
Proceedings of the ASME 2009 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2009
August 30-September 2, 2009, San Diego, USA

DETC2009-86947

A METHOD FOR ESTIMATING PHYSICAL PROPERTIES
OF A COMBINED BICYCLE AND RIDER

Jason K. Moore∗
Mont Hubbard

Sports Biomechanics Laboratory
Department of Mechanical and Aeronautical Engineering

University of California
One Shields Avenue

Davis, California 95616
Email: jkmoor@ucdavis.edu

mhubbard@ucdavis.edu

J. D. G. Kooijman
A. L. Schwab

Laboratory for Engineering Mechanics
Faculty of 3mE

Delft University of Technology
Mekelweg 2, 2628CD Delft

The Netherlands
Email: jodikooijman@gmail.com

a.l.schwab@tudelft.nl

ABSTRACT
A method is presented to estimate and measure the geometry,

mass, centers of mass and the moments of inertia of a typical
bicycle and rider. The results are presented in a format for ease
of use with the benchmark bicycle model [1]. Example numerical
data is also presented for a typical male rider and city bicycle.

INTRODUCTION
Meijaard et al. [1] recently provided not only a complete re-

view of the bicycle literature but also a concise summary of the
equations of motion of the Whipple model [2] as well as bench-
mark calculations for comparison with other authors’ numerical
results. Kooijman [3] presented an experimental verification of
the weave eigenvalue of Whipple [2] vs. speed. More recently
Sharp [4] has reviewed the stability and control of the bicycle
by applying optimal control schemes to the model. Building on
published bicycle research [1–4], a recent investigation into han-
dling qualities of a bicycle [5] has begun by examining rider con-
trol during normal bicycling. As [1–4] make clear, all theoretical
or computational models of bicycle dynamics depend crucially
on a sound and accurate knowledge of the inertial and geometric
parameters of the vehicle and rider.

∗Address all correspondence to this author.

A non-minimum set of 25 physical parameters is needed to
compute solutions to the equations of motion. The present pa-
per outlines a method to estimate these from experiment. They
are calculated from the geometry, mass, center of mass locations,
and moments of inertia of both the bicycle and rider. We use the
methods described in [3] for experimentally measuring the prop-
erties of the bicycle. By combining that method with one that es-
timates the rider’s physical properties based on representing the
rider as a collection of geometrical shapes we can obtain an esti-
mate of the parameters for the combined bicycle and rider. As an
example, the methods are used to calculate the necessary inputs
to the benchmark model for a Dutch city bicycle and a male rider
that were used in the experiments in [5]. The Netherlands boasts
one of the highest percentages of bicycle trips of any country and
the bicycle we chose is commonly used for travel.

BICYCLE MEASUREMENTS
The geometry, mass, centers of mass, and moments of iner-

tia of a 2008 Batavus Browser city bicycle were measured using
the experimental methods described in [3]. Estimates of these
properties can be determined with a detailed CAD model but we
chose to measure the quantities for accuracy and time considera-
tions. The bicycle was assumed to be made up of four rigid bod-
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ies: the rear frame (B f ), the front wheel (F), the rear wheel (R)
and the handlebar/fork assembly (H).

Geometry
Fifteen geometrical measurements (Fig. 1) of the bicycle

were taken using a ruler (±0.002 m) and an angle gage (±0.5
deg). Only five of the measurements, w, c, λ 1, rR and rF, are re-
quired for the benchmark model (Tab. 12). The rest of the mea-
surements are used to estimate the seated position of the rider
described in the HUMAN PARAMETER ESTIMATION section.
We use the same global coordinate system as the benchmark
model. The origin is at the rear wheel contact point with the
X-axis pointing forward along the ground, the Z-axis downward
and the Y -axis to the right (Fig. 1). All of the dimensions were
taken as if they were projections into the XZ-plane except for the
hub widths2. Note that in the model the top tube is assumed to
be horizontal and the measurements were taken from the inter-
sections of tube centerlines. The wheel radii were measured by
rolling the bicycle forward with the rider seated on the bicycle for
nine revolutions of the wheel. The distance traversed along the
ground was measured with a ruler, divided by nine and converted
to wheel radii using the relationship between radius and circum-
ference, r = c

2π
. The head tube angle λht and the seat tube angle

λst were measured using an electronic angle gage while the bicy-
cle was fixed in the upright position. The trail c was measured by
aligning a straightedge along the centerline of the steering axis
and measuring the distance along the ground between the front
wheel contact point and the end of the straight edge. The val-
ues from the measurements of the Batavus Browser are shown in
Tab. 1.

Mass
The bicycle was then disassembled into four parts represent-

ing four rigid bodies (rear wheel, front wheel, rear frame, and
the handlebar/fork assembly) to facilitate the measurement of the
properties of each individual body. The parts’ masses (Tab. 2)
were measured using a large tabletop scale with an accuracy of
±0.02 kg.

Center of Mass Locations
The rear frame and handlebar/fork assembly centers of mass

were estimated by hanging the parts from a torsional pendulum
at three different orientations through the assumed XZ-plane of
symmetry (Fig. 2). They were photographed at each orientation
and the photos were then pasted into a drafting software package,
scaled and rotated such that the part was in the normal upright
orientation. The angles, αi, from the ground plane (XY -plane)
to the pendulum axis were estimated with a ±1 degree accuracy.

1λ = 90◦−λht
2Not shown in the figure.

Figure 1. GEOMETRICAL DIMENSIONS OF THE BATAVUS
BROWSER BICYCLE SHOWN WITH DATA AQUISITION EQUIP-
MENT.

Figure 2. SUPERIMPOSED PHOTOGRAPHS OF THE BICYCLE
FRAME HANGING IN THREE ORIENTATIONS FROM THE TORSIONAL
PENDULUM SHOWING THE CENTER OF MASS LOCATION AND ORI-
ENTATION ANGLES.

The centers of mass were located where the pendulum axes in-
tersected each other. The location relative to the benchmark co-
ordinate system was recorded with a ±0.02 m accuracy (Tab. 3).
The centers of mass of the wheels were assumed to be at their
geometric centers as dictated by the benchmark model.
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Table 1. BATAVUS BROWSER BICYCLE DIMENSIONS (ACCURACY
OF±0.002 M AND±0.5 DEG).

Description Symbol Value Units

bottom bracket height hbb 0.295 m

chain stay length lcs 0.460 m

fork length l f 0.455 m

front hub width w f h 0.100 m

front wheel radius rF 0.342 m

handlebar length lhb 0.190 m

head tube angle λht 68.5 deg

rear hub width wrh 0.130 m

rear wheel radius rR 0.342 m

seat post length lsp 0.240 m

seat tube angle λst 68.5 deg

seat tube length lst 0.530 m

stem length ls 0.250 m

trail c 0.055 m

wheel base w 1.120 m

Table 2. BATAVUS BROWSER BICYCLE MASSES (ACCURACY OF
±0.02 KG).

Description Symbol Value Units

front wheel mass mF 2.02 kg

handlebar/fork mass mH 4.35 kg

rear frame mass mB f 14.05 kg

rear wheel mass mR 3.12 kg

Moments of Inertia
Three measurements were made to estimate the globally ref-

erenced moments and products of inertia (Ixx, Ixz and Izz) of the
rear frame and handlebar/fork assembly . The same torsional
pendulum used in [3] was used to measure the averaged period
T i of oscillation of the rear frame and handlebar/fork assembly at
three different orientation angles αi, where i = 1, 2, 3, as shown
in Fig. 2. The parts were perturbed lightly, less than 1 degree,
and allowed to oscillate about the pendulum axis through at least
ten periods. The time of oscillation was recorded via a stop-

Table 3. POSITION OF THE CENTERS OF MASS OF THE
REAR FRAME AND HANDLEBAR/FORK ASSEMBLY (ACCURACY OF
±0.02 M).

Description Symbol Value Units

handlebar/fork (xH, zH) (0.88, -0.78) (m, m)

rear frame (xB f , zB f ) (0.25, -0.62) (m, m)

Table 4. REAR FRAME AND HANDLEBAR/FORK MEASURED MO-
MENTS OF INERTIA.

Rear frame

i T i (s) αi (deg) Ji (kg m2)

1 3.60±0.06 41±1 1.65±0.05

2 3.40±0.06 81±1 1.47±0.05

3 2.50±0.06 150±1 0.79±0.04

Handlebar/fork assembly

i T i (s) αi (deg) Ji (kg m2)

1 1.50±0.06 37±1 0.29±0.02

2 0.70±0.03 105±1 0.06±0.01

3 1.20±0.06 139±1 0.18±0.02

watch (±1 s). This was done three times for each frame and the
recorded times were averaged. The coefficient of elasticity k for
the torsional pendulum had previously been measured in [3] and
found to be k = 5.01± 0.01 Nm

rad . Three moments of inertia Ji
about the pendulum axes were calculated with

Ji =
kT 2

i

4π2 (1)

and the numerical values are shown in Tab. 4.
The moments and products of inertia of the rear frame and

handlebar/fork assembly with reference to the benchmark coor-
dinate system were calculated by formulating the relationship be-
tween inertial frames

Ji = RT
i IRi (2)

where Ji is the inertia tensor about the pendulum axes, I, is the
inertia tensor in the global reference frame and R is the rotation
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Table 5. REAR FRAME AND HANDLEBAR/FORK INERTIA TENSORS.

Symbol Value Units

IB f

 1.12 −0.44

−0.44 1.34

±
0.06 0.04

0.04 0.06

 kg m2

IH

 0.35 −0.04

−0.04 0.06

±
0.03 0.02

0.02 0.01

 kg m2

matrix relating the two frames. The global inertia tensor is de-
fined as

I =
[

Ixx −Ixz
−Ixz Izz

]
. (3)

The inertia tensor can be reduced to a 2×2 matrix because the Iyy
component is not needed in the linear formulation of the bench-
mark bicycle3 and the bicycle is assumed to be symmetric about
the XZ-plane. The simple rotation matrix about the Y -axis can
similarly be reduced to a 2×2 matrix where sαi and cαi are de-
fined as sinαi and cosαi, respectively.

R =
[

cαi sαi
−sαi cαi

]
(4)

The first entry of Ji in Eq. 2 is the moment of inertia about the
pendulum axis and is written explicitly as

Ji = c2
αiIxx +2sαicαiIxz + s2

αiIzz. (5)

Calculating all three Ji allows one to form

 J1
J2
J3

=

 c2
α1 2sα1cα1 s2

α1
c2

α2 2sα2cα2 s2
α2

c2
α3 2sα3cα3 s2

α3

 Ixx
Ixz
Izz

 (6)

and the unknown global inertia tensor can be solved for. The
numerical results are given in Tab. 5.

Finding the inertia tensors of the wheels is less complex be-
cause the wheels are symmetric about three orthogonal planes so
there are no products of inertia. The Ixx = Izz moments of inertia

3The pitch of the rear frame and handlebar/fork assembly are quadratic func-
tions of the lean and steer [6], so the pitch becomes zero in the linear model.

Figure 3. FRONT BICYCLE WHEEL MOUNTED IN A COMPOUND
PENDULUM FROM [3].

Table 6. WHEEL MEASURED INERTIA COMPONENTS.

Front wheel

T (s) I (kg m2)

0.78±0.06 IFxx = 0.08±0.01

1.37±0.06 IFyy = 0.16±0.03

Rear wheel

T (s) I (kg m2)

0.79±0.06 IFxx = 0.08±0.01

1.51±0.06 IFyy = 0.16±0.04

were calculated by measuring the averaged period of oscillation
about an axis in the XZ-plane using the torsional pendulum setup
and Eq. 1. The Iyy moment of inertia was calculated with a com-
pound pendulum as described in [3] and shown in Fig. 3 using

Iyy =
(

T
2π

)2

mgl−ml2 (7)

where l = 0.303±0.002 m is the pendulum length, m is the mass
of the wheel, T is the averaged period and g is the local acceler-
ation due to gravity. Table 6 gives the calculated values.
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HUMAN PARAMETER ESTIMATION
The measurement of the physical properties of a human is

more difficult than for a bicycle because the human body parts
are not as easily described as rigid bodes with defined joints and
inflexible geometry. Döhring [7] measured the moments of in-
ertia and centers of mass of a combined rider and motor-scooter
with a large measurement table, but this is not always practical.
The validity of the present method could be determined if such
data existed for a bicycle and rider.

Many methods exist for estimating the geometry, centers
of mass and moments of inertia of a human including ca-
daver measurements [8–10], photogrammetry, ray scanning tech-
niques [11, 12], water displacement [13], and mathematical geo-
metrical estimation of the body segments [14]. We estimated the
physical properties of the rider in a seated position using a sim-
ple mathematical geometrical estimation similar in idea to [14]
in combination with mass data from [8].

Several measurements of the human rider were needed to
calculate the physical properties. The mass of the rider was mea-
sured along with fourteen anthropomorphic measurements of the
body (Tab. 7 and Tab. 8). These measurements in combination
with the geometrical bicycle measurements taken in the previ-
ous section (Tab. 1) are used to define a model of the rider made
up of simple geometrical shapes (Fig. 4). The legs and arms are
represented by cylinders, the torso by a cuboid and the head by a
sphere. The feet are positioned at the center of the pedaling axis
to maintain symmetry about the XZ-plane.

All but one of the anthropomorphic measurements were
taken when the rider was standing casually on flat ground. The
lower leg length lll is the distance from the floor to the knee joint.
The upper leg length lul is the distance from the knee joint to the
hip joint. The length from hip to hip lhh and shoulder to shoulder
lss are the distances between the two hip joints and two shoulder
joints, respectively. The torso length lto is the distance between
hip joints and shoulder joints. The upper arm length lua is the
distance between the shoulder and elbow joints. The lower arm
length lal is the distance from the elbow joint to the center of the
hand when the arm is outstretched. The circumferences are taken
at the cross section of maximum circumference (e.g. around the
bicep, around the brow, over the nipples for the chest). The for-
ward lean angle λ f l is the approximate angle made between the
floor (XY -plane) and the line connecting the center of the rider’s
head and the top of the seat while the rider is seated normally
on the bicycle. This was estimated by taking a side profile pho-
tograph of the rider on the bicycle and scribing a line from the
head to the top of the seat. The measurements were made as ac-
curately as possible with basic tools but no special attention is
given further to the accuracy of the calculations due to the fact
that modeling the human as basic geometric shapes already intro-
duces a large error. The values are reported to the same decimal
places as the previous section for consistency.

The masses of each segment (Tab. 8) were defined as a pro-

Table 7. RIDER ANTRHOPOMORPHIC MEASUREMENTS.

Description Symbol Value Units

chest circumference cch 0.94 m

forward lean angle λ f l 82.9 deg

head circumference ch 0.58 m

hip joint to hip joint lhh 0.26 m

lower arm circumference cla 0.23 m

lower arm length lla 0.33 m

lower leg circumference cc 0.38 m

lower leg length lll 0.46 m

shoulder to shoulder lss 0.44 m

torso length lto 0.48 m

upper arm circumference cua 0.30 m

upper arm length lua 0.28 m

upper leg circumference cul 0.50 m

upper leg length lul 0.46 m

Table 8. BODY MASS AND SEGMENT MASSES.

Segment Symbol Equation Value Unit

mass of rider body mBr N/A 72.0 kg

head mh 0.068mBr 4.90 kg

lower arm mla 0.022mBr 1.58 kg

lower leg mll 0.061mBr 4.39 kg

torso mto 0.510mBr 36.72 kg

upper arm mua 0.028mBr 2.02 kg

upper leg mul 0.100mBr 7.20 kg

portion of the total mass of the rider mBr using data from cadaver
studies by [8].

The geometrical and anthropomorphic measurements were
converted into a set of 31 grid points in three dimensional space
that mapped the skeleton of the rider and bicycle (Fig. 4). The
position vectors to these grid points are listed in Tab. 10. Several
intermediate variables used in the grid point equations are listed
in Tab. 11 where fo is the fork offset and the rest arise from the
multiple solutions to the location of the elbow and knee joints
and have to be solved for using numeric methods. The correct
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Figure 4. LOCATIONS OF GRID POINTS AND SIMPLE GEOMETRIC
SHAPES. SEE ALSO TAB. 10.

solutions are the ones that force the arms and legs to bend in a
natural fashion. The grid points mark the center of the sphere
and the end points of the cylinders and cuboid. The segments are
aligned along lines connecting the appropriate grid points. The
segments are assumed to have uniform density so the centers of
mass are taken to be at the geometrical centers. The midpoint
formula is used to calculate the local centers of mass for each
segment in the global reference frame. The total body center of
mass can be found from the standard formula

rBr = ∑miri

mBr
= [0.291 0 −1.109]m (8)

where ri is the position vector to the centroid of each segment
and mi is the mass of each segment. The local moments of iner-
tia of each segment are determined using the ideal definitions of
inertia for each segment type (Tab. 9). The width of the cuboid
representing the torso ly is defined by the shoulder width and up-
per arm circumference.

ly = lss−
cua

π
(9)

The cuboid thickness was estimated using the chest circumfer-

Table 9. SEGMENT INTERIA TENSORS. HERE THE x, y AND z AXES
ARE LOCAL.

Segment Moment of Inertia

cuboid 1
12 m


l2
y + l2

z 0 0

0 l2
x + l2

z 0

0 0 l2
x + l2

y


cylinder Ix, Iy = 1

12 m
(

3c2

4π2 + l2
)

, Iz = mc2

8π2

sphere Ix, Iy, Iz = mc2

10π2

ence measurement and assuming that the cross section of the
chest is similar to a stadium shape.

lx =
cch−2ly

π−2
(10)

The local ẑi unit vector for the segments was defined along
the line connecting the associated grid points from the lower
numbered grid point to the higher numbered grid point. The lo-
cal unit vector in the y direction was set equal to the global Ŷ
unit vector with the x̂i unit vector following from the right hand
rule. The rotation matrix needed to rotate each of the moments of
inertia to the global reference frame can be calculated by dotting
the global unit vectors X̂, Ŷ, Ẑ with the local unit vectors x̂i, ŷi,
ẑi for each segment.

Ri =

 X̂ · x̂i X̂ · ŷi X̂ · ẑi
Ŷ · x̂i Ŷ · ŷi Ŷ · ẑi
Ẑ · x̂i Ẑ · ŷi Ẑ · ẑi

 (11)

The local inertia matrices are then rotated to the global reference
frame with

Ii = RiJiRT
i . (12)

The local moments of inertia can then be translated to the center
of mass of the entire body using the parallel axis theorem

I∗i = Ii +mi

d2
y +d2

z −dxdy −dxdz

−dxdy d2
z +d2

x −dydz
−dxdz −dydz d2

x +d2
y

 (13)

where dx, dy and dz are the distances along the the X , Y and Z
axes, respectively, from the local center of mass to the global
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center of mass. Finally, the local translated and rotated moments
of inertia are summed to give the total moment of inertia of the
rider by

IBr = ∑I∗i =

 8.00 0 −1.93
0 8.07 0

−1.93 0 2.36

kg m2. (14)

COMBINED REAR FRAME AND RIDER
The mass, center of mass and moment of inertia is calculated

similarly to what was previously described. The total mass is

mB = mB f +mBr. (15)

The center of mass position is

rB =
mB f rB f +mBrrBr

mB
. (16)

The two moments of inertia are translated to the center of mass
location using the parallel axis theorem (Eq. 13) and the compo-
nents summed to find the final moments of inertia.

RESULTS
The final results are presented in the form used by the bench-

mark model (Tab. 12). These can be used to populate the canon-
ical form

Mq̈+ vC1q̇+
[
gK0 + v2K2

]
q = 0 (17)

of the linear benchmark equations of motion presented in [1].
The coefficient matrices for the example rider and bicycle fol-
low in Eqs. 18-21 along with the standard eigenvalue plot for the
Whipple model (Fig. 5).

M =
[

106.87 1.41
1.41 0.22

]
(18)

C1 =
[

0 27.06
−0.57 0.97

]
(19)

K0 =
[
−93.73 −1.58
−1.58 −0.58

]
(20)

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Speed [m/s]
E

ig
en

va
lu

es
 [1

/s
]

Weave

Capsize

Caster

Real
Imaginary

Stable

Figure 5. EIGENVALUES OF THE EXAMPLE BICYCLE AND RIDER
AS A FUNCTION OF SPEED.

K2 =
[

0 78.72
0 1.48

]
(21)

CONCLUSIONS
A simple new and different method of estimating the phys-

ical properties of a combined bicycle and rider for use with the
linearized benchmark bicycle was presented. The methods de-
scribed allow one to obtain reasonable estimations of the param-
eters used to predict the dynamic modes of the benchmark model
with minimal experimental equipment and effort. This is unlike
the more general methods described in the references because
it is specific for a bicycle and rider.The accuracy of the bicycle
moment of inertia measurements can be improved by measuring
time more accurately with a rate gyro and simple DAQ system
and measuring the pendulum angles more accurately with a pre-
cision level. The estimations of the human’s properties can be
improved but not without more time consuming measurement
and modeling techniques as described in some of the references.

NOMENCLATURE
α pendulum orientation angle
λ geometric angle

7 Copyright c© 2009 by ASME



c circumference except for the definition of trail that matches
the benchmark model from [1] and the abbreviation for cos

cα cosα

d distance
fo fork offset
g local acceleration due to gravity
h height
k pendulum torsional stiffness
l length
m mass
r radius
s, t, u, v intermediate variables, v is also used for forward speed
sα sinα

w width except for the definition of wheelbase that matches the
benchmark model

x center of mass x coordinate for the benchmark bicycle
z center of mass z coordinate for the benchmark bicycle
I global inertia component
J inertia component
T period
q state vector
r position vector defined relative to the benchmark reference

frame [rX rY rZ ] or to a local reference frame [rx ry rz]
xyz local axes
R rotation matrix
I globally referenced inertia matrix
J inertia matrix
M, C1, K0, K2 benchmark canonical matrices
XYZ global axes
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[7] Döhring, E., 1953. “Über die stabilität und die lenkkräfte
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Table 10. SKELETON GRID POINTS WITH RESPECT TO THE GLOBAL FRAME. SEE FIG. 4

Description Equation Value (m)

rear contact point r1 = [0 0 0] [0 0 0]

rear wheel center r2 = [0 0 − rR] [0 0 −0.342]

right rear hub center r3 = r2 +
[
0 wrh

2 0
]

[0 0.065 −0.342]

left rear hub center r4 = r2 +
[
0 − wrh

2 0
]

[0 −0.065 −0.342]

bottom bracket center r5 =
[√

l2
cs− (rR−hbb)2 0 −hbb

]
[0.458 0 −0.295]

front wheel contact point r6 = [w 0 0] [1.120 0 0]

front wheel center r7 = r6 +[0 0 − rF] [1.120 0 −0.342]

right front hub center r8 = r7 +
[
0 w f h

2 0
]

[1.120 0.050 −0.342]

left front hub center r9 = r7 +
[
0 − w f h

2 0
]

[1.120 −0.050 −0.342]

left front hub center r10 = r5 +[−lst cosλst 0 − lst sinλst ] [0.263 0 −0.788]

top of seat tube r11 = r7 +
[
− fo sinλht − cosλht

√
l2

f − f 2
o 0 fo cosλht − sinλht

√
l2

f − f 2
o

]
[0.887 0 −0.733]

top of head tube r12 =
[
rX11− rZ11−rZ10

tanλht
0 rZ10

]
[0.865 0 −0.788]

top of seat r13 = r10 +
[
−lsp cosλst 0 − lsp sinλst

]
[0.175 0 −1.011]

center of knees r14 = r5 +[s 0 − t] [0.551 0 −0.746]

shoulder midpoint r15 = r13 +
[
lto cosλ f l 0 − lto sinλ f l

]
[0.235 0 −1.488]

top of stem r16 = r12 +[−ls cosλht 0 − ls sinλht ] [0.773 0 −1.021]

right handlebar r17 = r16 +
[
0 lss

2 0
]

[0.773 0.220 −1.021]

left handlebar r18 = r16 +
[
0 − lss

2 0
]

[0.773 −0.220 −1.021]

right hand r19 = r17 +[−lhb 0 0] [0.583 0.220 −1.021]

left hand r20 = r18 +[−lhb 0 0] [0.583 −0.220 −1.021]

right shoulder r21 = r15 +
[
0 lss

2 0
]

[0.235 0.220 −1.488]

left shoulder r22 = r15 +
[
0 − lss

2 0
]

[0.235 −0.220 −1.488]

right elbow r23 = r19 +
[
−u lss

2 − v
]

[0.321 0.220 −1.222]

left elbow r24 = r23 +[0 − lss 0] [0.321 −0.220 −1.222]

center of head r25 = r15 +
[ ch

2π
cosλ f l 0 − ch

2π
sinλ f l

]
[0.246 0 −1.579]

right foot r26 = r5 +
[
0 lhh

2 0
]

[0.458 0.130 −0.295]

left foot r27 = r5 +
[
0 − lhh

2 0
]

[0.458 −0.130 −0.295]

right knee r28 = r14 +
[
0 lhh

2 0
]

[0.551 0.130 −0.746]

left knee r29 = r14 +
[
0 − lhh

2 0
]

[0.551 −0.130 −0.746]

right hip r30 = r13 +
[
0 lhh

2 0
]

[0.175 0.130 −1.011]

left hip r31 = r13 +
[
0 − lhh

2 0
]

[0.175 −0.130 −1.011]

9 Copyright c© 2009 by ASME



Table 11. GRID POINT INTERMEDIATE VARIABLES.

Symbol Equation

fo rF cosλht − csinλht

s 0 = l2
ul − l2

ll − (rZ13− rZ5)2− (rX5− rX13)2−2(rZ13− rZ5)
√

(l2
ll − s2)−2s(rX5− rX13)

t
√

l2
ll − s2

u 0 = l2
la− l2

ua +(rZ21− rZ19)2 +(rX19− rX21)2 +2(rZ21− rZ19)
√

(l2
la−u2)−2u(rX19− rX21)

v
√

l2
la−u2

Table 12. COMBINED BICYCLE AND RIDER PARAMETER VALUES.

Parameter Symbol Value

wheel base w 1.120 m

trail c 0.055 m

steer axis tilt (π/2 −λht ) λ 0.38 rad

gravity g 9.81 N kg−1

forward speed v various m s−1

Rear wheel R

radius rR 0.342 m

mass mR 3.12 kg

mass moments of inertia (IRxx, IRyy) (0.08, 0.16) kg m2

rear Body and frame B

position center of mass (xB, zB) (0.28, −1.03) m

mass mB 86 kg

mass moments of inertia


IBxx 0 IBxz

0 IByy 0

IBxz 0 IBzz




11.89 0 −2.13

0 IByy 0

−2.13 0 3.73

 kg m2

front Handlebar and fork assembly H

position center of mass (xH, zH) (0.88, −0.78) m

mass mH 4.35 kg

mass moments of inertia


IHxx 0 IHxz

0 IHyy 0

IHxz 0 IHzz




0.35 0 −0.04

0 IHyy 0

−0.04 0 0.07

 kg m2

Front wheel F

radius rF 0.342 m

mass mF 2.02 kg

mass moments of inertia (IFxx, IFyy) (0.08, 0.16) kg m2
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