Behavior modeling of Vulnerable Road Users
Internship at TNO, department Integrated Vehicle Safety

Introduction
Although most current Collision warning and avoidance (CW/A) systems and development primarily focus on occupant safety, over 44% of the total road fatalities in the Netherlands in 2009 are vulnerable road users (VRUs) [1]. The performance of CW/A systems can be significantly improved by including predictions of collisions of VRUs by implementing behavior models of different road users. Furthermore, the overall performance of CW/A systems can be further improved by including the behavior of both cars and VRUs. In [2] a mathematical method is presented regarding a CW system that is particularly designed for VRUs. The results showed a probabilistic CW system based on simple probability density functions. In continuation of the work in [2], filtering, sensor fusion and target tracking are added to the preprocessing part [3]. To obtain accurate collision probability estimation relevant and reliable inputs are required for the estimation models. Also, behavior models for different road users are added in [3] that can be used for a VRU CW system. However, these models are currently based on a limited dataset and estimations on physical parameters. Improving these models will lead to a more accurate collision probability and thereby improve CW/A systems.

Your assignment
The assignment is twofold:
1. Improve the current probabilistic model for behavior prediction of cyclists:
 a. Literature review and study current model.
 b. Perform a short sensitivity analysis to determine the relevant parameters.
 c. Write a test plan to determine the missing parameters.
 d. Perform & organize the required tests.
 e. Fit a probabilistic model which predicts the behavior of a cyclist as function of all relevant parameters.
2. Develop a probabilistic model for behavior prediction of pedestrians:
 a. Literature review and model development.
 b. Perform a short sensitivity analysis to determine the relevant parameters.
 c. Write a test plan to determine the missing parameters.
 d. Perform & organize the required tests.
 e. Fit a probabilistic model which predicts the behavior of a pedestrian as function of all relevant parameters.

References

Contact
Arend Schwab, 06 2852 7539
a.l.schwab@tudelft.nl
http://bicycle.tudelft.nl/schwab/

Ellen van Nunen
Phone: 088 86 65807
Email: ellen.vannunen@tno.nl

Hanno Schouten
Phone: 088 86 65792
Email: hanno.schouten@tno.nl