, the interpretation of the traction

singularity is treated more fully. In normal problems, the pressure

singularity can indicate a sharp edge, as is tho:! case in the problem

of an elliptical die pressed into a half-space, see section 3.211.

If in the tangential problems slip is not neglecteQ, as we have

in sec. 3.222, the MINDLIN-CATTANEO problem with slip, without twist,

and in the theory of rolling with arbitrary creepage and spin,

chapter 5, the tangential traction generally vanishes at the edge of

the contact area. For the normal pressure distribution will mostly

be Hertzian, and the friction law demands that I (X, Y) I s J.lZ. So X and



Y must also vanish at the edge of the contact area, and at least as

fast as the normal load Z.

3.1. The load-displacement equations. when the ,surface tractions

vanish at the edge of the contact area.

As we pointed out in section 3, the demand of vanishing

traction at the edge of the contact area E constitutes a restraint

on the surface displacement differences (u,v,w).

We had found in sec. 2.2 (see 2.32) that when

1 M+2 M+2-p
(X,Y,Z) = G{1_x2/a2_y 2/b2}-2 L I (dp'q,ep'q,fp'q)XPy\

p=O q=O
then

1-1+2 M+2-m
(u,v,w) = I I

m=O n=O

GJ(x,y)

(X,Y,Z) = GJ(x,y)

Now, the tractions must vanish at the edge of the contact area. This

means that the constants (d' e' f') must be so, thatpq' pq' pq

M+2 M+2-p
L I (d' ,e' ,f' )xPyq

p=O q=O rq pq pq

is divisible by {1_(x/a)2_(y/b)2}. That means that

M+2 M+2-p
I L (d' ,e' ,f' )xPyq

p=O q=O pq pq pq

M M-p
L L (d ,e ,f ){1_(x/a)2_(y/b)2}xPyq

p=O q=O pq pq pq

1-1 H-p

= G/1_(x/a)2_(y/b)2 Jo q~O (dpq,epq,fpq)xPyq

M M-p
GJ( ) \' \' (d f ) ( p q 1 p+2 q 1 P q+2)

x,y p~o q~O pq,epq'. pq ry - ~ x y - b 2 x Y ,

J(x,y)
1

{1_(x/a)2_(y/b)2}-2

Comparing (3.2) and (3.3), we see that there are more constants

(a ,b ,c ) in (3.2) than there are constants (d ,e ,f ) inmn mn ron pq pq pq
(3.3). So, the matrix of the load-displacement equations is no
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F';pq )-<1 e F1;pq }
m+2.n pq m+' ,n+1 '

longer square.

We seek the connection between (a .b .c ) on the one hand,mn mn mn
and (d ,e ,f ) on the other hand. For that purpose we definepq pq pq

~;pq = Eh;pq __,_ Eh ;p+2,q __,_ Ef';p,q+2.
mn mn a2 mn b 2 mn

We note that by (2.53) Eh;pq = ° when 2h+P+'l-fll-n<O (h=O' ) but that
mn • "

h·'n+':> n h'p a+?
for 2h+p+q-m-n = -2, EO',r - .... and E;' , ... - do not vanish for all

mn mn
values of p,q,m.n. Keeping this in mind, we see from (3.3), (3.2),

(3.4), and (2.47) that

2 M °a = -- \ {d (F ;pq - CJ
mn m!nl L pq IIlI1

p+~m+n-2,

p~O,~o

M
b = --i-. ~ {e (FO;pq - a

mn m.n. p+~m+n-2, pq mn

p~o,~O

2(1-0') ~ f FO;pq
cmn = m!nl L pq mn

p+~>m+n-2,

p~O,~O

F';pq )-<1d F1 ;PQ }
m,n+2 pq m+1,n+1'

(3.5)

We will now calculate ~;pq. \ie see fr<m (3.4) and (2.53) thatmn

~;pq = 0 when 2h+p+q-m-n = -3, -4. -5, ••• ,
mn

and we note that (p+2) and (q+2) have the same parity as p and q,

respectively, so that it follows from (3.4) and (2.53) that

~;pq = °unless both (p+m) and (q+n) are even.
mn

Hence, the load-displacement equations can again be decomposed into

4 sets. Further, by (2.64) we have from <3.4) that

~;:( IeI)=~;:( Ie 1)- (1/s2lEf;:2·q (le 1)_(g2/s2)Eh;~q+2 (Ie I) , (3. 7a)

~;: (-Ie I) =Ef;: (-Ie 1)- (1/s2)If;;;;2(_le 1)_(g2/s2) Eh ;:2,p (-I eI) ,
(3.7b)

where s denotes the minor semi-axis, and g is the ratio of the axes

min (a/b,b/a). Since Eh;pq(e)=~;qp(-e) according to (2.64), it
I:lIl DID

follows from (3.7) that



(3.8)

(1/s2)Eh ;2(P+l)+e:.2q+W _ ( 2/s 2)Eh ;2P+e:.2(q+l)+W=
2m+e: .2n+w g 2m+e: .2n+w

4k +R.(2m )'(2 ), 2d+l+e:. n+w. s { ( )
(m-k)l(n-R.)l(2k+e:)l(2i+w)l I d,k+p+e:.i+q+w.e +

n

I
i=O

-I(d+l.k+p+l+e:.i+q+w.e)-g2I(d+l.k+p+e:.i+Q+l+w.e)}.

m
=0) (_2)e:+w I

h k=Q

So. by (3.6) and (3.13). we only have to calculate ~;~::·~;:~(Iel)•
•

We consider a change of metric as described in sec. 2.43. It is easy

to see from (3.2). (3.3). (3.5). and (3.4). and from (2.32) and

(2.47) that the analysis of 2.43 remains valid in the present case of

zero stress at the edge of the contact area. so that the effect of a

change of metric here is also described by (2.80). (2.81). and (2.82).

if we read F for E. So. we have to set up the load-displacement

equations for one metric only.

We see from (3.4) that the Eh;pq occurring in the expression for
mn

Fh;pq all have the same h. m. and n. So in substituting the Eh;pq= mn
from (2.73). we can bring the double summation outside the brackets.

Then we have for e~O:

Fh;2p+e: .2q+w =
2m+e: ,2n+w

Eh;2p+e: .2q+w
2m"1"e: .2n+w

e,2:0. d=h+p+q-m-n.

'o'le define

J(d.i.j.lel) =I(d.i.j.lel) -I(d+l,i+l,j,lel) -g2I(d+l,i,j+l.lel) '}

J (d. j • i •-I e I)=1 (d. j •i.-I e I) -I (d+ 1, j , i +1,-1 e I)~g2 I (d+ 1, j+ 1, i ,-1 e I) ,
(3.10)

so that

J(d,i.j.e)=J(d,j.i,-e).

and from (3.8),(3.9).(3.10) and (3.11) it follows that

~ ;2p+e:. 2q+w (e)
2m+e:.2n+w

ph;2q+w.2p+e: (-e) =
2n+w.2m+e:

m
=0 ) (-2) e:+w I

h k=O

~;pq = 0 unless (p+m). (q+n) are hoth even and d=h+p+q-m-n,2:-1.
mn
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Comparing this with (2.73), we see that ~;pq and Eh;pq have exactly
mn mn

the same form, the only difference is that F has J-functions where E

has I-functions.

We calculate J(d,i,j, lei) from (3.10) and (2.74).

J (d, i, j , Ie I) = I (d.i.j , Ie I) - I (d+ 1, i +1,j , Ie I) _g2I (d+ 1,i ,j+l ,I e I) =

'fT/2 ( 2) i ( . 2 ) j=..L, (l-d). . f -cos 1/J -s~n * i d* _ (')d " d ~-d-l i+J'+l x
• ~+J 0 (1-e2sin21/J) +2 (d+l)~

J
'ff/2 (_cos2lji)i(_sin2*)j d* ( 2,1, 2 . 2,,,)

x . d+3/2 -cos 'f'-g s~n 'f' •
o (1-e2s~n21/J)

Since 1/d: must be interpreted as zero when d = -1, we can write

lid: = (~:~)! ; further, cos 2lji+g2sin21/J = l-e2sin21/J, and finally

(~-d-l)i+j+l = (~-d-1)O-d)i+j • so that

'fT 12 ( 2)i • 2 j
J(d .. I I) 2d+2-2d-l (1) J -cos lji (-s~n W)

,~,J, e = 2( ) 2-d - ~ d'"d+l ~ i+j 2 2 d+- 'f'o (l-e sin 1/J) 2

'fT/2 ( 2 )i( . 2 )j
= ~ 1 I O-d). . f -cos * -s~n ~ d1/J,

(d+1). ~+J 0 (1_e2sin21/J)d+~

J (d, i ,j , Ie I) = J (d, j ,i ,-I e I), 1I (d+ 1)t = 0 when d = -2,- 3

Comparing this with (2.74), we see that

I(d,i,j,e) = 2(d+l)J(d,i,j,e),

so that we find from (3.12) and (2.73), that

Eh;pq = 2(d+l )~;pq 2d = 2h+p+q-m-n,
mn mn'

which means that the coefficients of the load-displacement equations

for an infinite traction at the edge of the contact area can be found

by mUltiplying the corresponding coefficient of the 10ad-dLsplacement

equation with zero traction at the edge with 2(d+1).

It is useful for the purpose of numerical calculations to know

beforehand which elliptical integrals (3.13) occur. When the degree

of the traction polynomial is M= 2K+v, v = 0 or 1, it can be shown

that

M=2K+v: w, and (u,v) when cr=O: -l~d~K, max(O,d)~i+j~2K+v-d (3.16a)

M=2K+v: (u,v) when cr#O: -1~d~K, max(O,d)~i+j~2K+1+v-d. (3.16b)



3.2. Examples of the use of the load-displacement equations.
, ' J(d") d-h;pqA l~st of the funct~ons ,~,J,e an Y- mn'

In the present section we give a few examples of the use of

the load-displacement equations. First we will give a list of the

elliptic integrals out of which the ~;~ are formed, and a list of

these coefficients themselves. We define with JAHNKE & EMDE [2J:

11/2
E = J 11_e2sin21j1 d1jl

o

cos 21jJd1jJ

11_e2sin21j1

(3.17b)

(3.17c)

11/2
J
o

B =, -sin21jJd1jJ

11_e2sin21j1

11/2

J
o

11/2
J
o

/ /
2

.;;;.s;:in=2=1jJ~c::o=s::;:2~1jJ=d1't ' D =
o 11_e2sin21j1

c =

K = 2D-e2C

K =

The functions K and E are the complete elliptic integrals of the

first and second kind, respectively. The functions ~, .£, .Q do not

have a special name. The five functions are tabulated by JAHNKE &

EMDE [1J, pg. 78, 80, 83, and 82. In Table 1, we give a small table

of the values of C and.Q, taken from JAHNKE & EMDE [1J.

Table 1. C and D' as functions of g = 11_e2•

g ""0 O. 1 0.2 0.3 0.4 0.5

C -2+log 4/g 1. 7351 1. 1239 0.8;07 0.6171 0.4863-
D -1+log 4/g 2.7067 2.0475 1.6827 1.4388 1.2606-
g 0.6 0.7 0.8 0.9 1.0

C 0.3929 0.3235 0.27060 0.22925 0.19635 = 3fb-
D 1. 1234 1.0138 0.9241 0.8491 0.7854

11
=4

It is well-known that the complete elliptic integrals of the

type we encountered can be expressed in two independent elliptic

integrals. We will list the reduction to E and!, because these

functions are widely tabulatedL We also give the reduction to C and

.Q, which are tabulated in JAHNKE & EMDE [1J, because in our short

list of elliptic integrals the coefficients of .Q and .£ do not

contain the excentricity lei in the denominator, while g2 = 1_e2

48.



occurs ln the denominator only twice.

The reduction is accomplished by regarding E, !, .9., and 12, and

J(d,i,j,lel) as hypergeometric functions F(a,b;c;e2) in the
...

following manner. According to ERDELYI et al. [1J, Vol. 1, pg. 115,

eq. 2.12 (7)

F(a,b;c;z)=

=

2r(c) Tf/2
r(b)r(c-b) l

0> (a) (b)
\' n n n
L nt(c) z

n=O n

(coSp)2c-2b-1 (sinp)2b-1 dp
(1-z sin2 1jJ)a

when Izl<1.

We set z=e2 , a=d+~, b=j+~, c=i+j+1 in (3.18a), and from this and

(3.13) it follows that

( .. I 1)- (_1)i+j rU-d+i+j) jTf/2 (cos 21jJ)i(sin21jJ)jdp
J d,l,J, e - 2(d+1 H rO-d) d+ Io (1-e2sin21jJ) 2

_ (_1)i+j r(~-d+i+j) r(j+~)r(i+~)
- 4(d+1)t r(~-d) r(i+j+1) F(d+~, j+~; i+j+1; e2).

Further we have from (3.17) and (3.18a) that

K = ~ F(-2' -2'·1·e2·). E = ~ F(--2' -2'·1·e2 ). B = ~ F(-2' -2'.2.e 2 ).}
- 2 "" - 2 "" - '+ '" ,

.9. = lb F(3/2,3/2;3;eZ); 12 = *F(~,3/2;2;eZ).

(3.19)

The reduction itself is accomplished by repeatedly applying the 15

relations of GAUSS which connect F(a,b;c;z) with any two of the 6

functions F(a±1,b;c;z), F(a,b±1;c;z), F(a,b;c±l;z). These relations

can be found, for instance p in ERDELYI et al. [1J, Vol. 1, par. 2.8,

pg. 103-104, eq. (31)/(45). We shall give the result of this

reduction without proof. Since according to (3.11) and (3.14)

I(d,i,j,e) = 2(d+l)J(d,i,j,e) = 2(d+1)J(d,j,i,-e),

we give only J (d , i , j, lei ) •

(3.20)



~(11-8e2)]2 + ~(1_4e2)£.:=

H2-e2)]2 - i(1+e2).£

~(11-3e2)]2 + i(1-ge2)£.:=

J(-1,O,2,lel):=

J (- 1 , 1 , 1 , Ie I):=

J(-1 ,2,0, Ie 1):=

J(o,o,o,lel) := D - ~e~

J(0,O,1,lel) 1 D- - Ii

J(0,1,O,lel) - - a ]2 + ~e~

J (0,0,2, Ie I) := a D + 1 C- 8-

J(0,1,l,lel)
1 1:=-D--C
8 - 8-

J(O,2,0,[e[)

1 1
- 4e 2 ~ + 4e2 !,
1_e2 1

:=--K--E
4e2 - 4e2 -'

2+e 2 1+e 2
:=--K---E

8e 4 - 4e 4 -

_ 1_e2 K + 2_e2 E
4e 4 - 8e 4 -'

:= a _D + -81 (1-3e 2 )£. := 2-5e
2

+3e
4

K _ 1_2e
2

E
8e 4 4e 4 -'

{(2-e 2 )E. - e 2g,}/4g2 := '!y4g2 ,

D e 2 C 1
--- := - - K + !'
8(1-e2 ) 8e2 - 8e2 (1_e2 )

1 1:= ---- K - ---- E.
8e2 - 8e2 -

8( 1_e2 )

J(1,1,0,[el) :=iE.

We can form the following sets of load-displacement equations

from the elliptic integrals (3.21):

X:=y:=Z + w on edge; w, and (u,v) for cr := 0: the 2nd degree (M:=2),

(u,v) for cr ¥ 0 the 1st degree (M:=1),

X:=Y:=Z 0 on edge; w,. and (u,v) for cr 0: the 1st degree (M:=1),

(u,v) for cr ~ ° the Oth degree (M:=O).

The E's and F's which are needed for those equations are:
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~E1;OO = F1;00 =~ {(2_e 2 ) D-e2 C}=~ E
00 00 8g2 - - 8g2 -

lE1;00 _ pl;OO = 1 D
2 20 - 20 2

5
_

lE1;00 = F';OO = 1 (D- 2C)= 21SB2 02 02 2S _ e _

F';040 = -5-' (D-C)
0--

F';DO _ 2 -1C22 - -g 5 _

F';DD _ 2 -'(D C)04 - -g s _-_

lE';10 = F1;1D = _ 53 D
Ii 10 '0 If -
'E';10 = W,;10 = 1 (D-C)
2 30 • 30 2

5
- -

lE1;'O _ F';'O , 2 C
2'2- 12 :!gs_

aE';Ol = F';Ol = _~ (D_e2C)= - ~ B
D1 0' 8g2 - - 8g2 -

lw';Ol _ F1;01 1 C
2~ 21 - 21 2

5
_

~E1;01 = F1;Ol ~s(D_-_C)
03 03

e :: 0,

s = a



3.21. The case of infinite surface traction at the edge of the

contact area.

In 3.211 we shall treat a normal problem, and in 3.212 a

tangential problem in which the traction becomes infinite at the edge

of the contact area. So the building blocks of the coefficients of

the load-displacement e~uations are the Eh;~, see (2.73), (3.13) and

(3.14):

~;2p+e,2~+w (e) =
2m+e,2n+w

d =h+p+~-m-n;

n
L

R.=O

I(d,i,j,e) = 2(d+1)J(d,i,j,e).

The e~uations themselves are given in (2.56).

3.211. A normal problem: a rigid, flat elliptical die pressed into a

half-space.

A rigid, flat die of elliptical circumference with semi-axes a

and b, s = a ~ b. is pressed into the elastic half-space z ~ 0 with

a normal force N, with the action line along x=xO' y=yO' The force is

applied so, that contact takes place over the whole of the base of

the die. Friction is assumed to be absent. This problem was treated

by DOVNOROYICH [1J with the aid of the load-displacement e~uations.

After deformation, the e~uation of the base of the die is

(3.24)

+the vertical displacement difference w is clearly e~ual to w (x,y ,0)

since the die is perfectly rigid, and that in tur~ is clearly given

by (3.24). The constants cOO' c 10 , and c01 follow from the demand

that the total force and moment exerted by the half-space on the die

is in e~uilibrium with the applied load. We have for the normal

pressure distribution on the half-space:

Z =G/1_(x/a)2_(Y/b)2-
1

(f
OO

+f
10

x + f
01Y),}

+ + (3.25)
G = 2G , a = a ;

it follows from considerations of e~uilibrium of the die that;
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N = ii Z dxdy = 2~abG f OO ' xON = if x Z dxdy = 1~a3bG f 10 •
E E

YoN = fJ y Z dxdy = 3' ~ab3G fO,.
E

or.

The condition that contact must take place over the whole of the base

of the die is eq.uive.1ent to the condition that the normal pressure is

everywhere positive. that is, according to (3.25) and (3.26). that

N 3xxO 3yyo
f OO + f 10x + f 01Y = 2~abG (1 + "7 + 7 ) > O. (3.27a)

which after some calculation leads to the condition

x 2 y 2

--::-....;;0,-- + 0 .:: 1. (3. 27b)
(~ a)2 [~b)2

from which we see that (xO' YO) must lie inside the ellipse which is

concentric. similar. and similarly oriented with E. but the axes of

which are -t times the axes of E.

The load-displacement eq.uations are. according to (2.56c) and

(3.22) :

= 2( 1_0)Eo;g~ f OO = (1-0)N (2D-e2C) = (1-0)N K
cOO ~bG -- ~bG -'

2( 1-0 )E
O

; ~g
3 (1-0 )NX

O
3( 1-0 )Nx

O
c 10 = f 10 = . ~a2bG U~-e2.£) = B,

1Ta2bG -

2(1-0)Eo;g~ f
01

3 (1-o)Ny0
c 01 = D,

~b3G -

+ +
G = 2G , 0 = 0 ,

which is also the solution of the problem.

3.212. A tangential problem: the problem of CATl'ANEO and MINDLIN

without slip.

Two elastic bodies are pressed together by a normal force N. so

that a contact area forms between them. According to the HERTZ

theory. which we assume to be valid, the contact area E is elliptical

with semi-axes a. b (s=a~b):
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E = {x,y: (x/a)2+(y/b)2 ~ 1}, s = a ~ b.

Af'ter this, a tangential force (F ,F ) and a torsional couple M arex y z
applied. Assuming that the HERTZ distribution does n.ot influence the

tangential displacement difference and vice versa, it is required to

find the tangential displacement (0 ,0 ) and the torsion angle 8 ofx y
the upper body with respect to the lower. Slip in the contact area

is assumed to be absent. This problem was treated by CATTANEO [1J and

MINDLIN [1J.

Since we must choose the unstressed state so that the displace­

ment vanishes at infinity, we have in the contact area

U(X,y)=U:(X,y,0)-U=(X,y,0)=OX-8y=aoO+a01Y' }

v(x,y)=v (x,y,O)-v (x,y,0)=Oy+8X=bOO+b 10X.

Therefore, the tangential traction distribution over the contact area

has the following form:

X = G/1_(x/a)2_(Y/b)2-
1

(dOO+d01Y)'}
,-----------,.-1

Y = G/1-(x/a)2-(y/b)2 (eOO+e 10x)

so that

Fx=2'f1'abGdOO ' F =2'f1'abGe OO ' 101 = fI (xY-yX)dxdy= -3
2

'fI'abG(a2e10-b2d01)
y Z E

(3.31b)

The load-displacement equations are:

aDO = 0 = 2 (EO;OO _ E1;00) d
x 00 cr 20 00'

bOO
o = 2 (EO;OO 1· 00)= crE '02 e OO 'y 00 (3.32)

a01 = -8 = 2 (EO; 01 E1; 0 1) d -2 E1; 10 e
10

,
01 cr 21 01 cr 12

b 10 = 8 = 2(Eo;10 _ E1;10) -2 E1;01 d01 '10 cr 12 e01 ,cr 21

Now, e~O, so that according to (3.22),

EO;OO = sf, E1;00 = aD E1;00 = aB EO;01 = fl:£,

}00 20 -' 02 -' 01 (3.33)
E1;01 = 8:£, E1i10 = ag2C EO i10 = aBo

21 12 -' 10

From (3.17c), (3.31b), (3.32), and (3.33) we can solve 0 , 0 and 8:x y
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.6 =x

(K-oD)F
- - x

nbG

(K-oB)Fo = - - y
y nbG

3l<I (B D-oE C)z -- --

3.22. The case of zero surface traction at the edge of the contact

area.

In 3.221 we shall treat the HERTZ problem, and in 3.222 the

problem of CATTANEO and MINDLIN with slip, but without twist. The

HERTZ problem is treated in some detail, since its results are

frequently used in the present work. vie also give a numerical table.

The building blocks of the coefficients of the load-displacement

equations are the ~;pq of (3.12):
mn

---.h;2P+E,2q+w _ 1 E+W m n 4kH (2m+e;)! (2n+w) !s2d+1 }
]~- 2m+E,2n+w (e)-(~)h(-2) k~O i~O (m-k)!(n-i)!(2k+E)!(2i+w)! x

x J(d,k+p+E,i+q+w,e), d = h+p+q-m-n~-1.

(3.35)

The equations themselves are given by (3.5).

3.221. A normal problem: the problem of HERTZ.

Two elastic bodies are pressed together by a normal force N, so

that a contact area forms between them. Asstnning that friction is

absent, and that for the boundary conditions the bodies may be

approximated by elliptic paraboloids, find the contact area, the

pressure distribution over the contact area, and the depth of

penetration of the bodies.

The most· important case in which we shall use the HEFTZ rroblem

is that of two bodies of revolution which are steadily rolling over

each other. In that case the parallel circles of both bodies are

approximately parallel. We shall confine ourselves to that case. The

axes of the paraboloids then coincide. The elasticity problem

remains the same when the axes of the paraboloids are not parallel,

but the boundary conditions require a little more algebra, which is

given, for instance in LOVE [1] pg. 193-194. We shall give the

results of this analysis only.

We must choose the unstressed state so, that the displacement

and the stresses vanish at infinity; in such an unstressed state, the
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bodies intersect. Let the principal radii of curvature of the bodies
• ± ±be g1ven by R , R , where a + refers to the lower body, and a - tox y

the upper body. We count them positive if the centre of curvature in

(3.36)
upper sign: upper half-space, }

lower sign: lower half-space.

w+(x,y,O)+z+-w-(x,y,O)-z- = 0, that is,

question lies inside the half-space under consideration. The equation

of the surface of the bodies near the contact area is
+ _ 2 _ 2 +

z =+!...-+.L:..-+ a
2R+ 2R+

x y

In the contact area, we have

vr(x,y)

with
+a=a -a,

if the axes of the paraboloids

are (nearly) parallel,

~ (-' +-' ),
R+ R-

x X

1 (' 1,
2 -+-:-J,

R+ R
Y Y

A =

a (-'- + -' + -'- + -'- ) ,+ - + -R, R, R2 R2
p: characteristic length of the bodies;

13

,
- =p

R~ 2: principal radii of curvature of lower (+) and,
upper (-) body, taken positive when the

corresponding centre of curvature lies inside

the half-space under consideration;

4 (A-B) 2 = (~_ ~ ) 2 + (~_ ~ ) 2 +
R, R2 R2 R,

+ 2( ~ - ~ )( ~ - ~) cos 2 w,
R, R2 R2 R,

w: angle between the plane of R~ and the plane of R~,

in case th~ axes of the paraboloids are not parallel.

This means that

cOO = a, c20 = -A, CO2 = -E. (3.39)

We propose the hypothesis that the contact area is elliptic with

semi-axes a and b,

E = {x,y: (x/a)2+(y/b)2~ ,}. (3.40)

We take the normal stress in the form



where G is the combined modulus of rigidity. We will also need the

combined POISSON's ratio a. They are given by (2.10), which we repeat

here:
+ -

.1.= H-1 +_1 ),2:.= H~+~).
G G+ G- G G+ G-

The total normal force can be found from (3.41) by integration:

The load-displacement equations are

0'00
a = cOO = 2(1-o)F '00 faa,

0'00
-A = c20 = (1-cr)F '20 faa.

0'00
-B = cO2 = (l-cr)F '02 faa

according to (3.22),

Fa; g~ (Ie I) = Fa; ~g (- Ie I) = ~ s 1f,

Fo;g~(lel) = Fo;~g(_lel) = _<.~..e2.£)/s = _·~./s,

FO;~~(lel) = FO;~~(_lel) = -(1-e2)E!s = _g2E!s.

s: minor semi-axis of contact ellipse.

(3.44)

So we obtain from (3.43). (3.44), and (3.45):

3N(1-a)sK 3N(1-o) (D-e2C)
a= 21TabG - A(lel)=B(-lel)= 21Tab:G-

3~r(1-u)£ )
21TabsG' (3.46)

3N(1-cr)(1-e2 ).E. 3N(1-cr)i.E.

B(leIJ=B(-lel)= 21TabsG 21TabsG·

Since.E. >.£, see sec. 3.2, Table 1, it follows that A(lel)=B(-lelh

B(lel)=A(-lel). so that we have:

A = H _1 + _1 ) > B = H _1 + _1 )~e > 0, a < b.
R+ R- - R+ R- - -
x x y y

A = ~ ( .l; +~ h B = ~ ( .l; + .l: i~e ~ 0, b ~ a"
R R R R
x x y y

In order to find the excentricity of the contact ellipse, we set with
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HERTZ

I L>J I 11/R+ + 1/R- - 1/R+ - 1/R-1
COST =~ = ~ p jA-B! = X X Y Y

A+B 1/R+ + 1/R- + 1/R+ + 1/R-
X X Y Y

and it follows from this and (3.46) and (3.17c) that

e 2 (Q_.£)
cos T = --::E::--- (3.48b)

!. Ie I and g are tabulated as functions of T in Table 2. This table

is taken from LOVE [1J. p. 197. and from JAHnKE & ElIDE [1J, p. 78 and

Table 2. lei. g. !, E as functions of T.

"[ 90° 80° 70° 60° 50° 40° 30° 20° 10° 0°

g==s/R. 1.00 0.79 0.62 0.47 0.36 0.26 o. Hl 0.10 0.05 0.00

Ie I 0.00 0.61 0.73 0.33 0.93 0.96 0.98 0.99 0.999 1.00

K 1. 57 1.76 1,97 2.21 2.46 2.15 3.14 3.71 4.40 00-
E 1. 57 1.41 1.29 1.19 1.13 1.03 1.04 1.02 1.01 1.00-

30. We see from (3.48) "that the shape of the contact ellipse depends

only on A and B. and not on the applied load N or the elastic

properties of the bodies. The size of the contact area does depend on

the load. as follows:

or

2
A+B = - =

p
== c = 18.b,

A fre~uently-used ~uantity is f OO ' It is

f - 311" _ 2cl 2 s
00 - 21rabG - (1-cr ~ = (1-cr)! p'

Finally we determine the penetration a of the bodies according to

(3.44), (3.46). (3.51)
2 s2 K

a = (1-cr)K f s = --=
- 00

3.222. A tangential problem: The problem of CATTANEO and MINDLIN with

slip. without twist.

Two elastic bodies are pressed together by a normal force N. so

58.



that a contact area forms between them. According to the HERTZ theory,

which we assume to be applicable, the contact area E is elliptical

with semi-axes a and b, a:; b:

E = {x,y: (x/a)2+(y/b)2}, a ~ b.

After this, a ta.ngential force (F ,F ) is applied. Assuming that thex y
HERTZ distribution does not influence the ta.ngp.ntial displacement

difference, and vice versa, it is required to find the ta.ngential

displacement (0 .0 ) of the up_p_er bOQV with respect to the lower.x· y --
This jlroblem was treated by MINDLIN [1J end CATTANEO [1J.

.11' the tangential force is below its maximal value as predicted

by COULOMB's law,

I (F ,F )I<\.IN, \.I: coefficient of frictionx y

the contact area is split up into a region of adhesion ~ in which

there is no relative movement of the particles in contact as a

consequence of the tangential force, and a region of slip E where
g

the tangential traction has reached the COULOMB value I (X,Y) l=l1Z. The

boundary conditions in ~ are the same as those of 3.312, with S=O:

u(x,y) = u+(x,y,O)-u-(x,y,O) = 0 ,}
+ _ x in ~. (3.55)

v(x,y) = v (x,y,O)-v (x,y,O) = 0 ,
y

The boundary conditions in E are, that the tangential traction is
g

equal-to the COULOMB value, and that the local slip takes place in

the direction of the local tangential traction:

I (X,Y) I=\.IZ = G\.I fOO 11_(x/a)2_(y/b)2, f OO = 2;:bG ,}

slip in direction of tangential traction.

in E
g

In the analysis of CATTANEO and MINDLIN, which we will give here with

the aid of the load-displacement equati0ns, boundary conditions (3.55)

and (3.56a) are met completely; (3.56b) is satisfied only approxim­

ately, for it is assumed that (X,Y) is in the same sense as (F ,F ),
x ~r

rather than in the same sense as the slip. The solution is found by

a device which was already used by CARTER [1J in his treatment of

the problem of the rolling contact with creepage of parallel

cylinders. This device consist~ of assuming that the stress distribu­

tion is that which obtai~s when complete sliding takes place,
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(x' ,y' ), from which is substracted a stress distribution (X", y") over

the adhesion area alone, and which is similar to the stress distribu­

tion of complete sliding. As a consequence (3.56a) is met automatic­

ally and, (this hypothesis was advanced by CATTAllEO and I.rIIIDLIU), the

area of adhesion will be bounded by an ellipse. We will sho:w that the

ellipse is similar to the contact ellipse, concentric with it, and

similarly oriented. We denote the semi-axes of the area of adhesion

by a" ,b", and we will prove the statement just made by showing that

the boundary conditions (3.55) can be met.

Denoting by (u',v') the displacement dif'ferences due to the

stress distribution (X', Y') of complete sliding, and by (u",v") those

due to the stress distribui!ion (X", y") over the adhesion area alone,

we have

(F ,F) \.IGfOO(X' ,Y')= \.IZ x Y = -F- (1" ,F ) 11_(x/a)2_(Y/b)2 in E,
F x Y

=0

(X" , Y")= \.IGf"
00

= 0

(X,y) = (X',Y')-(X",Y");

and

F = I (F ,F ) I,x y

outside E,

in ~,

outside ~,

(u" v")=(a" b" )+(a" b" )x2 +(a" b")XY + (a" b" )y2, 00' 00 20' 20 11' 11 02' 02

(u,v) = (u'-u", v'-v") = (tS ,tS )
x Y

in ~,(3.58b)

in ~,(3.58c)

where, '3.ccording to the load-displacement equations (3.6),

( 0'00 _ F1;00) " =2(~0;00 _ "1'00
aOo=2 F '00 o 20 aOO 00. of '20)

(FO;OO F1 ;00) F
a" = ('0;00 "1' 00 Fa

20
= o 40 x F 20- of \0) lif"

x20 \.11'00 F ' 20 F
1'00 "1'00 00

b 11 = -2oF '22 b" = -2oF '2211
(FO;OO_ F1;00) a" = ('0 ;00 "1'00)a02= 02 0 22

02
F 02- of '22

(3.59a)
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b =2(FO;00_ F1; 00) b" =2(~0;00 "1 ;00)
00 00 o 02 00 00 - of 02

(FO; 00 _ F1; 00) btl = "0'00 "1 ;00)b 20= 20 0 22 F 20 (F '20 - of 22 F
l' 00 ].lfOO -f "1' 00 f" ..Jl.

a 11= -2oF '22
, a" = -2 F '22 I.l 00 F •

11

b 02= (FO; 00 _ F1; 00) btl = (0;00 "1 ;00)
02 0 04 02 F 02 - of 04

(3.59b)

Here the coefficients ~;pq are taken with the minor semi-axis a of
m..'1 y,

the contact area, while the FP;pq are taken with the minor semi-axis
ron

a" of the adhesion area.
"Now, we see from (3.35) that the coefficients F and F of the

-1 -1second degree terms are equal to each other but for a factor s =a

and (s,,)-1=(a,,)-1, since d= -1. So,

"F = F a/a" in 2nd degree terms.

If the second degree terms in (u,v) are to vanish in l\' as is

demanded by (3. 58c), we must choose

a"
f " + f00 = a 00·

If we do so~ second degree terms vanish simultaneously.

We are now in a position to express the semi-axes a" in a, with

the aid of the prescribed forces F and F :x y

"b" "X" dxdy = JJ XI dxdy - JJ _a_ .!:.... XI dxdy =
E E ab aJI

l\
I.l F N/F,x

F = If Xldxdy -
x E

= {1-(a"/a)3}

F = {1-(a"/a) 3} I.l F N/F,
Y Y

so that

btl a" 1/3
- = - = (1-F/].lN) ,
b a

As to the zero degree terms, it follows from the fact that d=O,
"that F = F a" / B., so that

f"
aOO = aoo f~~ :" = aoo (1-F/].lN)2/3, b;0=bOO (1-F/I.lN)2/3. (3.63)

According to (3.22),

FO;OO = ~_Ka,
00 F

1;00 = 'Da
20 :L, F

1;00 = lBa02 2_,



and we finally find that

If we let F!~N approach zero, we get again the result (3.34).

It should be observed that for non-vanishing POISSON's ratio a

the boundary condition (3. 56b) is met only approximately. In order to

see that, we consider the case that F =0, and that F grows to F =~N.Y x x
The traction at every instant is then parallel to the x-axis,

and the same should hold for the slip. The slip is given by

a[u-c ] a[v-c J
( at x, at y ); its y-component should vanish, that is,

a(v-c )
at y = 0. Since c

y
=0 when Fy=0, ~; should vanish at every instant.

Accordingly. v should vanish in the final state of complete slip; in

that case, v"=O, and v=vl=b,,:xy according to (3.59a), where b,,#O

when 0#0. So the slip is not alW8fS parallel to the traction. In the

case of a circular contact area, the maximum angle between (u,v) and

(X,Y) is 9.60 when o=~, and 4.,0 when o=a. We conjecture from this

that the angle between (u,v) and (X,Y) is alW8fS small.
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4. Steady Rolling with creepage and spin: asymptotic theories.

In this chapter and the next we will treat the problem of the

transmission of tangential forces during rolling.

Consider two bodies of revolution which are pressed together by

a normal force N, and which roll steadily over each other, see Fig. 6.

I M >~ <i!
z Y

lC iN

'M
z

---Fx.....- >"" "Fy

.>
Fig. 6. Two bodies rolling over each other.

Owing to the normal force, a contact area is formed along which the

bodies touch. If the conformity of the bodies is not too strong, and

the changes of curvature are small, the contact area and the normal

pressure transmitted across it are given by the HERTZ theory which

we treated in detail in 3.221. According to this theory, the contact

area is an ellipse with semi-axes a and b,

E = {x,yoz: (x/a)2_(y/b)2 ~ 1, z=O} ,

while the distribution of normal stress is given by

(4.1)

(4.2)

The formulae by means of which the semi-axes a and b can be computed
.. + + - - .

from N and from the radJ.lo of curvature Rx ' Ry ' Rx ' ~ are given lon

3.221. When the bodies are rolling steadily, their parallel circles

are almost parallel, so that according to 3.221 the axes of the



contact ellipse are very nearly oriented along the rolling direction

and perpendicular to it. So, if we take the axial direction of the

ellipse as x and y a.."'l:es, as we did throughout this work, the rolling

direction very nearly coincides with one of these, so that we can

assume without loss of generality that it is the positive x:..axis.

In addition to the normaJ. load, a tangential force can be

transmitted from, one body to the other, owing to friction. When the

tangential load is below its maximal COULOMB value, that is,

I (F ,F J I<\IN, \l: coeff. of friction, slip occurs in part of the
x: y

contact area called the area of slip E , while in the remainder of
g

the contact area, the locked area or area of adhesion ~, there is

no relative velocity of one' body with respect to the other. This is a

conseq,uence of the fact that the elastic deformation of the bodies

modifies the velocity pattern near the contact area. In the area of

slip E , work is done by friction; macroscopically, this results in
g

a difference of the overall circumferential velocity of the bodies.

This difference is determined by means of the q,uantities called

creepage and spin, which are defined in (4.14).
In the present chapter, we first set up the boundary conditions

both for steady and unsteady rolling (sec. 4.1). In sec. 4.2, we

consider the various symmetries present in the problem, and we

introduce a number of dimensionless parameters. In sec. 4.3 we

generalize the theory of DE PATER [1J and KALKER [1] on DE PA'mR's

asymptotic case of infinitesimal creepage and spin, to elliptic

contact areas. This is an application of the load-displacement

eq,uations of ch. 2. In 4.4 we present the theory of LUTZ [1,2,3J and

WERNITZ [1,2] on LUTZ's asymptotic case of infinite creepage and

spin, in a slightly generalized form.

4.1. Boundary conditions.

For the problem of elasticity and the solution of the boundary

value problem, the bodies will be approximated by half-spaces. The

boundary conditions are set up for the finite bodies, but we will

already utilize the coordinate system of the half-spaces.

A cartesian coordinate system (0; x,y,z) is introduced in the

following manner. The plane z=O is the boundary of the half~spaces.
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Z.2;O is the lower half-space. The Qodies touch each other along an

elliptical contact area E, see 3.221. We take the centre of the

ellipse as origin, and the axes of the ellipse as the coordinate axes

X and y,

The positive x-axis coincides approximately with the rolling

direction~ which is a.lwa..ys the case when two bodies of revolution

roll steadily over each other, as we pointed out in sec. 4.

The material of the bodies flows through this coordinate system.

We take the undeformed state so, that at infinity the deformed and

the undeformed state coincide, in other teI"'llS, the elastic displace-
± (:I: ± :1:). •• • •ment ~ = u, V 9W van~shes at ~nf~n~ty. In th~s undeformed state,

the bodies intersect. This intersection is countered by the elastic

deformation, as a conse~uence of which the contact area forms.
. . + -

Accord~ng to 3.221, only the difference w = w -w of the z-component

of the displacement is involved in the formation of the cont~ct area.

As we have Seen in (2.15c) and (2.10a), this difference is unaffected

by the tangential tractions acting in the contact area, when the

elastic constants of the bodies are the same. That means that contact

area and normal pressure can be calculated as if the tangential

tractions were absent. In the case that the elastic constants are not

the same, we assume that the contact area E and the normal pressure Z

are not significantly altered by the tangential tractions (X,Y), see

sec. 2.1.

Regarding the tangential tractions, We only take the effect of

dry friction into account. This means that the contact area is

divided into a region of slip E where the tangential treo,ction
g

I (X,y) I=~z, and is directed along the local slip, and a locked reGion

~ where the slip vanishes, and I(X,Y)ls~z. He assume that the

coefficient of friction is independent of the slip, in particular,

that the coefficient of friction which prevails in the locked region

is the same as that in the slip region.

We observe that the slip is of central importance in the

boundary conditions, and we proceed to find an expression for it.

Consider a particle of the bodies which lies at a certain time t in



the point ~ = (x.y.z) in the undeformed state. The position in the
. ± (± ± ±) .deformed state J.S x + ~ = x+u, y+v ,z+w • The velocJ.ty of the

particle is fOLIDd by differentiation with respect to time. In the

undeforllled state the velocity is

~ dx..& dZ)
Yu = dt = ( dt ' dt • dt '

and in the deformed state,

dx du aU.
Yd = d~ + d~ = Yu + a~ + <Yu' grad)~.

(4.4)

(4.5)

ret the superscript + refer to the lower body, and the 8uperscript ­

to the upper body. He define the slip as the velocity of the upper

body with respect to the lower body in the deformed state. It is:

a(u--u+)
Y(x,y,O)= Y-

d
- Y+

d
= fy+ - y-)+ at +

- - - l..:-U-11

(4.6)

(4.7)

Since Igrad (~++:!:-) 1« 1, we may neglect the last term of the right

hand side of (4.6) with respect to the first term. This gives

au
y(x,y,O)= (y+-y-)- "t- - ~({y-+y+}.grad)U'}
- u u a -u -u -

+ -
U = U - U •

The z-component of y(x,y,O) vanishes in the half-space ap,roximation.

the (x,y) components of y(x,y,O) depend only on the differences
+- +- -()u=u -u , v=v -v of the x,y components of the elastic displacement

at z=O. We saw in (2.11a,b), and (2.10a) that this difference is

unaffected by the normal pressure Z, when the elastic displacements

of both bodies are the same. We can then calculate the tangential

tractions and the difference of the (x,y) components of the elastic

displacement at the contact area, as if the normal pressure were

absent. We will do this throughout this work. If we use the results

so obtained also in the case of different elastic constants by using

the combined modulus of rigidity G and POISSON's ratio (J of eq.

(2.10), it should be kept in mind that we make an error. This error

is not necessarily small, see sec. 2.1.

We can regard the velocity of the undeformed bodies in the half-
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space approximation as a velocity at the origin and a rotation about
the z-axis:

+ + + +

}
dx dx

I -
+ SL-SLI +--:::-- [lzY' dt - dt 0

+ [lzx,
dt dt 0 (4.8)
dx- dx-

I - [I-y, .9:L. ::: dy-
1 0

+ [/-X.--:::--dt dt 0 z dt dt z

We define the rolling velocity V , with magnitude V as the opposite
-r

of the mean velocity at the origin,

+ - +-
V - l([dx +dx ] [2:l-.+~J)
-r - -. dt 'e:t o' dt dt 0'

V::: Iv I.
~r

In the steady rolling of two bodies of revo] ution over each other,

the rolling velocit;r makes a small angle 1$ with the positive x-axis.

We confine ourselves to this case of small C. Then, we have:

v ~ - (VDcV)o-r

The creepage v ::: (v ,v ) is defined as follows:
- x y

v ::: 1. ( dx- _ dx+ ) I v:::.l (~ _~ ) I
x V dt dt o' Y V dt dt 0 •

'I'Ie ,Trite for the rotations [/+ and [1-z z

+ 'f ) - '( )[/ ::: 2\~-~ V, [/ ::: 2 ~+~ V.z z

(4.10)

(4.11)

(4.12)

~ is called the spin, and the constant ~ has no special name. Note

that ~ and ~ are not dimensionless, but have the dimension of

(length)-1. The velocity (4.8) of the undeformed bodies becomes:

and

V- - V+ ::: (d(X--X+) d(Y--Y+))::: V(v -¢y~ V +~x),
-u -u dt' dt x Y

V- + V+ ::: -V(2Hy, 26-~x).
-u -u

(4.13)

(4.14a)

(4.14b)

(V- + V+) is multiplied in (l~.7) by a term of order grad u_. So we
-u -u

may neglect C with respect to 1 when we insert (4.14b) in (~.7). 11-,:

also aSS1.nD.e that the angle between the rolling axes of the upper and

the lower body and the z-axis is not small, that is, the rolli~~



axes are not almost vertical. In that case, the horizontal component

of rotation n is larger or has the same order of magnitude as n , orx z
iflV. But V = o(pn ), where p is the characteristic length of thex
bodies, see (3.38). Therefore, iflx and if!y are at most of the order of

magnitude xlp, yip. In the contact area we have that xlp and yip are

O(R.!p), with R. the major semi-ans of the contact ellipse, which is

small with respect to unity when the bodies are counterformal. Hence

we m~ also neglect the terms if!y and iflx when we insert (4.14b) into

(4.7) :

l y+ + V- ) = (-2V,O) when inserted in (4.7).
-u -u

So, (4.7) becomes

y(x,y,O) = y _s(x,y,O) = v(s ,s ,0), s: relative slipx y

Sx = \lx-~y- ~ :~ + :~ ,}
1 av av unsteady rolling

Sx = Uy+~x- vat + ax ;
au av

S = \l -~y+ -a's = \l +cjlx+ -a : steady rolling.x x x y y x

The boundary conditions can now be formulated.

Stresses and displacements vanish at infinity;

(4.14c)

(4. 15a.)

(4.15b)

(4.15c)

(4.16a)

Z 0 on z = 0, outside E;

Z = G fooh-(x/a)Z-(y/b)Z, f OO = 2;:bG inside

x = Y = 0 on z = 0, outside E;

(4. 16b)

(4.16c)

(X,Y)= llG foo/l-(x/a)L-(y/b)2.lwx'wy)

with ll: coeff. of friction, w =s Is,x x
~ given in (4.15).

in region of slip Eg ,}

W -s Is s=./s2+s 2y- y' x y' ( 4.16d)

s = s = 0, l(x,Y)I~ llZ in region of adhesion R.x y n

4.2. Considerations of Symmetry. New dimensionless parameters.

(40 16e)
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Let us define

X' =~X
3lili '

Y' =~Y
311N

(4.17a)



( ' , ,) 21TabG ( )U ,u ,tjl = -3N U ,U ,tjl •x Y II x Y
(4.17b)

Then it follows f:rom HOOICE' s law and from the fact that we neglect

the influence of the normal pressure Z on the displacement differ­

ences u and v, that the displacement differences due to (X' ,Y') are

( ' , ) 21TabG ( ) (4 )u ,v =~ u, v , .17 c

where (u, v) are the displacement differences due to (X,Y). Hence,

Clearly,

s' =x

s' =
y

U'-tjl' _ 1 <lu' + <lu' =~ s ]
x Y V <It <lx 3\lN x'

U'+tjl'x- 1 <lv' + <lv' =~ s •
y V <It <lx 3\lN y

w' = w w' = w •x x' y Y

(4.17d)

(4.17e)

(4.18)
in Eg • }

in ~.0. I (X' ,Y') 1.:£ G h_(x/a)2_(y/b)2

(X',Y')

s' = s' =x y

then it is clear that (4.16a.c.d,e) are satisfied by (X,Y). So we

have only to solve (4.18) to obtain the solution for any coefficient

of friction and normal load. Also. we have only to consider a single

value of G. further we can choose the unit of length arbitrarily, so

that we have to consider only one contact area with the prescribed

ratio of the axes. In accordance with this, we introduce new

l' = F /\IN, l' = F /\IN,x x y Y
F'. F', and M' be the totalx y z

connected with (X'.Y'); then

dimensionless parameters. We consider

m = M /\lNc. c = lab, (see 3.50). Letz z
force and torsional couple

=~
F' 3F'

l' F /\IN x x= x-=---
X X 21TabG J,lN 21TC2 G

= 311N
F' 3F'

f = F /J,lN x.J..=....:....L (4.19)y y 21fabG IlN 21TCL G

=~
M' 3Hz

M /J,lNc
z

m = x--=---.
Z Z 21TabG \lNc 21TC3G

We also introduce new dimensionless parameters for creepage and spin:



(4.20)

We express ~, n and X in u'x' u~, and <P' of (4.17b). We make use of

~ - uxP
_ 3N).l L u' - 21 u' n - 21 u'

- llC - 2nabG llC x - ( 1-erE x' - ( 1-0 E Y
,- - -

<hp 2C'", 2s, . ..
X = ~ = (1-0 ! ¢ = (1-er)! ¢ , s: m~nor sem~-ax~s

, } (4.21)
of E.

(4.22c)

(4.22a)

(4. 22b)'

We observe tnat c<p' and s¢' are dimensionless.

In the following, we suppose that (X' ,Y') and (u' ,v') satisfy

the boundary conditions (4.13). Let

x(2)= -X' y(2)= _Y', ,
u(2)= -u' u(2)= -u' ~(2)= _~'.
x x' Y y' 'f 'f

From (4.22a) it follows that the corresponding displacement

differences u(2) and v(2) satisfy

u(2)= -u', v(2)= -v',

so that it follows from (4. 22b ) and (4. 22c) that

s (2)= -s s (2)= -s ~ w(2)= -w' w(2)= -w' (4.22d)
x x' y y--' X x' y y

hence the boundary conditions are satisfied by (X(2) .y(2) .u(2) .v(2))

with the creepage and spin of (4.22b). The areas of slip and

adhesion are the same as in the solution (X' ,Y' .u' ,v'), and we have

that

f = f (-~,-n.-x)= -f (~,n.x),x x x

f = f (-~,-n,-x)= -f (~,n,x),y y y

ill = m (-~,-n,-x)= -m (~,n,x).z z z
Let

Then, according to (2.15a,b),

u(3)(x.y)= -u' (x,-y), v(3)(x,y)= v' (x.-y).
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(4.22e)

(4.23a)

(4.23b)



vlhen

(4.23c)

it is easy to see that

s~3)(x,y)= -s~(x,-y), s;3)(x,y)= s~(x,-y),

so that

(4.23d)

(4.23e)(3)( )_ ( ) (3)( )_ '( )w x,Y - -w x,-y, w x,y - w x,-y.x x y y

We conclude that (x(3) ,y(3) ,u(3) ,v(3)) satisfy the boundary

conditions (4.18), with areas of adhesion and slip which are the

mirror images with respect to the x-axis of the ~ and Eg correspond­

ing to (X',Y'). Moreover, it·is easily verified from

that

IF ,F J = II (X,Y)dxdy, M =
x Y E Z

JI (xY-yX)dx~
E

(4.24)

fX(~,n,x)= -fx(-~,n,x), fy(~,n,x)= fy(-~,n,x), mz(~,n,x)=mz(-~,n,x).

(4.23f)
Let

X(4) (x,-y)= X'(x,y), y(4) (x,-y)= -Y'(x,y), (4.25a)

)4) = u', u(4) = -u', cp(4) = _cp' • (4.2~)
x x Y Y

It follows from (2.15a,b) that the corresponding surface displacement

differences

(4.25c)

so that

s~4) (x,y) = s~(x,-y), s;4) (x,y) = -s~(x,-y), (4.25d)

~ w~4) (x,y) = w~(x,-y), w;4) (x,y) = -w~(x,-y), (4.25e)

So the system (x(4) ,y(4) ,u(4) ,v(4)) satisfies the boundary conditions

(4.18) for the creepage and spin as given in (4.25b), and with

locked area and slip area which are the mirror image with respect to

the x-axis of the ~ and Eg corresponding to (X' ,Y' ,u' ,v') 0 Again it

is readily verified from (4.25a) and (4.24) that
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fX(~,n,x) = fx(~,-n,-x), )

fy(~,n,x) = -f (~,-n,-x),

m (~,n,x) = -mY(~,-n,-x).z z

As a corrollary of (4.23) we have

(4.25f)

(4.28)

~ = 09 x' (x,y) = x(3)(x,y) = -X' (x,-y) ,

y' (x,y) = y(3) (x,y) = y'(x,-y),

s' (x,y) = s(3)(x,y) = -s~(x,-y),x

s'(x,y) = s(3)(x,y) = s' (x,-y), (4.26)y x

f (O,n,x) = 0,
:x:

~ and Eg symmetric with respect

to the x-axis.

We see from (4.26) that when ~ = 0, traction and slip are mirror

antisymmetric about the x-axis.

As a corrollary of (4.25) we have

n = X = °==1 X' (x,y) = X(4) (x,y) = X' (x,-y),

Y'(x,y) = y(4)(x,y) = -Y'(x,-y),

s'(x,y) = s(4)(x y) = s(4)(x _y)
x x' x ' ,

s'(x,y) = s(4)(x,y) = _s(4)(x,_y), (4.27)
y y y

f (~,O,O) =m (~,o,O) = 0,y z

~ and Eg symmetric with respect

to the x-axis.

We see from (4.27) that when n = X = 0, traction and slip are mirror

symmetric about the x-axis.

We summarize (4.22e), (4.23f), and (4.25f):

f (~,n,x)= -f (-~,n,x)= f (~,-n,-x)= -f (-~,-n,-x),x x x x

f (~,n,x)= f (-~,n,x)= -f (~,-n,-x)= -f (-~,-n,-x),y y y y

m (~,n,x)= m (-~,n x)= -m (~,-n,-x)= -m (-~,-n,-x).z z' z z

Finally. it should be observed that the method used here for

symmetries about the x-axis cannot be used for symmetries about the
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y-axis. To see this, one might propose the following relationship:

x(5)(x,y) = -X'(-x,y), y(5)(x,y) = y(5)(_x,y).

Then indeed

u(5)(x,y) = -u'(-x,y), .,.(5)(x,y) = Vi (-x,y),

but

du(5)(x,y) = + au'(-x,y) av(5)(x,y) = _ av'(-x,y)
rl'lC ax' ax ax'

so that the signs of (5(5) s(5» do not match those of (x(5) y(5».
x ' y ,

4.3. The ll.miting case of infinitesimaJ. creepage and spin.

When creepage and spin are absent, it follows from (4.15) that

the relative slip (s ,s ) is given by
x y

1 au au
s x = - Vat + ax '

1 av avs =---+-
y V at ax'

so that we can satisf'y the adhesion condition s = s = 0 (4.16e)x y
throughout the contact area by setting u = v = 0, from which it

follows that X = Y = 0 all in case of elastic symmetry). Therefore,

the adhesion area covers the whole contact area and there is no slip.

As a conselluence it is· to be expected that when creepage and

spin do not vanish but are very small, the adhesion area covers

nearly the entire contact area. Accordingly it was proposed by

DE PATER in 1957 to treat the case that creepage and spin are so

small that the adhesion area can be approximated by the entire

contact area. So, the boundary conditions (4.16) become

Stresses and displacements vanish at infinity;

Z = 0 on z = 0, outside E,

Z = G f
oo

11-(x/a)2_(y/b)Z, f
oO

= 2;~bG inside E;

X = Y = 0 on z = 0, outside E;

(4.30a)

(4.30b)

(4.30c)

(4.30d)

Condition (4.30a) is satisfied if we use the integral representations

(2.7) and (2.13) of BOUSSII~Q-CERRUTTI for the connection between
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surface tractions and displacements. Conditions (4.30b) define the

HERTZ problem which we treated in 3.221. We will consider only the
• dU dV (4)case of steady roll~ng, so that at = at = 0, and .30d becomes

- '" + dU 0 - +'" ilv 0 . . d Esx = ux- '!'y ax = , sy = uY '!'x + ax = ~ns ~ e •

We integrate (4.30e) with respect to x, to find U and v:

(4.30e)

(4.32)in E

v = -u x ­y

u = -u x +
x

U = -xu +cjlxy+f(y), v = -u x_~cjlx2+g(y) in E, (4.31)
x y

where fey) and g(y) are arbitrary, differentiable functions of y. In

order to apply the theory of the load-displacement equations, which

is based on the integral representation of BOUSSINESQ-CERRUTTI, so

that (4.30a) is satisfied, and in which the surface outside the

ellipse E is free of traction (cond. (4.30c)), we approximate fey)

and g (y) by polynomials:

M
cjlxy + l a

on
yn,

n=O
M

~cjlx2+ l b yn.
n=O on

By increasing M. we can approximate f and g as closely as we like.

The coefficients a and b are (2M+2) parameters which are still
on on

free. To (u.v) correspond the tangential tractions (X,Y) of the form

, M H-p
(X,Y) = {1_(x/a)2_(y/b)Zr2 l l Ldpn.epJxPy<1, (4.33)

p=0 q=O "- "-

where the Ld ,e ) are uniquely determined by u , u , cjl and thepq pq x y
(2M+2) parameters a and b • This means that we can assume (2M+2)

on on
relations between the Ld .e J.pq pq

In order to find these relations. we first attempt to bring X

and Y in a form in which there is no singularity at the edge of the

contact area:

~. M-2 1.f-p-2
(X,Y) = {1-(x/a)"·-(y/bF·}+2 l l (d' .e' )xPyq , (4.34)

p=o q=O pq pq

and compare the number of coefficients in (4.33) and (4.34). In

(4.33), there are (M+1)(M+2) coefficients, while (4.34) contains

(M-1)M coefficients. In order that (4.33) can be brought into the

form (4.34), there must exist (1)1+ 1) (M+2)- (lvl-1 )M=4M+2 relations



between the coefficients of (4.33), which is about double the number

of parameters (a •b ). So it would seem to be impossible to bringon on
(4.33) in the form (4.34).

Another argument which points in the same direction is the

following. Let us suppose i:;hat POISSON's ratio a = 0. Then, according

to (2.15a,b),

1 dx' dy'
u(x,y)= 'ifG II X(x:' ,y' ) R-

E

It is easy to see tl1'l.t when X is even in x. u will be even in x. For,

1 b Jal1 -(y' /b)2 X(x',y' )dx'dy'
u(-x,y)= G J dy' -- -

11 -b -al1-(y' /b)2 I(x+x' )2+(y_y')2

1 l dy' tll-(y' /b)Z xC-x' ,y' )dx'dy'

= 1rG -b -a/l-(y' /b)2 I(x-x' )2+ (y_y' )2

= .L II X(x' .y' )dx'dy' u(x.v) •
1IG E R

The converse, VJ.Z. that to an u which is even ~n x corresponds an X

which is also even in x, follows from the (assumed) uniqueness. In

the same va;y it can be shown that to an u which is odd in x corres­

ponds an X which is odd in x. Now. u = -u x is odd in x, and it is ax
polynanial~ so it gives rise to an X which is odd in x and which has

a singularity on the edge of the contact area, the strength of which

is an odd function of x. u = fey) gives rise to an X with a

singularity (if any) which is even in x. So these singularities can

never cancel each other. The same holds for v = -u x and for u = ~xy.
Y

Finally, the singularities due to u = -u x and to u = ~xy cannot
x

cancel each other, since the former is even in y and the latter is

odd in y. The conclusion is that there will be a singularity in

(X,Y) at the edge of the contact area when a = 0, and hence there is

a strong presumption that the same happens when a # 0.

The 'two arguments above point to two things: firstly, that it

~s impossible to have no area of slip whenever there is creepage

rmd/or spin, and secondly, that if we assume as an approximation

that there is no area of slip, we must accept a solution with an

infinite traction at the edge of the contact area.
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The first conclusion has a simple physical explanation. It is

that there is a rate of dissipation connected with creepage and spin,

of magnitude (F u + F u + I.1 <p)V, where (F ,F ) is the resultant
xx yy z x y

tangential force and 1-1 is the resulting torsional couple about thez
z-axis, transmitted at the contact area. Since the elastic field is

conservative, and the absence of an area of slip means that there is

no dissipation by friction, the hJ~othesis that there is no area of

slip leads to a contradiction.

As to the second conclusion we observe that there is also a rate

of dissipation connected with the solution in which there is a stress

singularity at the edge, and no slip in the contact area. This

constitutes a paradox. It was pointed out by JOHNSON [3J, pg. 797,

that a comparable paradox occurs in aerofoil theory.

So we have found that the surface traction goes to infinity at

the edge of the contact area. On the other hand g we still have the

(2M+2) paranieters a and b ,and the only boundary condition which
on on

we did not use is COUL(]ID I s friction law. The conclusion is that the

parameters a and b must be determined by an application of the
on on

friction law, interpreted to fit our problem.

The friction law states in the first place that the tangential

traction I (X, Y) I may not exceed a finite multiple of the normal

pressure z: 1(X,Y) I.:: ).1 Z. This part of the friction law is violated

near the edge of the contact area, if the traction goes to infinity

there. So it is plausible to suppose that an infim.te traction at a

point should be interpreted as an indication that it belongs to the

area of slip. We will show in 4.31 that the slip area does not

border on the leading edge of the contact area in our approximation.

Hence we must have that the strength of the singularity (Xe,y
e

)

vanishes at the leading edge:

= 0 on leading edge of E, }
(4.35)

= Lim (X,Y)/1-(x/a)2_(y/b)2
(x,y)~ edge from inside

The question arises whether this last condition indeed suffices

to remove the undeterminateness of the boundary conditions (4.30).

In the case of a circular contact area and vanishing POISSON's ratio
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we succeeded in determining the solution in terms of an infinite

series of spheroidal harmonics, the coefficients of which were stated

explicitly (see KALKER [1J, p. 171, eq. (8.10». It was found that

the problem is indeed completely determined by the conditions (4.30)
and (4.35). Although this does not constitute a proof, there is a

strong presumption that the conditions (4.30) and (4.35) indeed

completely define the more general problem (0 f: 0, elliptical contact

area) we have here.

In the case of a finite number of the parameters a ,b ,it is. on on
impossible to satisfy (4.35). We then approximate (4.35) by the

demand that (a ,b ) are chosen so as to minimize the integralon on

IT/2
J {(xe)2 + (ye)2} d~ = minimal, x = acos~,

-IT/2
y = bSin~;}

(4.36)

(4.36)
(2M+2)

Since (xe ,ye) depend linearly on the parameters (a ,b ), conditionon on
furnishes us with the following (2M+2) linear equations in the

unknowns (a ,b ):on on

TT/2 •.e e TT/2 •.e e
f .{xe _Clx_ + !.L.}d'''-- f {_.e Clx e ClY }

/
Cla "a 't' x -- + Y -- d~O n=O, ••• ,a,

-TT 2 on" on -TT/2 Clbon abon '

linearl~r dependent on (a ,b ),on on

ClXe
aa- I ••• , ••• , ••• independent

n
of (a ,b ).on on

(4.37)
4.31. Proof that no slip takes place at the leading edge, when

creepage and spin are infinitesimal.

As we pointed out in 4.3, an infinite traction at a point of'

the edge on the contact area means that this point belongs to the

slip area E • COULCMB' s law also states that the slip is in the same
g

direction as the tangential traction. To obtain an insight into the

slip at the traction singularity, we determine the limiting

behaviour of s and s as we approach the edge of the contact areax y
from the outside since s = s = ° inside the contact area.x y



We can express the slip in the traction by means of (2.16):

S (x',y') = \) -~y' +x x

S (x',y') = \) +~x +y y

+ _, _a_ II [Y(x ){ '-0 + 0(y_y,)2}
uG ax' ,y,.., ,..,3E l\ "

R = I(:x-x' )2+(y_y' )2, E: contact area.

(4.38)
Since (x' ,y') lies outside the contact area, we me¥" interchange

differentiation with respect to x' and integration:

s (x'.y') = \) -~y' +x x

(4.39)

} +

+ _, ff [X(x.y){ (',...30)(x-x') + 30(x-x,)3 } +
uG E R3 RS

+ oY(x y){_~ + 3(x-x,)2(y_y') }]dxdy,
'R3 RS

s (x' y') = \) +"'x' +y' y 't'

+ _, If [y(x,y){ (1-a)(x-x') + 3a(x-x' )(y-y' )2
uG :c R3 RS

( ){ :t:X... 3 (x-x' ) 2 (y-y') }]
+ aX x,y - R3 + RS dxdy

He assume that the tangential traction has an inverse square root

behaviour at the edge of the contact area,

X(x,y) = X'(X,Y){1_(x/a)2_(Y/b)2}-:, }

Y(x,y) = Y'(x,y){1_(x/a)2_(y/b)2}-2,
(4.40)

where X' (x,y) and Y' (x,y) are continuously differentiable !'unctions.

How it will be shown later in this section that when the distance u'

of (x',y') to E approaches zero, see fig. 7, then the relative slip

is given by
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Fig. 7. The conta.ct area with the u,v-axes.

4, 2 2
distance of (x',y') to E, J3 = 12 vCx'/a2 ) +(y'/b2 ) ,

s (x' y')= COS1)J{
x '

s (x' ,y')= cos1)J{
y

u':

2X' (i.Y)
GBvU'

21' (i.Y)
G!l1Ui

(1-acos21)J)- 2aY' (i,Y) c061)Jsin1)J}+0(1)
GBIti'

(1-asin21)J)- 2aX' (xtY) cos1)Jsim!I}+O(n
GBvU' .

(4.41)

1j; : angle between pos. x-axis and inner normal on edge of E

which passes through (x' ,y' ) ;

(i,y): intersection of this ncrmalwith the ellipse;

0(1) : any bounded function.

Hhen POISSON's ratio a=O, s ands becomex y

')v, C ... )

)
s (x' y')=

_._ x,;¥:
cos1)J + 0(1) ,x ' GIlltli.

(4.42)
'(- -)

s (x' y')= 2Y x,;¥:
cost/! + O( 1),y ,

em lUi
fram which we see that the vector (s ,6 ) is parallel to thex y
tangential traction (X,Y) as u' +0, When, a.t any rate, (X' ,Y' );£(0,0)

or, in other terms, when the traction goes to infinity at the edge.

The vector has the same sense as (X' ,Y') when cos1)J>o, and the

opposite sense when cos1)J<O. It is easy to see from fig. 7 that

coS1)J>O when (x',y') approaches the trailing edge x<Ot and that
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cos6

cos1j;<O when (x' .y') approaches the leading edge x>O. It is thus

plausible to suppose that at the lee.d.ing edge the slip would be

opposite to the tangential traction. if the traction goes to infinity

there; according to the !'rictioIl law. this should not happen. and

therefore the traction singularity should be removed !'ram the

leading edge.

When POISSmT's ratio a';'O. the slip and the tangential traction

are not precisely parallel. but we can show that at the leading edge

they are s.:wost opposite, and at the trailing edge aJ.most in the

same sense. In order to show this. we calculate the angle 6 between

slip and traction from (4.41). JI.i'ter some calculation we obtain:

Xsx + YSy {X2+y2-a(Xcoso/+Ysin~)2}sign(coSlj;)

I(X,y) II (sx,Sy) I = iX2W 1X2+y2_a(2_a) (XcosljJ+Ysinlji) 2 (4.43)

where we dropped the prime of X' and Y'. We denote by D the ratio

D = (Xcoslj; + Ysin$)2/(X2+y2). (4.44a)

Since (Xcos1jJ + Ysinlj;) is the component of (X,Y) in the directi~

(cos1jJ, sin1jJ),

o ~ D ~ 1. (4. 44b)
In this notation, cose becomes

cos6 - (1-aD)sign(cos1jJ)

l1-a(2-a)D

It can be shown without difficulty that the absolute value [cos6 I
. 1 • • 2{1::(1reaches a ma.x:unum of when D=O or D=1, and a nun:unure. of~ when

1
D = 2=C1 • When a=O, the minimum equals unity as we knew already. "Then

a=~, the minimum is 0.987, corresponding to an angle of 90
; when

a=~, the minimum is 0.941, corresponding to an angle of 200
• As a

consequence of this and of the presence of sign(coslj;) in the

expression for cos 6, we have that on the leading edge the angle 6 is

nearly 180°, and on the trailing edge it is nearl~r zero. Uumerica1.ly

we have:

at the leacting edge: 180°_ 6 < 6 ~ 180°+6
ro'

= 1}4.46)m-
at the trailing edge: - 6 < 6 ~ 6

m
,n-

6 = 0 for a :: 0; 6 = 9° for a = ~; e 20° for a
m m m

The conclusion is again that the traction singularity should be
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removed from the leading edge of the contact area.

In the remainder of this section we will establish (4.41). He

see from (4.39) and (4.41) that this task consists in calculating the

part that behaves as 1!fUi (see fig. 7 and (4.41)) as the distance u'

from (x' .y') to E goes down to zero. of integrals of the following

type:

I (x' .y')= (f f(x.y) (x-x' )m(y_y' )n "'xliv. 'R! !'lee (2.9) i

'E Rm+n+2 /1_(x!a)2._(y!b)2. --~ -----
E: see (1.5a),

where f(x,y) is a continuously differentiable function, and (x' ,y')

is a point outside the elliptic area E. We shall show that

!I(x' ,y') 14- /Xl as (x' ,y') approaches the elliptic area E, and we shall

calculate the singular part of I.

In our coordinate system. we take the minor semi-axis of E as

the unit of length. From (x' iY') we drop a normal on the ellipse,

see fig. 7; the point of intersection is (i,y). It is clear that the

contribution to the integral of the domain of integration outside a

neighbourhood of (x' ,y') with radius cS is bounded. vIe denote by D

this neighbourhood in so far it intersects with the elliptic area E.

D is shown shaded in fig. 7. We also denote a bounded function by

0(1). So we obtain

I(x',y') = ff f(x.y)(x_x,)m(y_y,)n dxdy + 0(1). (4.48)
D rrn+n+2 11_(x!a) 2._ (y!b) 2.

We introduce the cartesian coordinate system (u,v) into this

integral, which has (i,y) as origin, and the positive u-axis of

which coincides with the inner normal to the ellipse at (i,y). see

rig. 7. Let 1/1 be the angle between the positive x-axis and the

positive u-axis. Then:

x-i = ucosljl-vsin1/l, y-y = usimjJ+vcos1/J;

the point (x' ,y') has in the (u,v) coordinate system

the coordinates (-u',O);

u' is the distance from (x',y') to E, u'>O;

x-x' = (u+u')cos~vsin1jl, y-y' = (u+u')sin1jl+vcos1/J;

R2. = (u+u' )2+v2.; dxdy = dudv;

f(x,y) = f(i,y) + 0 (/u2+v2) = f(i,y) + 0 (/[u+u'J2+v2).
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Also, since (i,y) lies on the ellipse,

1-(x/a)2_(y/b)2= x 2_x2 + Y.2-y2 ='(x-x){2x-(x-x)} + (y-y){2y-G-y)} =)
a2 b 2 a2 . b2

= _(2XCOSp+2Ysinp)u_(_ 2isinp+ 2YcOSP)v+h'(U,v),
a2 b2 a2 b 2

(4.50)

where h' (u,v) is a homogeneous ~uadratic form in (u,v). So,

where we made use of the fact that u' >0, and that u>O in D. Also we

have that the coefficient of v vanishes in (4.50), since the ellipse

is tangent to the v-aXis. That means according to (4.50), that

2~ = acosljl, ~ = asinljl, a = ± 2v
x2

+ t = ± B2 (1+0(R)),}
a b a 4 b4

_ ~ 4/( X')2 ~"L)2 (4.52)
B - >'2 ( "2" + t . 2 '

a b

so that (4.50) becomes

1-(x/a)2_(y.Ib)2 = n2{u+h(u,v)}( 1+0(R)), } •

with h'(u,~) = B2(1+0(R))h(u,v) = O(R2).

In (4.53) we chos~·:the l1cc;o.tive sign for a, since a point (x,y) with

v=O, O<u«1 lies inside the ellipse, so that 1_(x/a)2_(y/b)2>O.

The integral (4.43) becomes with (4.49) and (4.53):

rex' ,y') =

= II {f(x.y)+O(R)}{(u+u')cos1/J-vsinljl}m{(u+u')sinp+vcosljl}l1 dudv+O(1).

D . B( 1+0(R)) ~+h(U,v) Rm+n+2

Again we introduce a new coordinate system into this integral:

w = u+h(u,v), v = v;

we denote

r 2=(w+u')2+v2; then, h(u,v)=O(r2), R2=r2 (1+0(r));

dudv = {1+0(r)}dwdv;

(u+u' ) cos1jJ-vsin1jJ= {(w+u' )cOS1jJ-vsinljl}( 1+0( r) ),

(u+U')si~1jJ+vcos1jJ={(w+u')sinljl+vcosljl}(1+0(r)),

all in D.

(4.56)



The integraJ. becomes

x {(W+U')sin~vcos~}n{1+0(r)}dvdW+0(1).

= I'(x'.y')+o(n.

II f(x.Y){(w+u')cos~-vsin~}m{(w+u')sino/+vcos~}n
I' (x' .y')= -- - - -

D BIW r Dl+n+2 dvdw.

J
(4.57 )

since II rm+n+1/rm+n+2 dvdw = O( 1).
D

We observe that the domain of integration D lies in the half­

:Plane w ~ O. For u' ~ 0. the domain outside D. in so far as it lies

in the half-plane w ~ 0t gives a finite contribution to the

integral. So we can extend the integration to the· whole half-plane

w ~ 0:

r(x' .y')

= I= f(x,Y) dw J= {(w+u')cos~-vsin$}m{(w+u')sino/+vcos$}n dv+0(1)
o BIW r m+n+2

(4.58)
We evaluate {(w+u' )cos$-vsin$}m{ (w+u' )sin~vcosl/J}n by means of the

binomial theorem. A typical integraJ. is then

I (x' .y' .k. 1) =f(x,Y)
B

<X> co

J dw J
o IW_=

By symmetry. this integral vanishes when 1 is odd. When 1 is even.

we use the substitution

w+u'v = (w+u' )tane. dv = -- de.
cosle

This gives
- <X> Tr/2

I(x' .y' .k.1)= f(x,Y) I dw I sin1ecoske de
B 0 (w+u' ) IW -Tr/?

r (k+1) r (1+1.)
= Trf(x,Y) ?). 2). .

k+R.+2 when R. J.B even.
BIii' r(-2-)

(4.60)

(4.61)

o when R. = odd.



So as a final result from (4.58)t (4.59) and (4.61) we obtain:

I (x' tY')= Jr f(xty)(x-x' )m(y_y' )n dxdy =
E Rm+n+2;1_(x/a)2_(y/b)2

= lrf(xtY) {I I [(_1)i+(_1)j] (~) ~J.)
2B& i=O j=O

r ~+n-~-j+1) r (i+~+1)
----==---:--:-:::---=-- x

r (!!!+~+2)

B =

m+j-i", . n+i- j ,,,}
x cos 'f'sJ.n 'f'

&1' (x'/a2 )2+(y'/b2)2,

+ o( 1) t

(4.62)
Xt Yt u' and 1Pt see fig. 7.

The expression (4.41) follows from (4.39) and from (4.62) after

a straight.forwardt but somewhat laborious calculation t which we omit

here.

4.32. Solution of the problem.

When we use the theory of the load-displacement equations t the

boundary conditions (4.30at c) are automatically satisfiedt and the

only boundary conditions left are (4.32) and (4.36).

We define

(X't Y')

M M-p

= I L (d e ) xPyq
p=0 q=O pqt pq t (4.63)

a-\) B,11 = '" t anD). =a10 - - x t 't'

b 10 = -\)yt b20 = -~~t bmn = 0

X and Y are given by

where the coefricients d t e depend uniquely on \} t \) tiP tatbpq pq x y on on
through the load-displacement equations (2.56) t where we have t

according to (4.32) in terms of the constants (a tb ) of (2.32):
mn mn

otherwise t unless m =o;}
. 0 (4.64)otherwJ.se t unless m = •

~-------1
(XtY) = G/'-(x!a)2_(y!b)2 (X' tY') t

60 that according to the definition (4.35)

(~tye) = G lim (X'tY'). (4.66)
xty-+edge

According to the remarks made after (2.56 )t (a2m+e:
t
2n+lIlt

b2m+ ' 2n+ ,) on the one hand t and (d2P+ 2 + t e2p+ '2 ) one: t III e: t Cl: w e: t q+w'
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the other hand belong to a closed system of equations for each of the

four possible choices,of (€,w). If we set M=2K+1, for instance, and

(4.67)

dO,2K)

d1,2K)

dO,2K+1),

d1 ,2K-1) ,

lK)

lK)

y2K)

2K-2)
Y • ,• •• !

·.. ,
·.. ,
·.. ,

(1,x2 ,y2,x4,x2y 2,y4,

x(1,x2,y2,x4,x2y2,y4,

v 2 = Y(1,X2,y2,X4,x2y 2,y4,''OJ

x? =
J

X~ = (dOo,d20,d02,d40,d22,d04' ••• ,

xj (d10,d30,d12,d50,d32' ••• ,

xj (dO1' d21 ' d03 ' d41 ' d23 ' • • • ,

xj = (d11 ,d31'd13,d51 t ••• t

~ as ~, with e instead of d ,
J J pq pq

i as ~, with a instead of d ,
J J mn pq

v~ as ~, with bmn instead of dpq'

then, if we sum over repeated indices,

XI _ . .i i,i iii i i- x.x., Y = Y.x., u = u.x., v = V.x .•
J J J J J J J J

(4.68)

We can write the load-displacement equations (2.56) as

[u~ .J = (A~ R,)
3-l.

V.
J

(4.69)

iThe matrices Aj R, are square and have a non-vanishing determinant, so

that we can invert them:

(4.70)

According to (4.64), a great number of the u~ and v~ are zero, so
J J

( i )-1 .that we can drop a nUulber of columns of Aj R, , and we can wrl.te



xQ = B~.2n aO•2n ' (i=O i.e. e:=w=O) ,
J

X! _ "'z
bo,2n+1+Dj U ,(i=1, i.e. e:=1, w=o) ,

J - Cj ,2n+1 x

X~ = B~ "'1 U ,(i=2. i.e. e:=0, w=1),
J J,2n+1 aO,2n+1+Ej y

X~
_ "'0 3

(i=3, i.e. e:=W=1).- C. 2 bO 2n+ F . ~,
J J, n , J

y~ '" (4.71)= B~ aO,2n ' (i=O i.e. e:=w=0) ,
J J ,2n

Y? = C? . "'1 u
x

,(i=1, i.e. e:=1, w=o) ,
J J,2n+1 bO,2n+1+Dj

Y!
_ "'z

aO,2n+tEj u ,(i=2, i.e. e:=0, w=1),
J - Bj ,2n+1 y

y9 _ 0 "'3
~, (i=3, i.e. e:=w=1 ).- C. 2 bO 2n + F.

J J, n, J

• . . "'3The quantitl.es with the superscript'" vanl.sh when 0=0, except F .•
J

This gives for (X',Y'):

X'= 0 BO + l{CZ
Xj j,2n aO,2n x j j,2n+1

2 { 2 "'1 }
+ X j Bj ,2n+1 aO,2n+1+Ej Uy

3 B"'O Z{CZY'= x. . 2 ao 2 +x. . 2 +1J J, n , n J J, n

+ 1{B2 +El U }
Xj j ,2n+1 aO,2n+1 j y

We can split X' and Y' in a part X+'Y+' even in y and a part X_,Y_,

odd in y.

w=o: X+= xP B9 2n 1{"'Z bO,2n+1+Dj uxl , }aO 2 +x. C. 2 +1J J, , n J J, n

'" aO 2 +x?{C~ 2 +1 "'1 u } ,y =X~ B9 bO 2n+1+D.- J J,2n , n J J, n , J x

w=1 : X = x?{B? 2 +1 "'1 } 3{"'D 3 .j.}aO 2n+1+E . u + x. C. 2 bO 2 +F.
- J J, n , J Y J J, n , n J
_ 1{"'Z

aO,2n+1+EJ u I + x9{cO b +F3 4>}Y+- x. B. 2n+1 Y J'2 02 •J J, , J, n ,n J

(4.73a)

(4.73b)

{xZ + yZ} \ d1/J = minimal.- + edge

Tf/2
+ Y~} Iedge dljl + J

-Tf/2
(4.74)

(4.73c)

Tf/2 Z

J {(x+ + xJ + (Y+ +

-Tf/2

Tf/2
= J {x~

-Tf/2

X'= X_+X+' Y'= Y_+Y+. X+(-y)= X+(y), XJ-y)= -XJy).

We enter (4.73c) into the compensation condition (4.36):

2

YJ ledge dljl =
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'He see from (4.73a) that {X~+Y~} depends only on u
x

• a
O

2n and

b O• 2n+1• and that {X~+Y~} depends only on uy • 4J. a O•2n+·1 • and b O•2n '

So the system of compensation equations falls apart into two systems.

one involving the quantities with w= 0. and one inVOlving those with

w = 1. Now. the total force is given by

(4.75a)

so that. after removal of the singularity from the leading edge. F
x

depends only on u • Further we have thatx

-1
F = G ff 11- (xl a) 2_ (~rIb) 2 y+ dxdy. (h.75b)y

E

-1
111 = G JJ 11- (xl a) 2_ (y/b) 2 (XY+-yXJ dxdy. (4.75c)z

E

so that F and I-I depend only on u and 4J. This is completely iny z y
accordance with the finnings of 4.2. since F • F and W are herex y z
linear in u • u • 4J. owing to the linear character of the compensationx y
condition. see (4.37).

Let us call

e
x = a

0.2n+1

b
0.2n

u
y

4>

and let us indicate a transpose by a ' over the letters. Then we have

x = (x9 x!) ro J
t

J 'eee
0 :~ :0,2n = x B u ;+ J J oj .2n
"'2
Cj ,2n+1 J 0.2n+1

u
x

Y = (xl xl) [0 C2 -i][ '0 0 e
D. aO 2 = x 13 u ;

J J j.2n+1 J • n
"'0 0

o ::,2n+1B. 2J. n



x (x~ x~) ~j,2n" 0 E! :;]
10 0 0= a = x C u ;

J J J 0,2n+1

~q 2n 0 b
J, 0,2n

IJy

rp

y. = (.~ xj) lO c~ 0

~1
Ie e 0F. a. = x C uJ,2n J 0,2n+1

'\12 0 E! 0 bBj ,2n+1 J 0,2n

IJy

rp

So,

We integrate (4.7820) and (4. 78b) over the leading edge of the

b . /2 / . elearea ~acos$, y= s1n$, -~ ~ $ ~ ~ 2. Only the matr1ces x x
010 •• d Th . t alx x are pos1t1on ependent. ere are two types of 1n egr ~

(4.77c)

(4.77d)

(4.7820)

(4.7&)

contact

and

.. ~/2 2 2 ~/2 2 2 2 2 }
~ x~ d$ = J x Py q, d$ = f a 1\ q,cos Pt/Jsin q,t/Jdt/J

-~/2 -~/2

- 2Pb2q, r(p{~)r(q+~)
- a p+q,H'

(4.7920)
~2 ~2

I {w x~W+1 d$ = I x2p+1 lq, dt/J =
-~/2 -~/2

~/2 .
= J a2p+1b2q,cos2p+1$sin2q,$dt/J = a2p+1b 2q,

-~/2

Call

(4.79b)

88.

~/2

J
-~/2

ele ex x d$ = F ,
~/2

I 010 0
X x d$ = F ,

-~/2

(4.80)



then

(4.81)

and 3. typical c0mpensation equation is found by differentiating

(4.81) with respect to a , b :on on

or, in other terms

'e e e '0 0 0 ethe first (2K+1) rows of (B F B + B F B )u must vanish,
'e e e '0 0 0 0 .the first (2K+ 1) rows of (C F C + C F C )u must vam.sh.

(4.82)

(4.83a)

(4.83b)

(4.84)

o 0X.x.dxdy,
J J

Y! from the
J

compensation

These equations are solved numerically, where we set u =1 in (4.83a),x
and by multiplying the resulting (aO,2n' b o ,2n+1) by ux; we set

Uy=1, ~=O in (4.83b) and multiply the resulting (aO,2n+1' ~o,2n) by

U , and finally we set U =0, ~=1 in (4.G3b) and multiply they y
resulting (aO,2n+'I' bo ,2nJ by ~.

In order to find the total force F , F and the torsionalx y
couple bIz' we first observe that

-1 -1
F =G fJ 11-(x/a)2_(y/b)2 X'dxdy=G fJ 11_(x/a)2_(y/b)2

x E E
I -1 0 0

F =G If v1-(x/a)2_(y/b)2 Y.x. dxdy,
y E J J

~------1

M =G fJ /1-Cx/a)2.-Cy/b)2. (xYh! - yx?x?) dxdy.
z E JJ JJ

By means of (4.71), we can determine X?, y?, X?,
J J J

(a ,b ) which we find from the solution of theon on
equations (4. 83a,b). A typical integral of (4.84) is

r 2p+2q+1
-=------ dr =

l1_r2



He obtain

(4.86)

where the creepage and spin coefficients C.. are calculated with
~J

c = lab as unit of length. With (4.19), (4.20) and (3.50) we obtain

for the dimensionless parameters of sec. 4.2:

F F i1 ()
( f f J- f. x...z Z.I - 3 1-0 1:; r C C )

x' y,mz -l~U' ~U' llUC)- 41T1g lC11 1;, 22n + C23x, 32n + C33X •

(4.07)

4.33. Numerical results.

The creepage coefficients C.. were calculated for a few values
~J

of alb with 2J~+v=3,5,7. It was found that the solution with 2K+v=5

had a relative error of less than 1%from the solution with 2K+v=7.

~1erefore, we calculated the nrp.epage coefficients C.. for more
~J

values of alb w.ith 2K+v=5. The results are shown in fig. 8a and Ob,

and in Table 3.

For the case of a circular contact area (alb = 1), the values

found coincide with those given in KALKER [1J. In that paper, the

values of C.. were compared with JOmmON's experimental results on
~J

the rolling of steel balls [1 ,3J. JOHNSON found that C11 lies

between 3.3 and 4.4; we find for 0 = 0.28 the value 4.22. Also,

according to Johnson, C22 = 3.47 and C23 = '.53; we find 3.7' and

,.49 respectively. Since according to JOHNSON the moment M due toz
elastic hysteresis is of a higher order of magnitude than the moment

due to creepage and spin, when the latter are very small, we cannot

compare C32 and C
33

with the experiment; indeed, we conclude that

the values ofC23 and C
33

are of little practical significance.

According to the theor3tical ~esults of JO}INSON and VElli~ULEN

C22 (e) = C22 (O) $,(O)/$,(e),

$,(e) = ~ _ og2.£ when a ~ b (e z: 0) ,,
(e 0) , (4.88a)

= "ib (4-0 )JT when a= b =

= @- og.£ when a z: b (e < 0) ;-
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Table 3. The creepage and spin coefficients c..•
~J

\0
I-".

a
b

b
a

C11 C22 c23 = -C32 c33

g a=O 1/4 1/2 a=O 1/4 1/2 a=O 1/4 1/2 a=O 1/4 1/2

0.0 7T2 /4 (1-a ) 7T 2 /4 7T1g"/3 - - 7T2 / 16 ( 1··a )g

0.1 2.51 3.31 4.85 2.51 2.52 2.53 0.334 0.473 0.731 6.42 8.28 11.7
0.2 2.59 3.37 4.81 2.59 2.63 2.66 0.483 0.603 0.809 3.46 4.27 5.66
0.3 2.68 3.44 4.80 2.68 2.75 2.81 0.607 0.715 0.889 2.49 2.96 3.72
0.4 2.78 3.53 4.82 2.78 2.88 2.98 0.720 0.823 0.977 2.02 2.32 2.77
0.5 2.88 3.62 4.83 2.88 3.01 3.14 0.827 0.929 1.07 1.74 1.93 2.22
0.6 2.98 3.72 4.91 2.98 3.14 3.31 0.930 1.03 1.18 1.56 1.68 1.86
0.7 3.09 3.81 4.97 3.09 3.28 3.48 1.03 1.14 1.29 1.43 1.50 1.60
0.8 3.19 3.91 5.05 3.19 3.41 3.65 1.13 1.25 1.40 1.34 1.37 1.42
0.9 3.29 4.01 5.12 3.29 3.54 3.82 1.23 1.36 1.51 1.27 1.27 1.27

1.0 3.40 4.12 5.20 3.40 3.67 3.98 1.33 1.47 1.63 1.21 1.19 1.16
0.9 3.51 4.22 5.30 3.51 3.81 4.16 1.44 1.59 1.77 1.16 1•11 1.06
0.8 3.65 4.36 5.42 3.65 3.99 4.39 1.58 1.75 1.94 1.10 1.04 0.954
0.7 3.82 4.54 5.58 3.82 4.21 4.67 1.76 1.95 2.18 1.05 0.96;; 0.852
0.6 4.06 4.78 5.80 4.06 4.50 5.04 2.01 2.23 2.50 1.01 0.892 0.751
0.5 4.37 5.10 6.11 4.37 4.90 5.56 2.35 2.62 2.96 0.958 0.819 0.650
0.4 4.84 5.57 6.57 4.84 5.48 6.31 2.88 3.24 3.70 0.912 0.747 0.549
0.3 5.57 6.34 7.34 5.57 6.40 7.51 3.79 4.32 5.01 0.868 0.674 0.446
0.2 6.96 7.78 8.82 6.96 8.14 9.79 5.72 6.63 7.89 0.828 0.601 0.341
0.1 10.7 11.7 12.9 10.7 12.8 16.0 12.2 14.6 18.0 0.795 0.526 0.228
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dependence of F on
y

(see [5J, fig. 3)

C,,(e) = C,,(O) eI>(o)/eI>(e),

eI>(e) = ~ - o(~ - Q) when a < b (e ~ 0) ,,
(e 0), (4.38b)

= 1b (4-30 )orr when a=b =

= g( '-o)~ + ogQ when 81 ~ b (e ~ 0) •

The experiments of JOm~SOI~ and VEBHEULEN on the

uy for different values of the axial ratio alb,

show that the relationship

F '7TGabu
[ j Ju =4>=0 = f ( 311Nlji Y ), 0 = 0.23

x ,

is very nearly satisfied. We compared the functions

C22 (e) = C22 (0) lji,(O)/lji,(e),}
(4.90)

C" (e) = C" (0) eI>(O)/cl>(e)

with the values of C22 (e) and C,,(e) as we calculated them, for

0=0.25. In the range 0.2 ~ alb ~ " 0.2 ~ bla ~ , we found a

discrepancy of at most 7% both in C
22

and in C", the largest

discrepancy occurring at the end of the ranges alb = 0.2 or

b/a = 0.2. In fact,

alb = 0.2:

b/a = 0.2:

C22 (0) lji,(O)/1jJ,(e) '.07 C
22

(e) ,

C" ( 0) eI> (0) lei> (e) = '.05 C,,(e),
(4.9')

C22 (O) 1jJ,(O)/1jJ,(e) = 0.94 c
22

(e),

C,,(O) eI>(o)/eI>(e) = 0.93 c,,(e).

So here also the experimental results of JOHNSON are fairly close to

our theoretical results on C
22

•

We observe tha.t in the calcula.tions of C.. , the smallest value
~J

of alb and bla with which we computed was alb = 0.', bla = 0.'. The

values of C.. for alb = 0.' came close to those of the strip theory

of KAIKER [~j t with the exception of C
32

= -C
23

' for 0 f O. So we

ventured to put in the values of C.. obtained by the strip theory at
~J

alb = 0, and led the graphs through to alb = O.

Finally we note that the feature that C
32

-c
23

which was

noted in KAIKER ['J, also persists in the case of elliptical contact
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areas. No explanation has been given for this curious feature.

4.4. The limiting case of la~ge creepage and spin. Numerical resvlts.

When the creepage and the spin become ver-.J large, we may neglect.

the elastic deformation in the expression (4.15) for the relative

slip:

au 1 au fs = I.l -epy + - - - - ~ I.l -epy,
X X ax v at x

ov 1 ovs = 1.1 +epx + - - - - ~ I.l +¢x.
Y y ax v at y .J

We CM then regard the slip, with LUTZ [1,2,3J and WER~lITZ [1,2J as

a pure rigid body rotation with angular velocity ¢V about a point in

the plane z = 0 which is called the spin pole by LUTZ and WERNITZ:

spin pole =(Xl,yl), x l= -I.l /¢= -cn/X, yl= I.l /¢= c~!x, (4.93)
y x

see fig. 9. No adhesion area is assumed to forn., not even when the

y

Fig. 9. Contact area with spin pole and traction vector.

spin pole lies inside the contact area. Note that the rolling

direction is no longer a preferred direction. The surface traction

transmitted by the upper body to the lower body has the magnitude

and the direction is perpendicular to the line between (x',y') and
(x,y), with a positive moment with respect to (x',y') when ep is
positive, and with a negative moment when ep is negative. It is easy
to see from fig. 9 that

95.



df = d(F /VN)= 3sign(X) 11-(x/a)2_(y/b)2 (y'-y)dxdy
x x 2lTab I(x-x' )2+(y_y')2

df = d(F /uN)= _ 3sign(X) 11-(x/a)2_(y/b)2 (x'-x)dxdy
y y 21Tab I(x-x' )2+ (y_y' )2

elm'= d(M' /vnc)= 3sign(X) 11-(x/a)2_(y/b)2 I(x-x' )2+(y_y')2 dxdy.
z z 21Tab

Here M~ is the moment about the spin pole. For the moment about the

origin, we have the relation

M = M' + x'F - y'Fz z y x·

tve find the total force and moment by integrating (4~95),

f = 3sign(X) II li-(x/a)2_(Y/b)2 (y'-y)dxdy ,
x 21Tab E I(x-x' )2+(y_y')2

f = - 3s ign(X) II 11_(x/a)2_(y/b)2 (x'-x)dxdy
y 2lTab E I(x-x' )2+(y_y')2

m = 3sign(X) If 11-(x/a)2_(y/b)2 I(x-x' )2+(y_y')2 dxdy - .!!. f' _1 f' •
z 21Tabc E X Y X x

(4.97)

In the special case that the contact area is circular, these

integrals were evaluated by LUTZ in [2J, and in the special case

that the contact area is an ellipse, and that the spin pole lies on

one of the axes of the ellipse, they were evaluated by WERNITZ [1J,

p. 63-72. Since any line through the origin is an axis of' the circle,

LUTZ's results are a special case of WERNITZ's results. If', say,

x' = 0, LUTZ and WERNITZ integrate with resPect to x, 8lI.d obtain as

a result a form involving complete elliptic integrals of the first

and second kind, which then has to be integrated with respect to y.

This latter integration is done numerically. This process breaks

down, however, when the spin pole does not lie on one of the axes,

i.e. when x' ~ 0, y' ~ O. The first integration with respect to x

is still possible, but the resulting form contains also elliptic

integrals of the third kind. We accordingly abandoned the attempt

of anal~rtically performing the first integration, and we treated

the integrals as foll~vs. We had:
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f = 3s ign(x) II 11-(x/a)2_(y/b)2 (y'-y)dxqy
x 2nab E l(x_x')2+(y_y')2

= _ 3sign,{X) If I{x-x' F+(y-y' )2 L dXdy,
2naD E 11_(x/a)2_(y/b)2 b 2

by partial. integration with respect to y. Then, we set

x = arcos~, y = brsin~.

This gives

f = -3s ign(X)
x 21fb

_ 3sign(X)
-- 21fb

1 2ar 2nJ _r__ I l(arcosljJ-x' )2+(brsimjJ-Y' )2 sin~d~ =
o 11-r2 0
n/2 2n

J sin2 aae J (asi1l6cOSljJ-x' )2+(bsi1l6sin~-y')2s int/Jdt/J.
o 0

(4.100a)

(4.101a)

(4.101b)

In the same va::! we f'ind

n/2 2n
f = 3sign(X) J sin2 ed6 f 1r;(-as-:i:-n----6-c-Os-ljJ--x-:-,7")2"+-:(~b-s7in-6-s--:-i-n-t/J--y--::,~)2cos~dt/J,
y 21fa 0 0

(4.1001)

- 1 f - ~ f • (4.100c)
X x X y

Piy means of' the substitution Ct = n-~ in (4.100) it is easy to see

from (4.93) that

f'x(~/x, (-n)/X) = f (~/x, niX),}
:ry(~/X, (-n)/x) = -f;(~/x, nix),
mz(~/X' (-n)/x) = mz(~/X, nix).

By means of'the substitution Ct = -lji in (4.100), it is easy to see

from (4.93) that

f'x{{-~)Ix, nix) = -fx(~/x, niX),}
f'y«-~)/X, nix) = fy(~/x, nIx),
mz ({-~)f)(, Il/x) = m

z
(~/x, nix).

By means of' the substitution Ct = n/2-~ in (4.100), it is easy to see

that

f' (a,b, ~/x, niX) = -f (b,a, niX, ~/X),}x y
m (a,~, ~/x, nix) =m (b,a, nix, ~/x).z z

(4.101c)
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Fig. 10. The total force for large creepage and spin.

(a): g=0.5; (b): g=0.2.
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Fig. 11. The total force for large creepege and spin. g=1.

So we can confine ourselves for the purpos:e of calculations 'to the

cases with

e ~ 0 (a ~ b), -x' = cn/X ~ 0, yl = c~/x ~ O. (4.102)

Under the conditions (4.102) we can eliminate a and b from (4.100).

This gives

r = _ 31g sign (X)
X 211

X /11;(Ig sin6costJi + nix) 2+ ( sinSsin1jJ _ E,I x) 2 simjidtJi,
o ~

3 . () 11/2
r = s~~ x J sin2SdS x
y 211 g 0

X /11 /(Ig sinScostJi+ n/x)2+( sin~in1/J _ E,IX)2 cos1jJd1jJ,
o . g

3 . (x) rr/2
m

z
= S~gn J sin6cos2Sd6 x

211 0

211 I . .
x J r(1g sinSCOS1jJ+n/X)2+( s~n;;~n1/J - UX)2 dtJi +

o g

- (n/X)r - (~/x)ry x

X ~ 0; ir x = 0 then r = ~/o, r = n/u, u = 1~2+n2.x y

(4.103)
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The repeated integrals of (4.103) are easy to integrate numerically.

The total force has been calculated for g = 0.5 and g = 0.2, see fig.

10, and for g = 1, see fig. 11. In the figures, we use the symbols 0

and Cl:

~/X = ocosa, nIx =osina. (4.104)

(4.105)

As to fig. 11. we observe that the force is always in the direction

of the creepage. So fig. 11 could have a simpler form than fig. 10.

We finally observe that the three integrals of (4.97) can be

written as a sum of integrals of the form

1= P2(x',y') If P4(x,y)J(x,y) ~dy ,
E

where P
2

and P
4

are polynomials and J(x,y) and R have their usual

meaning. Hence GALIN's theorem of sec. 2.2 can be applied, and the I

can be evaluated by means of DOVNOROVICH' s method. This gives after

some calculation:

f =
3ysign(X) ~1;00 + 1 2 F1;00 + 1 2 F1;00]

x ab 02 b y 04 2 x 22 '

f = -
3xsign(X) [F1;00 + 1 2 F1;00 + 1 y2 F1 ;o~

y ab 20 b x 40 2 2 '

m =
3sign(X) ~1 ;00 + 1 2 F1;00 + 1 2 F 1;00 +

z abc 00 2 x 20 2 Y 02

+ 1 If F1; 00 + +. x2y2 F1; 00 + 1 1+ F1; 00] +
24 x 40 If 22 24 y 04

+.!.f -1:.f
eye x

(x,y): spin pole, x = -en/X, y = c~/x.

F1;??: see (3.22).
1J (4.106)

It should be kept in mind that (4.106) is valid only when the spin

pole lies inside the contact area, so that (4.106) has only limited

applicability.
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5. Steady rolling with arbitrary creepage and' spin: a numerical

theory.

In the present chapter we apply the theory of the load­

c1.isplacement eCluations to the problem of rolling with Rrbitrary

creepage and spin. In section 5.' and its subsections we present the

numerical proc~ss. III section 5.2 and its subsections we discuss a

computer programme based on the method of section 5.1. Finally we

present the numerical results in section 5.3 and its subsections. In

5.31 they are compared with the experiments of JOffimON and HAINES a11d

aLLERTON. In the two rem-aining subsections of 5.3, we discuss the

solutions obtained.

5.1. The numerical method.

In 5.", ife reformulate the boundary conditions so, that the

solution becomes eCluivalent to minimizing a certain integral. The

numerical analysis of the m:i..nimalization is :presented in 5.12, and

some details concerning the minimalization and the formulation of

the problem are discussed in 5.13 and 5.14.

5.11. Formulation as a variational problem.•

Since the tangential traction is at most eClual to a finite

multiple of the normAl. Hertzian traction, the latter vanishing at

the edge of the conta~t area, we will use the theo~ of section 3.1.

We can rewrite the results of that section as follows:

Let Z = G f OO 11_(x/a)2_(y/b)2 inside E,

a on z=O, outside E;

If (X, Y)= GJlfoo'1-(x/a)Z-(Y/b)2 f (~Tk,y~Tk) inside E,
k=1

= (0,0) on z=O, outside E,

T·~th (M) (1 22 M 0 ° 0 0)WoO. ~ ,x,y,x ,X:f,y , ••• ,y, ",••• , ,

( M) ( 2 2 N)Yk = 0,0,0, ••• , 0,1,x,y,x ,XY,Y , ••• , Y ,

(T1c ) = (dOO,d10,d01 ,d20 , ••• , dOWeOO,elO,e01 ,e20 , ••• ,eON)'

p = (1.,.+1) (M+2) ,
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p q

then [u(x,y), v(x,y)]= fOO I I (z,u'k'l,z,v'k'k),
k=1 j=1 J J - t J J -

with Ujk'Vjk: coefficients of the load-displacement

- -eCluations (3.5), (5.1)

( ) 2 2 M+1 11+2)z. = (1,x,y,x ,xy,y , ••• , xy ,y ,
J

Cl = ~(M+3)(M+4).

The derivatives of U and v with respect to x, which we need to

calculate the slip, are readily found. 'Ihey are:

p Cl }(~U, ~V)=lJfOO L I (ZI.UJ·k'k,z~VJ·k'k)'
oX oX k= 1 j =1 J J

(5.2)
llz. M+1

with (z~)=(~) = (0,1,0,2x,y,0,3x2 , ••• , Y ,0).J oX .

The relative slip due to the traction distribution of (5.1) :Ln

steady rolling is then according to (4.15c),

( ) ( llu llV)s ,s = u -~y +~, u +~x + ~ ,
X Y X oX Y oX

\) ~y p Cl
s = ~f {_X_ - - + I I

X 00 ~fOO ~fOO k=1 j=1

u ~x P Cl
s = ~f {-L- + -- + L £
y 00 ~fOO ~fOO k=1 j=1

According to (3.51),

f -~ _ 2~clg
~ 00 - 2rrabG - (1-a)p! '

and according to (4.20),

u pup
1;;- x T)=..L,x=le.,- iiC '~c ~

so that the relative slip due to the tractions of (5.1) becomes

p Cl
s = ~fOO (A1;;-AX Z. + I I zjujk'k)'x c k=1 j=1

p q

s = ~foo (An+AX ~ + I I zjvjk'k) , (5.3)
v c k=1" j=1

(1-a)! n/2
/1-e2sin2SdS.A = To:: = J2vg 0
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When we use the X and Yof (5.1),. and we calculate the surface

displacement differences also in the manner of (5.1) ~ we accomplish

that the surface of the half-space outside the contact area is free

of traction, and that the displacement and stress vanish at infinity.

In terms of the boundary conditions (4.16), this means that (4.16c)

and (4.16a) are satisfied. Also, the normal pressure of (5.1) is the

same as the one in (4.16b). So, only condition (4.16d) remains for

the slip region E and condition (4.16e) for the locked region R •
g . n

We repest these boundary conditions here:

au avs =1) -q,y + -, S = 1) +q,x + -;-,
x x ax y y oX

~ =s Is w =s Is s=/s2+s 2.
x x ' y y' x y~

(x,Y)=).IGfO/1- (xl a)2-(y/b )2 (wx,WyJ

Sx=Sy=O, 1(x,y) 1:S).lZ=).IGf
oO

h-(x/a)2_(y/b)2

We set

in sliD area E •
~ g'

in locked area ~.

(5.4)

Then we can reformulate the boundary conditions:

'1'=0 in E ,
g

8=0,1 (X' ,Y') I~ 1 in~,

where E
g

and ~ are unknown, and follow from tbe solution of the

problem. We defined S so that it is independent of the factor ).Ifoo
which represents the normal load and the coefficient of friction. We

eliminate E
g

and ~ from the equations by demanding that the

product TS vanishes everywhere in E. Moreover, 1(w ,w ) 1=1, so thatx y
the inequality I(X' ,Y') I~ 1 must hold throughout E. So we obtain

for (5.6):

TS = 0, l(x'~Y'H:: 1 in E.

If (5.7) is satisfied, we have found the solution of the problem.

Since TS Z 0 for any choice of (X',Y'), we can integrate (5.7) to

obtain

103.



I = f~ WTS dxdy = 0, I(X' ,Y') l~ 1 in E, }

W =weightfUnction > 0 in E •

Here we have put in a. positive weightfunction W. Again, since

WTS ~ 0, the integral I ~ 0 for any C:hoice of (X',y' ), SQ that the

vaJ.l1e zero of the integral is actually a minimUI!lo' So we can

reformuJ.ate ( 5. 8) :

I = If WTS dxdy = minimaJ., I(X' ,y') I ~ 1 in E.
E

'lhe two conditions of (5.9) are completely equivaJ.ent to the

boundary conditions (5. 4), but (5.9) can be used to obtain an

approximate solution, namel~ by introducing the tractions of (5.1)

into it, with the corresponding relative slip (5.3), and minim; zing

the integral with respect to the T
k

• The ineqUality I(X' ,Y') l~ 1 is

verified a:rterwards.

5.12. Numerical analysis.

We summarize the new formuJ.ation of the problem:

I = II WTS dxdy is minimal, I(X' ,Y') I~ 1 in E;
E

T = (X'-wx)2+(Y'-wx)2, p2f 00
2S = s~+s~,

(X' Y') ~ (M 1-1), = L Xk Tk'Yk Tk '
k=1

w = sis, w = sis, s = I (s ,a ) I,x x Y ~r X y
P q

s = pf (A~-AX L + I I zj -vjk 'tk),
x 00 c k=1 j=1

p q
a = 111'00 (An+AX .::. + L L zJ! vJo k 'tk),

Y c k=l j=l

A = (1-0" )!l21g •

(5.10)

(5.10) is an approximation in the senae that ve take along on.ly

p=(l-l+1) (M+-2) par!lmetera T
k

, so that X' and Y' are arbitraxy M-th

degree polynomials in x f'.nd Y, the coefficients of which are

(l.etermined from condition (5.9).

In order to determine the Tk from the condition I = minimal, ve
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seek the stationary value of I with respect to the 'k by iteration.

We are not certain that the stationary value we find in actually the

absolute minimum or even a relative minimum. In practice, however,

we determined I after each iteration step and we found in

practically all cases that at the stationary value, I was indeed the

smallest as compared with the series of values of I obtained during

the iteration. In the cases where this was not so, the solution was

grossly at fault. So there is a strong presumption to believe that

we indeed find a minimum.

At the stationary value,

~ = _a_ ff Will dxdy = ff W a(w) dxdy = O.
h k dTk E E dTk

This is a difficult equation, as a consequence, principally, of the

complicated dependence of (w ,w ) on Tko We find the solution byx y
NEWTON's method: we start with an arbitrary ,~, and proceed by

iteration, as follows:

(,~) = arbitrary;

t:~ ), =,n+llT ff Wt~~), =,n dxdy +
kkk k E kkk

p a2 w
+ II W L ( ) _ n _ n~, dxdy = 0,

E i=1 aLkaLi 'k-'k"t-'t i

k = 1,2,3, ••• , p = (M+1)(M+2);

(5.12a)

(5.12b)

,n~1='~+~'k; if max I~'kl<o max"n~11 then solution is found;}
k k (5.12c)

0: a small positive number which can be chosen arbitrarily.

The equations of (5.12b) are p linear equations in the p unknowns

~'i •

The integrals are evaluated numerically, by replacing them by un­

weighted sums over a fairly large number of points. This was done

for two reasons. The most important reason is that the integrals

have no physical meaning, so that we are not interested in their

precise value. In fact, one could directly have used finite sums

instead of integrals in the original equations. Secondly, the

runction T, containing as it does the discontinuous functions w and
x
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w • is a function with locally large gradients. This does not render
y

it very suitable for numerical integration methods involving higher

order differences.

7he process (5.12) of successive approximations converges fairly

rapidly: it depends on the behaviour of the resulting function WTS.

t · 0and to SODe extent also on the s art~ng value 'k' vlhen in the calcul-

ation of several cases we work ~n a chainlike fashion. by sloWly in­

creasing the creepage and the spin. and using the previous result as

a starting value, the number of iterations for 0=0.001 (see 5.12c)

is about 5. sometimes increasing to 7 or [3 when the adhesion area ~s

large. or dropping down to 3 when the adhesion area is sDall. The

nunber of iterations increases slowly with the degree H of the

polynomials X' and Y'. In the calculation perforI:led on a series of

33 different values of creepage and spin, we needed an average of

3.9 iterations per case for 11=2 (12 ,'s), 4.4 iterations per case

for 11=3 (20 ,'s), and 4.7 iterations per case for J.f=4 (30 "s). The

number 0 of (5.12c) was taken equal to 0.001.

In the contact area we took 80 points to approximate the

integral when M=2 or M=3, and about 100 points when M=4. The calcul­

ations proved to be exceedingly lengthy. On the fast Telefunken TR4

computer of Delft Technological University, each iteration step

(5.12b), which consists of the evaluation of the coefficients of the

linear equations and their subsequent solution, took the following

amount of machine time:

M=2. 12 equations. 80 points in the contact area "'1s,ec.}
£.1=3, 20 equations. 80 points in the contact area ••• 35 sec. (5.13)

M=4. 30 equations, 100 points in the contact area ... 87 sec.

l.fost of the time was used in setting up the equations. These long

calculating times are due to the complicated character of

a2(TS)/a'ka't (see sec. 5.23). and to the fact that these calcul­

ations have to be performed for every point, that is, they must be

repeated about a hundred times for each iteration step.

In the calculation outlined above, the ineqUality I(X' ,Y') I.::
is ignored. After the 'k have been determined, we inspect the

solution to see whether l(x',Y')I~ 1 in each point (x,y) of the
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contact area. The output of the computer programme has been especially

designed to facilita~e this verification, see sec. 5.24. We found

that generally I(Xl, y' ) I> 1 at some points. In jUdging this

aberration, we distinguish three cases, viz. T<S, T>S, and (x,y)

near the edge of the contact area.

In the case T<S, the reduced tangential tractions (X', Y') are

closer to the Coulomb value than the slip is to zero. That means that

the solution at a point where T<S approximates slip area conditions,

in which I(XI ,Y') I should be equal to unity. That means that the

traction I (X' , Y' ) 1 we actually find should be regarded as a more or

less succes:fuJ. approximation of unity. The situation 1 (X' ,Y') I> 1,

T<S indeed occurred very frequently in our numerical work, but for

the reason just mentioned should not be used to throw doubt on the

validity of the solution.

Points with l(x',Y') I> 1, T>S do throw doubt on the validity of

the solution. A point of this type we call an aberration of the

solution. Aberrations also occurred in our numerical work, but much

less frequently, and mostly concentrated in a small portion of the

contact area. Solutions with aberrations occur mostly at values of

the spin close to the peaks of fig. 23, sec. 5.33. The argument of

the case T<S does not apply, since the solution at a point with T>S

approximates adhesion area conditions, where I(x' ,Y') 1should be

smaller than unity. One might be tempted to think that where

I(X' ,Y') I passes the value 1, a slip area with small T should be

found. This is, however, not always the case, since a small value of

T implies not only that I(X' ,Y' ) I~ 1, but also that the angle between

slip and traction must be small. Mostly this angle is not small in

an aberration.

As to the case that (x,y) is near the edge of the contact area

while !(X',y l
) I> 1, we observe that for reasons discussed in sec.

5.13, we used the weight function

As a conseq,uence, little weight is attached during the minimalisation

process to the behaviour of the solution near the edge of the contact

area where W
1

is small, and hence in judging the solution in the
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light of the requirement that I(X' ,Y') I~ 1, little importance

should be attached to the behaviqur near the edge.

5.13. The choice of the weight function.

The weight function of (5.14) was chosen, because then WT is

proportional to the square of the absolute value of the difference

between the actual tractions (X, y) and the COULOMB traction

].IZ (wx ' wy)' with the proportionality constant jJ2f OO2G2 • As a

consequence, ].Il+f
OO

'+G2y2(W
1
TS) is the square of the rate of work per

unit ~ea done by the difference of the actual tractions (X,Y) and

the COULOMB traction jJZ (w ,w ) on the slip Y(s ,s ), if the latterx y x y
were in the same direction as the traction difference

(X-].IZW , Y-].IZW ).x y
We also tried W=l, and compared the total force obtained with

W=W 1 with the total force obtained with W=l for the degree 14 of the

traction polynomials (X',Y') equal to 2 (12 ,IS), to 3 (20 ,IS), and

to 4 (30 ,'s). We did not use higher degrees 14, because of the large

amount of machine time, see (5.13). We calculated the force f =F /].Ili
Y Y

for a circular contact area, POISSON's ratio a=0.28, and for pure

lateral creepage (u =4>=0, u ~O), and also for pure spin (u =u =0,x y x y
#0). The results of the comparison are given in Tables 4 and 5. In

readiDg the tables it should be remembered that the maximum value of

Table 4. A comparison of f y with W=1 and with W=W l , for 14=4.

lJx=4>=O lJ -lJ =0
X Y

l·m Mean Max Mean

Ify ,W=l - f y ,\-1=w1 1
0.016 0.009 0.046 0.016

Table 5. A comparison of f
y

with W=l, W=W
l

, with the conjectured

value of fy •

\.l =4>=0 u -u =0x x y

W Max Mean W Max Mean

1
1 f +If -f 1 1 0.022 0.009 1 0.044 0.023
2 y W=1 M=4 2 Y vl=W 14=4 y M=3" '1' , W

l 0.033 0.011 W1 0.029 0.018
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f is 1.
y

We see from Table 4 that there is a distinct difference

between f W-W and f W-l for M=4. This indicates that we should
y, - 1 y, -

have used a higher value of 101 in our calculation. The large amount

of machine time precluded that, however.

In table 5 we assume that (~f W=1 M=4+~f W""W M=4) is the
y, ,- y. - l' -

correct value of f with which we want to compare the performance of
y

polynanials with degree 1-1=3. We see from Table 5 that the polynomials

with M=3 give passable results. The weightfunction W=1 performed

better than W=W 1 in the case of pure lateral creepage, and W=W1

performed better than W=1 in the case of pure spin. In view of the

fact that the largest errors occur in the case of pure spin. and in

view of the amount of machine time available, we decided to adopt

M=3, W=Wl' in all our further calculations.

5.14. Final remarks on the method.

It should be observed that the formulation of the boundary

value problem as a minimalization problem is by no means unique. In

fact, one could also minimize the integral. ff W,yngndxdy• but we
E

preferred the integral (5.9). since the integrand is the square of a

rate of work per unit area. A possibility to be considered is m=n=~:

the integrand is then a rate of work per unit area. We tried it for a

single case in which tile integrand W1TS gave good results, but it

turned out that the iteration did not converge. We suspect that this

is because ITS has too large gradients near T-=O and 8=0 to be

workable.

A possibility 'Which has been investigated more fully is the

minimalization of

ff W2 T d.xdy + ff W3 8 dxdy = minimal,}
Eg ~

I(X' ,y' ) I.:: 1 in ~ •

This form has the drawback that the adhesion area and the slip area

explicitly enter into the minimalization problem. It has the

advantage that for fixed E and E. , for fixed w and w and if W
2g n x y
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and W
3

are functions of (x,y) only, it is a least squares problem,

since S and T are then quadratic in 'k' So it has a single stationary

value which is actually the absolute minimum. A situation which

approaches fixed (w ,w ) is that of pure creepage with vanishingx y
POIsson's ratio o. The variation of Eg and ~ in all cases turns out

to be simple: if at a certain point of the boundary W2T>W
3
S, then Eh

should be increased, if W2T<W
3
S, Eg should be increased. In the final

solution W2T=W
3
S on the boundary. So, assuming that the solution

continuously changes with the creepage, we see that in the case of

pure creepage with 0=0 we find the best solution in the sense of

least squares, and assuming that this feature of (5.15) does not

change when 0#0 and ~#O, we see t~at there is a strong presumption,

that we will find the solution from tne stationary value of (5.15).
Now, by a special choice of v/

2
and W

3
we can obtain (5.9) back.

One must then take W2=VlS, and W
3

=WT. Note tnat now W2 and Vl
3

depend

also on T and S, ,rhich is different from what we assumed before.

Seen in this light one can say that in (5.9) VTT serves as a weight

function on S in the adhesion area, so that the larger ~s the

difference of the approximation of the traction and the COULOMB

traction at a certain point, the more importance is attacp.ed to a

small value of S at that point, while in the slip area S serves as a

weight fUnction on VTT,so that the larger the slip at a certain point,

the more importance is attached to a small difference between the

approximation of the traction and the COULCMB traction at that

point.

It was found that the results of (5.12) compared better with the

experiment than those of (5.15). In view of the fact that by making

(5. 15) stationary one probabl;)r finds the absolute minimum, we

conclude that the process (5.12) of making (5.9) stationary probably

leads to the absolute minimum of (5.9).
Let us finally return for a moment to the fact that we have

used the tractions of ch. 3, which are so that they vanish at the

edge of the contact area. One might argue that this choice ~s not a

necessary one, and that one could use any set of tractions which form

a complete set of fW1ctions. So one could also use the tractions of

ch. 2, which are infinite at the edge of the contact area. In that
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case the displacement diffex ences can be chosen arbitrarily t for

instance

U ::: -vxx + ~XYt V ::: -vyx - ~~x2.

We see that u and v are second degree polynomials t and hence the

corresponding traction in the contact area has the form

,
X ::: G{ , .. (x/a) 2_ (y/b) 2r 2 (dOO+d'Ox+dO,y+d20x2+d"xy+d02y2) ,,
Y ~ G{'-(x/a)2_(y/b)2}-~ (eOO+e,Ox+e01y+e20x2+e"xy+e02y2).

Moreover t we see from (4. 15c) that the relative slip (s , s )::: (0 to)
X y

throughout the contact area t so that the integral I of (5.9) actually

vanishes. However, I(Xt y) I»\lZ near the edge t frOlll which it appears

that we must reject th~s solution. So we see that the inequality

!(XtY) 1~\lZ is indeed essentlal for the solution of the problemt and

we see that we cannot use the tractions of ch. 2 in a calculation In

which the inequality is verified afterwards. Instead, we use the

tractions of ch. 3. which, as we recall, have the form

+' q
(X,y) '" G{I_(x/a)2_(y/b)2.} 2 L (d te )xPy •

pq pq

These tractions already reflect something of the inequality

I (X,y) 1~\lZ, namelYt thQY behave correctly at the edge of the contact

area, and the inequality reduces to

I('i' P q 'i' P q) I 3\l1'l
l. d x Y , l. e x y ~ 2 bG'pq pq na

This relationship is much easier to satisfy that the inequality

10: d xPy\ L e xPyq) I < 23\.l~ {1_(x/a)2~(y/b)2j
pq pq - nalJiJ

which obtains in the case that we use the tractions of ch. 2. Indeed,

the tractlons of ch. 3 lead to an acceptable approximative solution

in a great many cases, while, as we saw, the tractions of ch. 2 do

not.

2''?' The computer programme.

In the subsections of the present section, we discuss several

features of the ALGOL-GO computer programme which was written to

perform the iteration described by (5.12). The input is described in
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5.21, in order to give sane impression of the degree of generality

of the programme. The possibility to use several forms of the

integrand is described in 5.22, the optimalization of the programme

is discussed in 5.23, and in 5.24 the output is described with the

aid of an example (fig. 12).

5.21. The input.

To be specified at input are:

a) The degree M of the traction polynomials.

b) The ratio of the axes alb of the contact ellipse;

c) POISSON's ratio a.
d) The points for the calculation of the integral;

e) The number 0 of (5.12c).

f) The maximum number of iterations;

g), Creepage and spin;

h) If necessary, the starting values T~;

i) Several features of the output.

a) The importance of the generality of M hardly needs adstruction.

Owing to the large amount of machine time involved, (see (5.13»,

only small values of M (say, up to 6) are of interest. So the

load-displacement equations can be kept in core storage. which loS

important with a view to calculating speed.

a,b,c) The most difficult to adapt to the demand of variable M. alb,

and cr was the construction of the load-displacement equations.

They are constructed by the machine in such a way that use is 'made

of the fact that they faU apart into four independent systems of

equations. This was done to avoid the occurrence of unnecessary

zeros in the equations. The load-displacement equa.tions are

computed only once for a whole series of calculations. After they

have been computed, the lengthy procedure needed for their

calculation is placed on tape and the memory space occupied by it

is again free for use.

d) The points needed for the calculation of the integral are taken so

that they form a rectang~ar network. the meshlength of which in

the x and y directions can be specified separately.
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e) Ordinarily, we took 0=0.001. It should be noted that max IAt
k
I in

k

(5.12c) is an approximation of the error present in t~. Since in

(5.12b) terms of order AtkAt t are neglected, the t~+1 which we

obtain at the end of the iteration contains errors of order

{
~ IAtk 1}2
--.,-,.- , that is, of order 02 = 10-6•
max Itkl

k

f) Ordinarily, we set the maximum number of iterations eQ.ual to 12.

If after these 12 iterations the inequality (5.12c) is not

satisfied, the machine concludes that the calculation diverges,

and proceeds to another case.

g) Creepage and spin are put in in terms of the significant data of

the following triple loop:

for X:= X step AX 'Wltil X doo --- e-

for a:= a step Aa until a do
o ---e-

for t:= 1 step 1 until t e ~

begin ~:= u [tJ cos a; 1):= u [tJ sin a;

perform the calculation;

end---'
Here, u [1: teJ is an~ the dimension t e elements of which

are given in the input. a is the angle between the vector (~,n)

and the x-axis; it is given in degrees.

h) The progr~e works in a chainlike fashion, taking the resulting
ot

k
as the starting value t

k
for the next case. In the first case

o . " ..to be treated, t
k

1S set equal to zero, 'Wlless 1t 1S spec1f1ed

otherwise. The presence of a set of starting values {t~} in the

input is indicated by a control word in the input.

i) The features of the output Which are under control of the input

are discussed in sec. 5.24.

5.22. The form of the integrand.

It was the object during the writing of the programme to put as
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few restrictions on the form of the integrand of I as was possible

in view of the fact that hardly any loss of machine time may be

suffered. So we chose as a generaJ. form of the integrand the

function f(x,y,a,b,T,S). f is calculated by a procedure which gives

the values of

• f· , •• .. ..
f, f , f , f f

differentiation with respect to S, ) (5.17)

differentiation with respect to T,

which are all that is needed from f in the course of the calculation,

as we will see in sec. 5.23. Another function f can easily be tried

by a modification of the body of the f-procedure alone. In order to

facili tate this, the f-procedure is kept separate from the rest of

the programme. Hore specifically, it is a I?retranslated procedure in

the Delft TR4.

Up to now, i"e have extensively tried f=TS and f=\v 1TS. We also

tried f=~. It should be not~d in this ~onnection that the form

(5.15) is not caught in this way: a separate programme was written

for it, which actually preceeded the present programme in time.

5.23. Optimalisation of the programme.

Hith a view to the formidable amount of machine time, the pro­

gramme had to be optimalized as much as possl.ble. ConseCluently, the

first demand is that the load-displacement eCluatl.OnS, which are

constantly referred to in the course of the calculatl.on, should be

irmnediately available at all times. Hence they were placed in core

storage. The procedure which computes them is used only once for a

whole series of cases, so it was placed on magnetic tape in order to

save space.

Since every point of the network covering the contact area

gives its contribution to every one of the (M+1)2(M+2)2 coefficients

of the linear equations (5.12b), the generation of these eCluations

takes up most of the machine time. Consequently, these eCluations are

placed in core storage, and special case is taken to perform the

calculation as efficiently as possible. This optimalisation took the
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form of reducing the number of operations in the innermost loop of

the programme as much as possible. We will give here the analysis

involved.

He introduce the following notations:

,k: differentiation with respect to Tk ;
* differentiation with respect to T;

differentiation with respect to S.
)

Hence, by (5.10),

(5.18)

Wx = p/lS, wy = Q/IS, P,k =

q,

L ZJ~ vJ'k' X'.k
j=1

Also. we set

q,

I z~ U'k'
j=1 J J

u = X'-w , y = Y'-w 9 T""U2+y2. (5.20)x y

We differentiate f(x.y.a,b,T.S) with respect to Tk • That gives

f,k = IT.k + f'S ,k (5.21)

We differentiate (5.21) with respect to T t •

* •
f k~ = f T k~ + f S kJ/, + }, , .

** •• • (5,22)
+ f T kT J/, + fO' (T kS ~ + T J/,S k)+f S kS n

, , '" 11" "AJ

We observe that in f k and f kJ/, occur only the quantities (5.17)
• •

which are produced by the f-procedure.

In order to be able to evaluate (5.21) and (5.22). we must have

the derivatives T.k • S,k' T,kJ/,' S.k~:

S = 2PP,k +,k

S U 2P kP J/,, "
the latter. since accordi~g to

TR,' Also,

2QQ k' }

+2; k Q ~., ,

(5. 19) P k and Q k are independent of. ,
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T k 200 k + 2VV k ', , ,
U = X' - (P/IS) = X' + __,__ (PQQ _Q2P _)=

,k ,k . ,k ,k sIS ,k ,k

= X'k + 1r.:;- (w w Q IF _W2p k) ,, rS X y ,. y ,

V = Y' _ (Q/IS) = y' + --'- (PQP _p21;) )=
,Ic ,k ,k ,k sIS ,k -,k

= Y'k + 1r-; (W w P k-w2Q k)',- rS X y, X,

We differentiate T k with respect to "C i. 'fiat gives after some,
calculation, if we recall that X"ki=Ykt=O:

T k.t = 2U kU 1 + 2V kV 1 + 2UU k n + 2VV kn ,, " " ,.... , ....

U k n = -s' P n [3w w2 p. k+ (w -3w w2) Q k]+, .... ,.... X y, y y X ,

+..lQ [(W-3ww2)P +(W-3ww2)Q ];
S • i Y Y x ,k x x Y ,k

V k n = -s' P n [(w -3w w2) P k+ (w -3w w2) Q k]+, .... ,.... y y x, x x y ,

+ -S1 Q n [(w -3w w2)p k+3w w2 Q kJ., .... x xy, yx,

We introduce (5.23), (5.24), and (5.25)

a bilinear foro in (X'k' Y'k' P k' Q k), , , ,
write it in matrix form, as follows:

into (5.22). Clearly, f k1 is

and (X'i' Y'i' P l' Q iJ. We, , , ,

r k1 = (X'1 Y' i P i Q i) A'1 A'2 A'3 A,4 X' (5.26.a)
, "" ,k

~, ~2 A
23

A
24 Y',k

~, ~2 ~3 ~4 P k,
A4 , ~2 ~3 A44 Q,k

with

q q

A..=A ..• X'R.=xi , Y'i=YR.' P 1= Lz! u j i' Q = L z! V j i ' (5.26b)
J.J J J. , , , j=' J ,i j=' J

and

A'1 = 2r"' + 4r"''u2 , A'2 = 4r"'"uv,

A = - ~ :f'" w2 + 4r""up - 4r"'"'Uw (Uw -Vw ) lIS,
13 IS y y y x

A,4 = 2
1M

f'w W + 4r"·uQ + 4r"'''Uw (Uw -Vw )/18,
rS x y x y x

A = 2r"' + 4r"'''v2
22 '
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ylk' P k' Q k;, , ,
the load-displacement

A
23

= ~ f·WXWy + 4f-'PV - 4f··Vwy (Uw
y
-vwJ lIS,

A
24

= - 2r.; f·w2 + 4f-'VQ + 4f··Vw (Uw -Vw ) lIS,
yS x x y x

A- =,g, f·{w2+3Uw W2+V(W -3w W2 )} + 2f'+
--:53 S Y x Y x x y

+::.S f"'w2 (UW -Vw F-3f*'W W (Uw -Vw )+4f"p2 ,
Y Y x xy Y x

A34 = -S2 l'{-w W +U(w -3w w2 )+V(w -3w w2 )} +
xy Y yx x xy4.. r -- \ ~ 4"" 2 2" ' ••

- -S f W W lUw -VW JL.+ f lW -w J lUw -Vw J+4f 'PQ
xy Y X X Y Y X '

A
44

= -S2 f·{w2 +3VW W2 +U(W -3w W2 )} + 2f' +
X yx y yx

+ -S4 f_lllW2 (Uw -VW F+8f-'w W (UW -VW )+4f"Q2,
X Y X xy Y X

It should be noted that all three factors of (5,26a) are position

dependent. It should also be observed that if f=W 1TS or f=TS, only

A
21

=A
12

vanishes identically, So, very little is gained by writing

a special programme dealing with these cases only, The greater

generality of f in the present programme is thus obtained at hardly

any cost,

A programme which computes the coefficients If k~= If ~k of the, ,
equations (5,12b) in a way which is based on the form (5,26a) of

f.k~' is easily given, Its innermost loop might look as follows:.
Generate the 4 arrays XI k',
comment here and only here

equations are used;

Generate the A .. ;
lJ

comment no array to save time;

p:= (M+1)(M+2);

for k: = 1 step 1 until p do

begin C1:= A11 X:k + A12Y:k + A13P,k + A14Q,k;

C2 := ••• ; c3 := •.. ; c4:= ••• ,

comment the C
i

form no~ to save time;

for ~; = k step 1 until p do

Jf,k~:= Jf,k~ + C1X:~ + C2X:~ + C3P,~ + C4Q,~;

By making use of the fact that half of the numbers XI and yl
,~ ,~
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vanish, (see (5.26b) and (5.')), more calculation time can be saved.

We avoid the use of subscripted variables as much as possible, since

the c!:lJ.l of a subscripted variable takes more time than the call of

an ordinary variable.

5.24. The output.

In the course of time, the output 1lll.derwent a number of changes.

We will discuss here only the final version, which was introduced

when 75% of the calculations described in sec. 5.33 were finished. A

page of this output is reproduced in fig. 12. We will discuss this

figure in some detail, in order to give an impression of the

verification of the ine~uality in (5.9).

The format of the numbers in fig. '2 has three forms:

±'XXX10±XX:

±xxx·xx

±XXX

a floating number with exponent

a fixed point number

an integer

at the right (fl)~}
(fi) ~ (5.28)

(in) •

It should be remembered that throughout the programme the maj or

semi-axis t is 1lll.it of length.

SPIN, MICROS LIP , HOEK: a1(fi) a
2
(fi) a

3
(fi)

with a,=X, a2=v, a
3
=a, see (5.1(;) •

Specification of creepage and spin.

contact area.

We can see from the series of lines TOEG GEV etc. how fast the

iteration process converges. It shoQLd be noted that a
2

gives

an approximation of the error in the previous iteration. In

combination with the fast convergence when a
2

gets small (here even

faster than ~uadratic, when a
2

« 1) this justifies us to give 0 the
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1
1
1

o
1
II
8
1

o -.1238652089B8••
1 •• 12223482636'••
1 -.325667730905._

o •• 107945629148._
1 -.7955682784B9.­
o •• 20 4 563654268.­
1 •• 803580199801••
1 -.622240009372.-

3.1010 - 27.8
2.7144 • 22.1
2.3210 • 16.3
1.9564 - 10.4
1.6366· 4.9
1.3593 - 8.2
1.1084 3.1
0.8581 5.3

1.3848 - 79.9
0.6557 - 73.1
0.1974 • 61.8
0.049fl 97.9
0.;,305 128.7
0.1321 153.9
0.1201 186.1
0.1054 169.:,

o -.412520882910••
o •• 363984163655.-
o -.106033563398••

o .,891314056189 ••
1 -.316159336350 ••
1 +.460620005888._
1 -,129517249693••
o .119064418005.-

0.4894 - 27.3
0.7134 - 21.6
!I.8306 • 16.3
0.8715 - 10.9
0.8551 - 5.6
!I.7940 - 0.2
0.6884 4.6
0.5051 8.4

0.4555 - 77.9
0.4241 • 66.3
0.3018 - 47,8
0.1996 - 14.2
0.1753 28.9
0.1798 56.6
0.1463 71,1
0.0651 78.5

I.
2
j!

2

o
o
a

-1
1
1
1
o
o
o

0.9599
1.0088
1.0224
1.0131
0.9940
0.9773
0.9735
0.9907'

0.8U2
0.5998
0.3714
0,2321
0.20U
0.2213
0.2069
0.1276

1.280'

o
-1
-1
-1
-1

1
1
1
1
o

2

o
-1
-1
-1
-1

1
1
1
1
o

5

o -.713134273210••
o -.764905620933••
o -.376036296511 ••

-1
-1
-1
-1
-1
-1

1
1
1
1

o •• 970207865077._
1 ·.35412772 02.­
1 •• 186643 96240.­
o •• 3072405363 9 _
1 - 110478684091.-

2 -0.3500
3 -0.2500
2 -0.1500
3 -0.6500
3 0.0500
3 0.1560
3 0.2560
3 0.3500

2 -0.3500
1 -0.2500
1 -0.1500
2 -0.0500
1 0.0500
1 0.1500
2 0.2500
2 0.3500

1

-1
-1
-1
-1
-1
-1

1
1
1

-1

-1
-1
-1
-1
-1
-1

1
1
1

-1

GEHAFWI·.124967846745.­
GEHAFWI. 655982139915.­
GEHAFWI·.636476356704.­
GEHAFWI-.636289979821.-

-1
-1
-1
-1
-1
-1
-1

1
-1
-1

1 -.920601446923.-
o •• 156971890339••
o -.621773461409.­
1 -.203120076839.­
1 ·.587589341798 ••

o -.598682684580.-
o •• 339905894663••
1 •• 591234429808••
o

1 •• 415362375452.­
1 •• 557887658033.­
1 •• 178107908342.­
1 •• 737016727598.­
1 -.341735844771.­
1 •• 627739966291.­
1 •• 848890038696.­
o •. 563404169512.-

1 •• 622085910368.­
o •• 362351549890.­
1 ·.107308486478.­
2 .,218011670564.­
1 •• 140021192089.­
1 ·.127259204268.­
1 •• 849348037218.­
1 •• 295024579860.-

6
o
o

-1
-1
-1
-1
o
o
o

0.3431

2 •• 961605165187.+
3 -.736778676230••
3 •• 538701820158 ••
3 •• 382747524121••
3 •• 267835781/29.­
3 -.184769929270.+
2 ·.122851534~59 ••
2 •• 736310221307••

o -.131612477230••
1 •• 381801540~34••
1 •• 806106721J42••
1 -.1117A6684778 ••
o -.213857179240••

o -.349367884271 ••
1 -.166438669774••
o -.166314884292••
o -.432568316460••

1 ·.191754441562••
o -.4299~6199773 ••
o -.389698802534.­
1 -.239830621106.­
1 ·.170290990747.­
1 ·.174456342756.­
1 ·.144254949480.­
1 •• 111194503863.-

SPIN,~ICROSLIP.HOEK: 2.0000 1.7000 - 30.00
UPSX,VPSY.PHI 0.9077 - 0.5241 1.1439
TOEG GEV •• 310202512545.- 2 +.825463503290.. 0
TOEG GEV·.325191548046.- 2 •• 196467231468.. 0
TOEG GEv·.325668086279.- 2 +.243485161715.- 1
TOEG GEV •• 325667730896.- 2 •• 223328902102.- 3
COI'lVER
FX FY MZ: 0.6249 -0.1226
TAU
•• ~08;186119491••
·.196130755753••
•• 281355484607••
·.153874845084••
UVX
+.408~29460241 ••
·.102304109803 ••
- .117 ~20801720.-
-.270~34609240.·

-.162104008915.-
AFWIJKl~GEN:

T,S,V,X.F.S,HOEK'+.996538670152.-
G,H.A.OPP: 1 1 1 22
CONTAChLAK,
- 4
- 3
- 2
- 1

o H
1 H H H
2 H H H H H H
3 H H H H H H
4 H H H H H
5 A

T,S~I~T,x,~,rW'ANF,WS,ARS:

YI-0.5000
+ .16b1J3321545.­
+.151439686305.­
•• 500945898238.­
•• 260;115543676.­
·.172421023307.­
•• 514759714861.­
·.138197710111.­
·.294273050531.­
YI 0.5000
•• 124776151060.­
·.168!>48618210••
•• 417;116103353••
•• 122841013490.­
•• 111114408529••
·.110524486022.+
·.117'l56519309 ••
·.102047302975 ••

Q
II
o
I\)
(Xl
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II
o
V1

\0



modest value of 0.001. It should also be noted that a
3

gives the

al n n+1. . t
mean v ue of f for 'k = 'k rat):ler than 'k ,wh~ch ~s he one

generated by the iteration. lihen the last value of a
3

is smaller

than all the previous ones, we conjecture that the stationary value

is a minimum. It is seen that in the present case this condition is

satisfied.

CONVER

After the machine concludes that the iteration is finished according

to the criterium (5.12c), the word "conver" is printed. If the

iteration is not finished after the numb~r of iterations specified at

input, t.he word "cycle" is printed and a new case is taken up.

FX FY HZ: a
1
(fi) a

2
(fi) a

3
(fi)

with a 1=f =F /~N, a2=f =F /~N, a
3

=m =M /~Nc.x x Y Y z z
The total force and the torsional couple exerted on the lower body by

the upper body.

TAU

(a number of lines of floating numbers)

t · ak"' . 1-1 1'01 (The 'k of the solu ~on. T lng the lnner product w~th ~ and Yk see

(5.1)) gives the traction polynomials X'=X/~Z, and Y'=Y/~Z

respectively. It should be recalled in computing X' and Y' that the

major semi-axis of the ellipse is the unit of length.

UVX

(a number of lines of floating numbers)

The slip polynomials. Taking the inner product with 2xM~1 and 2yM~1

(see (5.1)) gives P and Q. The contributions of the creepage and the

spin, whi ch are first degree polynomials, are accounted for in UVX.

AFWIJKINGEN:

T,S,Y,X,F,S,HOEK: a1(fl)a2(fl)a3(in)a4(in)a5(fi)a6(fi)~(fi)

with a 1=T, a
2

=S, (a4,a
3

) = coordinates in the network of the point

under consideration, a
5
=/X'Z+y,z, a6= 1:3, ~= angle between traction

and slip in degrees.

This is a list of all the aberrations, i.e. the points of the network

with T>S, !(X',Y')!>1, that is, the points in which the ineq,uality of

(5.9) is not satisfied in the critical case that T>S. In the present
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case. we have that the aberration occurs at the edge of the contact

area, while T is only a little larger than S. So the solution is

acceptable.

G.H.A,OPP: a 1(in) a2(in) a
3

(in) a4(in)

wi th a
1
=number of separate areas of slip; a

2
=number of separate areas

of adhesion; a3=number of aberrations; a4=number of points in ~.

~his line gives some statistics regarding the solution. It should be

observed that the solution itself does not specif'y the division of

the contact area in areas of slip and locked areas. One can onl~r say

that a point with T«S belongs to the area of slip. while a point

with T»S belongs to the area of adhesion. Quite arbitrarily. we set

the boundary between an area of slip and an area of adhesion at the

line T=S. It will be seen later on that in the case represented by

fig. 12 the region where T~S is narrow. so that there is in fact a

sharp distribution between the locked region ~ and the slip region

E •g
CONTACTVLAK:

-4
etc.

o 0 0 -1 -1 -1 -1 0 0 0

etc.

This is a crude picture of the division of the contact area in areas

of slip and adhesion. The numbers at the right were only used to

generate the picture on the left, and to compute the statistics of

G,H. etc. In the picture on the left, the coluDm of integers

indicates the line number (y-coordinate). A point indicates that the

point belongs to the area of slip. an H indicates that it belongs to

the locked area, and an A indicates an aberration. Complete data

regarding the solution at an aberration are found ~n the A..H'WIJKINGEN

list. It is seen from the picture in fig. 12 that we took a

rectangular me"sh of points which has at most 10 points in the x­

direction and 10 points in the y-direction giving a total of 80

points in the contact area.

T.S.INT,X,F.FW.ANF.WS,ARS:

Y: a (fi)
a

a 1(fl) a2 (fl) a
3

(fl) a4(fi) a
5
(fi) a6(fi) a,(fi) as(fi) a

9
(fi)

etc.
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with ao = y-coordinate of the points listed below; a1=T, a2=S, a
3
=f,

13.4 x-coordinate of the point, a
5

= /x'z+y.z, 13.6 = IX2+y2/~fOoG,

13.
7

angle between traction and x-axis in degrees, 13.8 = IS,
a
9

= angle between slip and x-axis in degrees. The angles 13.
7

and

° °~ are between 0 and 90 , when X'>O, Y'>O; S >0, S >0.
';! x Y

This is a ~pecification of the solution at the point (13.4'13.
0
), where

it should be recalled that the major sero-axis is unit of length. The

values of (a4,ao) are specified in the input. From this list we can

judge the 'luality of the solution. In the case represented by fig. 12

one can see from the T and S of the points (-0.35, 0.5),

(-0.25, 0.5), and (-0.15, 0.5) that the distinction between locked

area and slip area is sharply defined. It is also seen that the

solution at y = -0.5 is of good 'luality. The angle between slip and

traction is satisfactorily small (up to 3°), and the traction is

'luite close to the COULOMB value (error up to 4%). The values of f

are all below average, see GEMAFW. The values of f at y = + 0.5 are

above average, and it is seen that the 'luality of the solution is

much worse than at y = - 0.5. It is worst at the separatrix T = S.

5.3. Numerical results.

The present section is divided into three parts. In 5.31, we

calculate several cases with the object of comparing them with the

experiments of JOHNSON [1 ,3J, and of HAINES and OLLERTON [1J. In 5.31

we treat only cases with circular contact area, since most of the

experimental evidence is so confined.

In 5.32, we try to give a 'lualitative survey of the behaviour

of the surface stresses occurring under conditions of rolling with

creepage and spin.

Finally, we direct our attention in 5.33 to the total force

exerted by the upper body on the lower body.

5.31. Comparison with the experiment.

We calculated the cases of pure creepage in the x and y

directions respectively, of pure spin and of combined lateral

creepage and spin all for a circular contact area, with the object

of comparing them with the experiments. The results are shown in
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figs. 13 to 17.

In fig. 13 s the dimensionless forces f = F I~N and f = F I~N
x x Y y

are plotted against the creepage parameters ~ = u p/~c. and
x

n = u p/~c. respectively. Also plotted in fig. 13 are JOHNSON's
y

experimental values taken from [1]. As the theoretical curves for

the degrees M=2,3.4 nearly coincide, we show only one viz. M=2 for

the ~-f diagram, and M=4 for the n-f diagram. The weight function
x y

W=1. The agreement is quite satisfactory.

1.2r-----r----,----.--------,------,

2.0o

0., I----¥=----+-----+---~I_--____i

u.----,..------r----.....,-----r-------,
• dry
o lubricated

1.0

Fig. 13. The total force due to longitudinal and

lateral creepage. a/b=1, 0=0.28. X=O.
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In fig. 14, f is plotted as a function of the spin parameter
y

X=lj>p/).I, for zero creevage. The weight function W=W 1• Curves for

M=2,3,4 are shown; where not drawn, the curve for M=2 follows the

curve for 1>1=3. Also given are experimental results taken from K. L.

JOHNSON [3, fig. 8J. The coefficient of friction was not known; it

was adjusted to fit the curve M=4 bp.st ().I=0.094). It is seen that

the curve of M=3 lies markedly hi~1er in the region x=0.7 to X=2.

In this region, a change in the coefficient of friction has little

effect upon the fit of theory and exreriment. The curve of J~=4 in

that region lies somewhat lower than the curve of M=3. but still

above the experimental values.

0.7,----------r----,--------r-----,----,--------,

• x

Fig. 14. The total force due to pure spin for various

degrees Ii in comparison with experiments by

JOHNSON. a/b=1, a=0.28, ).1=0.094 (estimated).
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-0.7-0.6-0.5-0.4-0.3-n2-0.1o

0.41----+----+--\-1---*--:'>...,.....-+------1----1----1

Of----<~__=_-+_--@~"""'="""-+__-~J.----+-----=~-___l

-0.4 '---__-'-__-L__-----l----"l~~..LU__-L_~IL.l _L...__---l

0.1

2.0 ..
o expl!riment (1.2.3)

1.6 • experimen t (4)

<:> experiment (5)

"II

I12

0.8

fy ..........---

Fig. 15. The total force due to combined lateral creepage

and spin in cOI:lparison with experiments by

JOHNson. a/be 1, cr=o. 28.

1: X=O; 2: X=-0.561; 3: X=-2.25; 4: x=-4.78; 5: X=-9.58.
1,2,3: ~=O.0845; 4,5: ~=o.1044.

In fig. 15, the results of the numerical theory are compared with

the experimental endence of JOHNSON [3J on combined lateral

creepage and spin, ~.e. vx=O, (Uy,¢)~(O,O). The numerical results

were obtained with the weight function W=W1 and the degree M=3. Here

also, the coefficient of friction lJ "as not known; however, the

di.fferences b9tween theory and experiment are rather insensitive to
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changes in ~ for the curves 1 and 2 of fig. 15 which represent small

values of the spin, so that they give a clear impression of the

deviation of theory and experiment for small spin. The curves 1,2,3

were measured with the same apparatus, so that it seemed natural to

suppose that the coefficient of frictibn was the same in all three

cases. It was adjusted so as to minimize the difference between

theory and experiment for the curve 3(~=O.085). As a consequence of

the way in which 11 was estimated, the correlation between experiment

and theory for curve 3 is not necessarily as good as the one shown

in fig. 15. JOHNSON performed the experiments for the curves 4 and 5

(large spin) by means of a different apparatus, so that it seems

justified in assuming for curves 4 and 5 a coefficient of friction

which differs from the one taken in curves 1,2,3. The 11 for 4 and 5

was chosen so as to minimize the differences between theory and

experiment in those curves (~=o.104). The differences appeared to be

very sensitive to changes in 11. Consequently the correlation between

experiment and theory is not necessarily as good for the curves 4 and

5 as the one shown In fig. 15.

The moment M agreed badly with the experiments. However, it wasz
pointed out by JOHNSON [3J that a moment due to elastic hysteresis is

present in the experiments, which is of the same, or even larger

order of magnitUde than the moment due to surface friction. So there

is little practical significance attached to the moment M as wez
calculate it, and consequently we omit it from our further

considerations.

In fig. 16, the results for pure longitudinal creepage,

calculated with W=W
1

and M=3, are compared with the photoelastic

work of HAINES and OLLERTON [1J. In the upper left part of fig. 16,

the circular contact area is divided into an area of adhesion and an

area of slip, the separatrix being assumed to be the line T=S. The

distinction between Eg and ~ is quite sharp. Also shown is the

separatrix according to HAINES and aLLERTON. It is seen that the

lines are quite close. Also shown in fig. ,6 is a comparison

between HAINES and OLLERTON , s surface stress and our results. The

agreement is best for y=O, and worst for y=o.80. The value of P (see

(5.18)) is shown for y=O. It is seen that it rises sharply in the slip
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+------H-----r--------t-x

y

x
0.75,--------f--------,

y,.O.B

-x

X
I

1.0,-----------j-------,
y=0.56

-x

x p

1.5,-----------+-------,
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Fig. 16. A comparison with the photoelastic

resuJ.ts of HAINES and OLLERTON.

a/b=1, 0=0.5, n=x=o, ~=0.90.

zone, and winds itself about zero in the adhesion zone.

In fig. 17, we show the division of the contact area in areas

of slip and adhesion according to the numerical theory, the strip

theory (KAIKER [2J), and the experimental evidence of JOHNSON [4],
which consists of a photograph of the track of a rubber ball rolling

over a sooted transparent plate (JOIlliSON [4], fig.8b). The value of

the spin parameter X=1.20, and POISSON's ratio 0=0.50 (for, taking
+ - -the rubber ball as the upper body, we have that G »G , 0 =0.50;

hence, according to (2.10). G=2G+. 0=0.50. K=O). The longitudinal

creepage u =0. so that F =0, and u is chosen so that F alsox x y y
vanishes: that is. we are in fig. 15 at the intersection of the line
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Fig. 17. The separatrix for combined lateral creepage and spin.

0=0.5. f =0. X=1.20. n= -0.57.y
1: strip theory. 2: numerical theory.

Broken line: a photograph by JOIDiSOn.

X=1.20 (not shown) with the n-axis. The theoretical separatrix is

the line T=S. the degree M=3. the weight function W=W1• It is seen

that JOHNSON's contour is asymmetric with respect to the x-axis.

while our contour is symmetric. as it should be with v =0. see
x

(4.26). This is attributed by JOHNSON to the fact that the soot is

swept into the adhesion area in the lower part of the figure. while

it is swept away from the adhesion area in the upper part.

5.32. Qualitative behaviour of the solution.

In the present section and its subsections, we will make some

observations on the qualitative behaviour of the solution in the

~ase of pure creepage (~=O, sec. 5.321). pure spin (v =v =0. sec.x y
5.322). and arbitrary creepage and spin (sec. 5.323).
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5.321. Pure creepage.

In the case of pure creepage, the area of adhesion borders on

the leading edge of the contact area, and it is, according to the

m.nnerical theory, approximately symmetric about the x-axis. In the

cases of purely longitudinal or purely lateral creepage, the form of

the area of adhesion is well predicted by the strip theory of I~

[2J, which is a generalization of the strip theory due to HAINES and

OLLERTON [-IJ. According to KAIKE:R [2J, the separatrix is found by

shifting the trailing edge of the contact area parallel to itself

along the x-axis, see fig. 18, where the case of a circular contact

-+ +-_-+- +-x

y

Fig. 18. Separatrix according to KALKER [2J for pure creepage.

area is shown. So, in the theory of KAIKER l?J, the area of adhesion

is symmetric about the x-axis when there is combined longitudinal and

lateral creepage, but no spin. When the total creepage increases, the

separatrix comes to lie further and further !'rom the trailing edge,

until there is no area of adhesion left and gross sliding commences.

Adhesion areas of this type have been observed by HAINES-OLLERTON [1J

for pure longitudinal creepage, and by HAINES [2J for pure la.teral

creepage.

The behaviour of the absolute value of the traction can be seen

!'rom fig. 16. Going in the rolling direction along a line parallel to



the x-axis, the tangential traction first increases according to

l(x,Y) I=~z in the slip area, then falls below ~z near the separatrix,

and stays below ~z in the locked area. According to the strip theory

of RAINES and OLLTI:RTON [1J and of KALKER [2], the curve representing

the traction would have a vertical tEk1'gent at the separatrj.x.

The traction vectors are in general not parallel to each other.

In the case of pure longitudinal creepage, the traction direction

behaves qualitatively as sketched in fig. 19a.. The division of the

contact area in areas of adhesion and slip is not shown, our

considerations are valid both for the area of slip and for the area

of adhesion. y is the angle between the traction and the x-axis. It

is seen that the angle y ~anishes on the x-axis, si~ce the traction

is mirror-symmetric about the x-axis, see (4.27). vllien the

longitudinal creepage changes sign, the direction of the traction is

reversed, that is, the arrows in fig. 19a are reversed. To give an

idea of the magnitude of y, we c;h-"J some values for ~=0.8, n=1jI=0,

a/b=1, a=0.28. Then Y3 = -Y1 = 30~ and Y4 = -Y2 = 3°. For increasing

Iy I. the absolute value of Y increases. For increasing longitudinal

creepage I~I, Iyl decreases. For increasing values of POISSrnl's

ratio a. lyl increases up to values of about 20° for a=0.5. For

values near unity of the excentricity lei of the contact ellipse,

-i----.-----t----.-----+-x

creepage y creepage y

Fig. 19. An impression of the direction of the traction for

e.) longitudinal, b) lateral creepage, without spin.
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Irl decreases. It should be remarked that the foremost points of fig.

19a lie in the area of adhesion or close to it, when 1~1=0.8. Deeper

in the adhesion area, and for smaller values of I~ I, the traction

becomes much smaller than the COULOMB value, and its direction

according to the numerical method tends to be erratic. One should not

place undue reliance on the fact that the direction of (X',yl) is

erratic when l(x',YI) 1«1. since the error in the numerical method

may drown the information. We also meet this phenomenon later on.

values of Iyl and lsi found

as the angle a of (4.46),
m

ann traction in the problem

same values also occur in the

In the case of pure lateral creepage (Ux=~=O), the traction

direction behaves qualitatively as sketched in fig. 19b. It is seen

from fig. 19b that on the x-axis the angle S=O, since according to

(4.26). the traction and slip are mirror anti-symmetric about the

x-axis, whenever u =0. Also, when under the conditions of fig. 19b
x

the lateral creepage changes sign. traction and slip are reversed.

If n=0.8, ~=~=O, a!b=1, 0=0.28, then S1= -S3=7°. and S2= -S4=3°. lsi

increases for increasing Iyl; lsi decreases for lelt1, and for

increasing Inl. The foremost points of fig. 19b lie in the area of

adhesion or close to it when In!=0.8. Deeper in the adhesion area.

and for smaller values of In I. the traction becomes much smaller than

the COULOMB value. and its direction according to the numerical

theory tends to be erratic.

We finally observe that the maximum

here are of the same order of magnitude

Which is the maximum angle between slip

of infinitesimal creepage and spin. The

strip theory of KAlKER [2J. fig. 4.

We leave the discussion of the total force exerted on the lower

body to section 5.33.

5.322. Pure spin.

In the case of pure spin, the area of adhesion is symmetric

about the x-axis, in accordance with the symmetry relations (4.26).

In fig. 20, we sketched the division of the contact area into areas

of slip and adhesion for different values of the spin parameter X.

The separatrix is assumed to be the line T=S. All three figures

correspond to a!b=1, 0=0.28. ux=uy=O. The adhesion areas are shown
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Fig. 20. ale: Areas of adhesion (shown shaded) and slip for pure spin.

a/b=1, 0=0.28. f: Traction Y and slip Q on the x-axis for x=2.65.
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shaded. The trivial case W=O has not been sketched; the adllesion

area then covers the Whole of the contact area (free rolling). In

fig. 2011.. the case X=0.53 has been sketched. It is seen that slip

conmences at the trailing edge of the contact area. but that the

x-axis lies entirely in the adhesion zone. For increasing values of

the spin. the areas of slip grow. While the x-axis remains in the

adhesion zone; the adhesion area becomes narrow in the y-direction

(see fig. 20b~ X=1.24)s and finally splits into two parts (fig.20c

X= 1.95) • The island on the left is the adhe~;ion area about the point

wi th X=Y=s =s =0. The traction vectors from a rotating 'field about
x y

this adhesion area. see fig. 21. Both slip and traction have a large

gradient there in the numerical solution. see fig. 20f. With further

increasing spin, the adhesion area on the right of fig. 20c decreases

in size; then it breaks up into small parts (fig. 20d. x=2.65). and

finally vanishes (fig. 20e. X > 3) • The island on the left remains,

retains the character outlined above. but m:>ves inward toward the

centre of the contact area. where the spin pole of LUTZ [1,2.3J and

WERNITZ [1,2J is situated (see (4.93». The behaviour of the solution

on the x-axis. upon which the island lies. can be gathered from fig.

20f, in which is sketched the relative slip Q (see (5.18» and the

distribution of the traction Y. both on the x-axis. The circle

represents the COULOMB value of the traction. It is seen that slip

and traction vanish at about the same point in the adhesion island

on the left. It is also seen that going in the rolling direction the

relative slip Q increases sharply with increasing x, attains a

maximtun. and decreases again with a much smaller gradient. This

clearly shows the influence of the two small adhesion areas on the

right of fig. 20d. It should be observed. finally. that it is doubt­

ful whether the two small adhesion areas on the right of fig. 20c

actUally exist. Indeed T > S. but the difference is small. and,

moreover, the largest contribution to T stems !'rem the fact that the

angle between slip and traction is rather large (up to 14°). In fact,

for slightly different values of 1/J, n , and f;, aberrations occur in

that region, in the sense that l(x,Y)I>~z, and T > S. The occurrence

of the island on the left is also somewhat doubtful. It is entirely

possible that the tractions have a discontinuity there, and that the
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slip has there a simple zero.

In fig. 21, the traction distribution in the contact area is

shown for various values of the spin. Only half of the contact area

has been drawn. The traction distribution is given in the form of

curves of constant ratio between the resultant surface stress l(x,Y) I
and the COUL~~ traction ~Z in percents. These lines aTe symmetric

about the x-axis. The arrows represent the direction of the traction

exe~ed on the lower body; according to (4.26), the tangential

traction is mirror anti-symmetric about the x-axis, see fig. 19b.

It is seen from fig. 21 that the tractions form a rotating field

with somewhat varying centre of rotation. The spin pole of LUTZ and

liERNITZ lies in the centre of the contact area, but it is seen that

there is no point x=y=o inside the contact area when X=O.53

(fig. 21a), such a point enters the contact area, (fig. 21b, X=1.24),

and slowly moves towards the centre of the contact area with

increasing spin (fig. 21c, x=2.65).

5.323. Arbitrary creepage and spin.

The case of arbitrary creepage and spin lies between the cases

of the spin pole at infinity (pure creepage) and of the spin pole at

the center of the contact area (pure spin). An example is sketched

in fig. 22, in the manner of fig. 21. The determining parameters of

fig. 22 are: X=O.70, ;=-n=O.50, a/b=1, a=O.28, M=3, W=W1• The spin

pole of LUTZ and v~RNITZ lies on the circle, and has the coordinates

(O.71a, O.71a), where a is the radius of the contact circle. The

point X=Y=O lies approximately at (O.25a, O.50a). Since the traction

is small near this point, it is not clearly defined. Also, when the

parameters ;, n, 1/J get larger in absolute value in such a way that the

spin pole retains its position, the absolute value I(X,Y) I of the

traction has a minimum inside the contact area, but no zero. However,

the accuracy of the numerical method is not so that one can come to

a decis:i.on on the point whether there is a zero or not. It is seen

from fig. 22 that the traction again forms a rotating field with the

centre somewhere in the first quadrant x>O, y>O. In this quadrant,

the values of the traction are small, and, especially near the point

X=Y=O, the direction is erratic; this is possibly a case of the error
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Fig. 21. Traction distribution for various values of the spin.

a/b=1, 0=0.28, ~=n=O.
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Fig. 22. Traction distribution for a case of combined creepage and

spin.

a/b=1, 0=0.28, X=v=0.7, a = _45°.

in the calcull'l.tion drowning the information.

5.33. The total force transmitted to the lower body.

For fixed ratio of the axes alb and fixed POISSON's ratio 0, one

can imagine surfaces of constant creepage v=/~2+n2 in the three­

dimensional (f ,f ,X)-space. The surfaces of constant creepage allx y
lie inside the cylinder f2 + f2 = 1 or equivalently F2 + F2=~2N2.

x Y " 'x y
This cylinder represents the limiting case that ~2+n2+~, see fig.

24a,b,c. It was found that the surfaces u=constant form tubes in the

x-direction which lie inside each other, and which have a roUghly

circular intersection with the planes X=constant, the radius of the

tube increasing as u increases. The radius decreases when the spin
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becomes larger, i.e. as !xl increases, see fig. 24a,b,c, In the limit

X -+- co, the force is determined solely by the parameters cF,/X, and

-en/x, which are the coordinates of the spin pole, see (4.93). So

the "radius" of the tube is roughly determined by the quantity v/ Ix I,

It follows from the considerations of symmetry of sec. 4.2 that

the (X,f )-plane is a plane of symmetry of the tubes, for when the
y

point (f ,f ,x) corresponds to (F"n), then (-f ,f ,X) corresponds tox y x y
(-F"n), see (4.23f). It follows from (4.22e) that the tubes are

symmetric about the origin, for if the point (f ,f ,X) corresponds to. x y
(F"n), then (-f ,-f ,-x) corresponds to (-F,,-n). Hence we need forx y
the construction of the tubes only the pertinent information in the

quarter space f x ~ 0, X ~ O. When F,=n=O, the tube degenerates into a

line in the (f ,X)-plane. This is the case of pure spin, which is
y

given in fig. 23 for four values of the parameter alb, with POISSON's

ratio 0=0.28.

The total force transmitted to the lower body was calculated in

a great number of cases, with the degree M=3, the weight fu-rlCtion

W=W 1, and 0=0.28. First, we calculated the case of pure spin F,=n=O

for a/b=2, 1, 0.5, 0.2. The results are shown in fig. 23. Then we

calculated f and f as functions of F, and n, for fixed values ofx y
spin, POISSON's ratio, and ratio of the axes a/b. The values of X

were chosen so that we obtain the plane of pure creepage (X=O), then

two values of X before the !?eak in fig. 23, one at the peak, and two

after. In fact, we calculated

0=0.28, a/b=2; x=o ,L 1,2, 3 ~ ,7 • variable F, and n.

0=0.28, a/b=1 ; X=0,~,1,2,5,10; variable F, and n.

0=0.28, a/b=0.5; X=0,1,2,3,5,10; variable F, and n.
(5.29)

0=0.28, a/b=0.2; X=0,~,1,2,5,10; variable F, and n.

The case X = co has been treated in sec. 4.4, fig. 10 and 11 •

The results of these calculations will be laid down in a report of

the Laboratorium voor Technische Mechanica of the Delft Technological

University. Some results of the calculations with X = constant are

given in fig. 24, all for a/b=1, 0=0.28.

We also attempted to calculate the case a/b=5, but her-= the
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Fig. 23. f -x diagram for various values of a/b.
y

a=O. 28, ~=n=O.

numerical method failed to give results ~n a large portion of the

curve of pure spin, situated around the peak. Either the iteration

process (5.12) failed to converge, or it gave incorrect results, with

aberrations covering nearly the entire contact area, and with f2+ f2x y
exceeding unity. By taking special care in the choice of the initial

value T~ , the trouble could be concentrated in a smaller position

of the curve of pure spin, but even so the solutions obtained showed

many aberrations. We decided to drop the case altogether in view of

the formidable amount of machine time needed to obtain any results

at all, which would be of poor Cluality as well. Also, the case would
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Fig. 24a. Lines of constant u and a as functions of f and f ,
x Y

a/b=1, 0=0.28, x=o.

seem to have little practical interest: it is the case of a contact

area which is narrow in the lateral direction, an extreme case of

which is a circular knife rolling over a plane. The trouble in the

case a/b=5 was already foreshadowed in the calculations of the case

a/b=2, where near the peak many aberrations T > S, I(X,Y) I>].lZ

occurred. In pure spin also, the resulting values near the peak of

f for a/b=2 were somewhat erratic, which is the reason why that
y

portion of the curve of f for a/b=2 is given in fig. 23 with a
y

broken line.

In fig. 23 we show the case of pure spin, for different values

of a/b. The curve for a/b=0.5 is shown only partially; it goes

through the origin in the same way as the other curves, and on the

right the curve a/b= 0.5 is very close to the curve a/b=2. In fact,
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the values of f lie slightly higher in the case a/b=O. 5, but not
y

significantly so. It is seen that the curves of f as functions of X
y

increase from zero to a maximum, then decrease again, apprr~~ning

zero asymptotically. Two competing mechanisms are at work. For small

values of lxi, the effective spin pole lies far from the origin, see

fig. 21. However, the area of adhesion is large, which keeps the mean

absolute value of the traction down as a consequence of elastic

deformation. As Ixi increases, the area of adhesion becomes smaller,

and the mean absolute value of the tractions grows. At the same time,

however, the effective spin pole moves towards the origin.

Consequently, the direction of the traction becomes diversified,

which tends to diminish the total force. Especially for small values

of a/~, the effects appear to keep each other in check for a large

range of values of X around the maximum, for the maximum is very

flat.

It is seen from fig. 23, that the value of the maximum decreases

when alb decreases, that is, when the ellipse becomes narrower in the

rolling direction. If we assume tentatively that the effective spin

pole lies in the point (-aa,o), where a is some function of X

independent of th~ ratio alb, it is clear that with decreasing alb

the area occupied by points with a large x-component of the traction

increases, while in the determination of the total force the x­

components cancel each other, owing to the mirror antisymmetry of the

traction.

It is also seen from fig. 23 that the value of X at which the

maximum is reached, first increases with decreasing alb, reaches a

maximum at alb ';::I 0.5, when 0=0.28, and then decreases again. This is

partially because for the same value of the spin parameter $c, a

slender ellipse has a larger area of slip than a non-slender ellipse,

so that the effect of the elastic deformation described above, dies

out for a smaller value of ct>c.

We now turn our attention to the figures 24. They represent the

case 0=0.28, a/b=1. In the three-dimensional (f ,f ,x)-spacex y
introduced above, they are planes of constant X. In fig. 24a, X = 0

(pure creepage). Fig. 24b represents a value of X near the peak of

fig. 23 (X = 2). Fig. 24c represents a value of X beyond the peak,
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for which f (u =0, u =O),;:;:~ max f : X = 5. In the figures, the
y x y X Y

tangentials are lines of constant creepage u = 1~2+n2 = constant.

The radials are lines of constant a, where

~ ::: ucosa, n ::: usina, u::: 1~2+n2, a in degrees,

in accordance with (5.16).
!n fig. 24a, only the first qUadrant is shown because when X ::: 0,

there is symmetX"'J about both the f and faxes • It is seen thA.t thex y
lines a ::: 300 and Q ::: 60° are nearly straight, except at the end

u -+ '" , where they make a sharp turn. This means that the ratio f Ifx y
depends principally on the ratio ~/n for valu~s of. u up to 1.7. In

fact,

< tan- 1 (r If )
y x

< tan- 1 (f If )
y' x

< 27. 6° when a ::: 30('), 0 < U < 1. 7.} a/b= 1

< 56.7° when a::: 60°, 0 < u < 1.7. a=0.28

According to the theory of JOmiSON and VERMElILF.N [5], these angles

are constant, and

tan-
1
(f/fx) ::: 25.8° when a ::: 30:. u> 0; )

tan- 1(f If ) ::: 55.4° when ex ::: 60 , u > o. (5.31b)y x

alb::: 1 , 0'=0.28.

In figs. 24b and 24c, only the first and fourth qUadrants are

shown, since the f -axis is a line of symmetry. The curves u=constanty
are egg-shaped, with the flat end up. In fig. 24b (X ::: 2.0), the

curves for ex = _30° and Q = _60° show some waviness. It is not at all

certain whether this waviness actnally occurs in practice: it is

quite possible that it is due to e~rors in the numerical calculation.

It is seen from fig. 24c that the waviness is completely gone for

X ::: 5. In fig. 24c, the effect of the diminiShing radius of the tune

u=constant with increasing X is clearly shown.
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6. Conclusion.

In this final chapter we will review in 6.1 the results which

have been achieved in this thesis, and in 6.2 we will make some

observations on further research.

6.1. Results achieved.

In this thesis, we confine ourselves to contact problems

between purely elastic bodies which can be approximated by half­

spaces, while the contact area is elliptic in form. The method for

the solution of contact problems with friction which is discussed in

this thesis is, strictly speaking, only valid when t~e elastic

constants of the bodies are the same, or when both bodies are incom­

pressible. The method gives an approximation in case that these

conditions are not satisfied. A crude estimate of the error of this

approximation is given in sec. 2.1.

In chapters 2 and 3, we discuss the general theory. It was shown

in 2.2 that a generalized version of GALIN's theorem (GALIN [1],. ch.

2, sec. 8) can be established without recourse to LAME's ellipsoidal

harmonics. As a consequence of this, DOVNOROVICH's method [1J for the

calculation of contact problems without friction on the basis of

GALIN's theorem could be adapted in 2.3 to contact problems in which

there are also frictional forces. DOVNOROv~CH's method was generalized

in 2.4 sqq. in the sense that the connection between tractions and

displacement differences was given explicitly for any degree M of the

determining polynomials. In 3.1, the theory is worked out for the

case without traction singularity at the edge of the contact area.

DOVNOROVICH also considered this problem, but he did not arrive at the

simple relationship (3.15). The examples treated in 3.2 sqq. are all

well-known.

In chapters 4 and 5, we discuss the problem of contact in steady

rolling. The boundary conditions are well established, see e.g. DE

PATER [1J and KALKER [1J; they are set up in section 4.1. In 4.2., we

derive a number of symmetry relations between the surface tractions

and the slip on the one hand, and creepage and spin on the other

hand. These relations lead to a number of symmetry properties of the
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total force and the total torsional moment as functions of creepage

and spin. It is also found that the determining parameters of the

problem are alb, ~, n, X, and a. We have not found the symmetry

relations in this form in the literature.

The limiting case of infinitesimal creepage and spin (sec. 4.3

sqq.) was treated before in the literature, but we generalized it to

elliptic contact areas. KALKER's proof (see [1J, p. 168-169) that no

slip takes place at the leading edge of the contact area when creepage

and spin are infinitesimal, and which is valid for circular contact

areas and vanishing POISSON's ratio, was extended in sec. 4.31 to

elliptic contact areas and arbitrary POISSON's ratio. The creepage

and spin coefficients C.. (p.91 to 93) coincided with those obtained
J.J

in KALKER [1], pg. 174, when the contact area is circular. It was

found in KALKER [1J that the creepage and spin coefficients agree

with JOHNSON's experiments [1,2,3J, when the contact area is a

circle. In a comparison with the experiments of JOHNSON and

VERMEULEN [5], it was found that C22 agrees well with the experiment

when the contact area is an ellipse. The curious and unexplained

phenomenon that C
23

= -C32 , which was noted in KALKER [1J, occurred

also with elliptic contact areas.

The theory of LUTZ [1,2,3J and WERNITZ [1,2J for very large

creepage and spin, which is confined to the case that u =0 or u =0x y
when the contact area is an ellipse, was generalized in sec. 4.4 to

the case that u # 0, u # o.x y
The numerical theory of ch. 5 for steady rolling with arbitrary

creepage and spin, which consists of the minimalization of a certain

integral, appeared to work reasonably well for the degree M=3, and

the weight function W=Wl' The error in the total force is at most

about 10%, see fig. 15. The error in the traction distribution is

larger, see fig. 16. A qUalitative description of the tractions in

steady rolling is given in sec. 5.32 sqq. The calculati~ns were

carried out for a large number of the defining parameters alb,

~, n, X (see (5.29»; POISSON's ratio was kept at a=0.28 throughout.

The calculations proved to be exceedingly lengthy, so that in our

opinion the main significance of the theory of ch. 5 lies in the

possibility that existing approximate theories (JOHNSON ~,2,3,4,5J,



LUTZ [1,2,3J - WERNITZ [1 ,2J, DE PATER [1J - KAIKER (sec. 4.3 sqq.),

HAINES - OLLERTON [1J, KAIKER [2J) or theories that will be developed

yet can be tested with the numerical theory.

6.2. Further research.

It would be of interest to have a deeper insight in the inter­

action between the normal and the tangential problem, when K 1: O.

Such an interest is mainly academic in the case of the influence

of the tangential traction on the normal problem. An interesting

aspect of such a theory is the change of the contact area as a

consequence of tangential tractions. A simple, non-trivial problem of

t.his sort is the problem of gross slidir.g in Hertzian contact. In

that case, the boundary conditions are

w = _A:x.2_By2 + n.)
X \.IZ, Y = 0

in E,
=

w > _A:x.2_By 2 + n.}
X y = Z = 0 on z = 0, outside E,

=

(6.1)

(6.2)

Displacements and stresses vanish at infinity.

In the rotationally symmetric cFlSe of pure spin about the z-axis,

X = - \.IyZ ,Y = + \.IxZ the normal problem is unaffected by the
I x2+y2 Ix2+y2

tangential tractions, see SNEDDON [1J, ch. V, sec.·31.

The case of the normal problem influencing the tangential

problem is of greater practical interest, especially in the case of

B· small c0efficient of friction \.I. Thil" would be an invp.stigation

into thp. second approximatjon of sec. 2.1. This has already been

carried out for the two-dimensional case of two cylinders rolling

freely over each other, see JOHNSON [4J. In the gener~l three­

dimensional case of rolling contact, the treatl'lent would differ only

slightly from the one given in chapter 5. The only new thing needed

is
H H

~~ = t~iJ X=Y=O' ~: = [;;J X=y=O (6.4)

which can be given as a surface integral derivp.d from (2.11a,b), with

the Hertzian normal pressure
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(6.6)}

By means of the substitutions of the fundamental leJ!lIlla of sec. ?.2,

the double integral derived from (2.11) can be reduced to a single

integral with periodic continuous integrand which is integrated over

thp. period. So the quantities (6.4) are brought in a numerically

accessible form. The relative slip is then given by (4.15c):

Sx = ux-~y +[~~J= ux-~y + l~~Jx=y=o + [~~Jz=o '

Sy = Uy+~x +[;~= Uy+~x + [~~Jx=y=o + [;~Jz=o
the only difference with the theory of ch. 5 is, that a known

function is s.dded. to s and s at each point.x y
An analytical investigl:l.tion into JOHNSON's problem of free

rolling is also feasible in the case of a circular contact area. The

problem is:

Determine u , u and ~ so, that
x y

Sx - ux-~y + [~~]x=y=o + [~~]z=o = 0 in E,}

Sy - Uy+~x + [~iJx=y=o + [~iJz=o = 0 in Ej (6.7)

No singularity at the edge of the contact areaj

Z = fOO G 11_x2/a2_y 2/a2.

This investigation could he based on potential theory, using the

methods developed in KALKER [1].
As a final project we mention the case of instationary rOlling:

it is perhaps possible that the theory of ch. 5 can be adapted to

same problems of unsteady rolling.
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Notations.

Underlined symbols designate vectors. A superscript + indicates that

the quantity belongs to the lower body. A superscript - indicates

that the quantity belongs to the upper body. We list only symbols

the meaning of which extends beyond the section where they are

defined.

Symbol

a

R
mn

B

b

b
mn

C•.
~J

C

c

c
mn

D

d

d
pq

E

E
g

1.1eaning

In sec. 1.1: half width of contact

area

Elsewhere: semi-axis of contact

ellipse in x-direction

Coefficient of u-polynomial

(No vector) A complete elliptic

integral

In sec. 1.1: coordinate of trailing

edge of lor-ked area

Elsewhere: semi-axis of contact

ellipse in y-direction

Coefficient of v-polynomial

In sec. 4.32: creepage coefficient

(No vector) A complete elliptic

integral

= Ia:b, geometric mean of semi-axes

of contact f"llipse

Coefficient of w-polynomial

(No vector) A complete elliptic

integral

Integer with special mf"aning

Coefficient of X'-polynomial

(Elliptic) contact area

SJip area

Area of adhesion. also c'3.D.ed

locked area

Definition. etc.

Fig. 2

(1.5a)

(1.10)

(3.17)

Fig. 2

(1.5a)

(1. 10)

(4.36). Fig. 13
Table 3

(3.11), Table 1

(3.50 )

(1.10)

(3.17), Table 1

(2.67)
(1.9), (4.63)

(1.5a)
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E

e

e
pC!

(F ,F )
x Y

f

(f ,f )
X Y

g

I

I(d,i,j,e)

J(x,y)

J(d,i,j ,e)

K

K

152.

Meaning

A certain integral

Ex,ressed in comrlete elliptic

int~grals

(No vector) Complete elliptic

integral of the 2nd kind

Signed excentricity of contact

ellipse

Coefficient of Y'-polynomial

(x,y) components of total

tangential force on J.ower body.

See also (f ,f )
x Y

'l'PCoefficients derived from E!' C!
ron

Expressed in completp. elliptic

integrals

In 5.22, 5.23: integrand of I

Components of dimensionless

total force exerted on lower

body

~·1odulus of rigidity: combined,

upper body, lower body

=min(a/b,b/a). Ratio of axes of

contact ellipse

In ch. 5: an inte~ral to be

minimized

A complete elliptic integral

"Square root singularity"

A complete elliptic integral

Inteser connected with the

degree: M=2K+v

(TIo vector) Complete elliptic

integral of the 1st kind

Integer; also: major semi-axis

of contact ellipse max(a,b)

Definition, etc.

(2.35),(2.48),(2.53)

(2.73),(2.14),(3.22)

(3. 17 ), Table 2

(2.63), Table 2

(1.9) ,(4.63),(5.1)

(4.24)

(3.4),(3.15)

(3.12),(3.13),(3.22)

sec. 5.22

(4.19), Figs. 3, 8,

10, 11, 13, 14, 15,

23, 24

(2.4), (2. '-0)

(2.63), Table 2

(2.74) , (3. 11~) , (3.21)

(2.21a)

(3.13),(3.14),(3.21)

(2.54)

(3. 11 ), Table 2



S~nubol t-feaning

Degree of traction polynomial

Total moment about the z-axis

on lower body

Dimensionless total mmnent

about z-axis

Definition, etc.

(1. 9)

(4.24)

(5. 18)

(5.18)

<3,50 )N

o

P

p

Q

q

R

+ + - ­R ,R ,R ,R
x Y x Y

r

S

F.I

s (s ,s )
- x y

Total norm~ force

Origin of cartesian coordinate

system, centre of contact area.

Also: order of magnitude symbol

Proportional to x-cam~onent of

relative slip

In ch. 5 only: number of

degrees of freedom

Proportional to y-component

of relative slip

In ch. 5 only: summation limit

Distance between two points on

the sut'face

Radii of curvature of bodies in sec. 3.221

xz, yz plane

Distance from origin to a point (2.33)

of the plane z=O (except in

sec. 2.1)

positive definite function of (5.6)
relative slip

Hinor semi-axis of contact (2.63)

ellipse min(a,b)

Relative slip (vector end (4.15)

components) of upper body

oyer lower

T

t

positive definite function of

trB,ction difference

Time

(5.6)
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Symbol

(u,v,w)

± ± ± ±
~ (u ,v ,w )

v

(X,Y,Z)

(x, y)

(X',Y')

(x,y,z)

x-direction

y-direction

z-direction

z

z.
J

z!
J

E,E'

n

K

J

154.

Meaning

Displacement differences,

except in 2.41 and 4.31

Elastic displacement of lower/

upper body

Hagnitude of rolling velocity,

except in sec. 5.23

Weight function

A special weight f'1.ll1ction

Components of unit vector in

the direction of the slip

(X'Y1Z) components of surface

tractions on lower body

Tangehtial traction components

Traction polynomials

Carte~ian coordinate system

(Nearly the) rolling direction

Lateral direction

Inner normal on lower body at

centre of contact area

Normal pressure distribution,

mostly Hertzian

Standard polynomial

x-derivative 01' z.
J

Angle between creepage and

x-axis in degrees

A small positive number with

several meanings

Parity numbers (0 or 1);

£+£'=1

Lateral creepage parameter

An elastic constant

(neglected in the present work)

Coefficient of friction, assumed

Definition, etc.

( 1• 4), (1 .6b )

(4.9),(4.10)

(5.3)

(5.14)

( 1 .8e.)

sec. 2

(4.10 )

(5. 1 )

(5.2)

( 4. 104 ) , (5•30 )

(4.20)

(2.10)



Symbol Meaning Definition, etc.

(2.54)

(11.20 )

(3.38 )

\1,\1'

p

+ ­
0,0 ,a

to be constant

Parity numbers (0 or 1); \1+\1'=1

Longitudinal creepagp. parameter

Characteristic length of the

bodies

Poisson's ratio: combined, upper (2.4),(2.10)

body, lower body

Coefficients of traction

¢

X

polynomials

Creepage. In ch. 5:
Creepage vector, longitudinal

and lateral creepage

Spin

Spin parameter

Parity numbers (0 or 1); w+w'=1

(5.16),(5.30)
(4.11),(4.14a)

(4.12),(4.14a)

(4.20 )

(2.54)
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