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Abstract. Recent observations of a bicyclist riding through town and on a treadmill show
that the rider uses the upper body very little when performing normal maneuvers and that the
bicyclist may in fact primarily use steering input for control. They also revealed that other
motions such as lateral movement of the knees were used in low speed stabilization. In order to
validate the hypothesis that there is little upper body motion during casual cycling, an in-depth
motion capture analysis was performed on the bicycle and rider system.

We used motion capture technology to record the motion of three similar young adult male
riders riding two different city bicycles on a treadmill. Each rider rode each bicycle while
performing stability trials at speeds ranging from 2 km/h to 30 km/h: stabilizing while pedaling
normally, stabilizing without pedaling, line tracking while pedaling, and stabilizing with no-
hands. These tasks were chosen with the intent of examining differences in the kinematics
at various speeds, the effects of pedaling on the system, upper body control motions and the
differences in tracking and stabilization.

Principal component analysis was used to transform the data into a manageable set orga-
nized by the variance associated with the principal components. In this paper, these principal
components were used to characterize various distinct kinematic motions that occur during
stabilization with and without pedaling. These motions were grouped on the basis of correla-
tion and conclusions were drawn about which motions are candidates for stabilization related
control actions.
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1 INTRODUCTION

Much progress has been made in understanding the rigid body dynamics of an uncontrolled
bicycle [4] and various control schemes have been explored for tracking purposes [7, 18, 9], but
little is understood about how a bicyclist actually stabilizes a bicycle during normal riding. A
bicycle and rider system is unique among vehicles in the fact that the rider is from 80 to 90 per-
cent of the total mass of the system, the system is laterally unstable and that the rider is flexibly
coupled to the bicycle in such a way that many body motions can be used as control inputs.
Previous research into realistic bicycle control has focused on both steering and rider lean as
control inputs, but there has been no experimental verification of which motions a rider actually
uses for control. Recent observations of a bicyclist riding through town and on a treadmill [2]
show that the rider moves the upper body very little when performing normal maneuvers and
that the bicyclist may in fact primarily use steering input for control. This corresponds well with
the fact that control by leaning requires high gains compared to the gains required for steering
when employing a optimal control strategy on a model such as LQR [7, 8, 9]]. The observations
also revealed that the rider may use other control inputs such as drastic knee movements at low
speeds. These conclusions were drawn by visually reviewing video data, so a more rigorous
objective method of characterizing the dominant movements of the bicyclist while stabilizing
a bicycle is needed. In order to validate the hypothesis that there is little upper body motion
during normal cycling, motion capture techniques were used on the bicycle and rider system
with the intent to use principal component analysis to identify the major motion patterns.

Principal component analysis has successfully been used with data collected from motion
capture techniques to identify the dominant modes of motion of a person walking on tread-
mill [10] and to characterize different types of walking. We use similar methods for steady,
normal bicycle riding on a treadmill. Cyclic motions, such as pedaling, are easily identified and
separated from the other less cyclic control actions. Identifying the patterns of movement gives
insight into which body movements are primarily used and are candidates for control inputs.
This will be valuable for design of a realistic biomechanical based control system of a bicycle
rider, among other things.

2 EXPERIMENTS

To test our hypotheses, three riders performed a set of stability tasks in a controlled environ-
ment while the motion of the bicycle and rider were collected with a motion capture system. The
tasks were performed on a 3 x 5 meter treadmill Fig. capable of belt speeds up to 35 km/h.
The treadmill was chosen because the envelope of space was suitable for the motion capture
system and it eliminated any disturbances such as wind, rough ground, and obstacles. We chose
three male riders of similar age [27 years (o = 4)] and build [height= 1.81 m (¢ = 0.04) and
mass= 73 kg (0 = 1)]. We also used two different Dutch bicycles: a 2008 Batavus Browser
with a 3 speed hub and a 2008 Batavus Stratos Deluxe with a 7 speed hub. The Browser is
described by the manufacturer as “stable” and the Stratos Deluxe as “nervous.”

We made use of the Optotrack Certus Motion Capture System [6] to record the motion of
the bicycle and rider during the stability tasks. The system is based on active infrared emitting
markers that are placed on the moving bodies and connected to a central control unit. Each
marker emits an infrared signal at a different frequency and the infrared pulses are captured
by camera modules each containing three cameras. The accuracy of the three dimensional
measurements is =0.15 mm. Wiring harnesses were built for both the rider and the bicycles to
facilitate easy bicycle and rider exchange Fig. (2)).
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Figure 1: The 3 x 5 m treadmill at the Vrije Universiteit Amsterdam.

(a) (b)

Figure 2: (a) Rider 1 and the Batavus Stratos Deluxe with marker positions. (b) Body marker
positions visible from the rear.
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Figure 3: Schematic of the marker positions. The bicycle and rider are colored light gray and
dark gray, respectively.

The marker coordinates were measured with respect to an inertial frame, M, where the plane
normal to mg is coplanar with the treadmill surface and mj is directed upward. We collected
the three dimensional locations of 31 markers, 11 of which were located on the bicycle and 20
that mapped the rider Fig. (3).

The markers were placed on the bicycle so that we could easily extract the rigid body motion
(i.e. body orientations and locations) of the bicycle frame and fork. Four markers were attached
to the fork and seven markers were attached to the rear frame. A marker was attached on the
right and left sides of the center of each wheel, the seat stays, the ends of the handlebars, and
the head tube. A single marker was also attached to the back of the seat post.

We recorded the location of 20 points on the rider: left and right sides of the helmet, back of
the helmet, shoulders, elbows, wrists, between the shoulder blades on the spine, the midpoint
between the shoulder blades and the coccyx, the coccyx, hips, knees, ankles and feet. The
body markers were not placed such that a complete rigid body model could easily be fit to the
data. This was done to save setup and processing time because we only wanted a stick figure
representation of the rider that allowed us to visually observe the dominant motions of the rider.

The stability tasks were designed such that the rider rode at a constant speed within the
range of 2 to 30 km/h. The bicyclists were told to maintain an upright straight ahead course
on the treadmill and to look into the distance, with exception of the line tracking task. The
bicyclists were instructed to bicycle comfortably at the designated speed and the data recording
was started at random. In all cases the subject rode at the set speed until comfortable, then data
was taken for 60 seconds at a 100 hertz sampling rate. Each test was performed on each bicycle
with each rider. The following list gives the various tests and their descriptions:

Normal pedaling The subject was instructed to simply stabilize the bicycle while pedaling and
keep the heading in approximately the forward direction. The speed started at 5 km/h and
increased in 5 km/h increments up to 30 km/h. The speeds were then decreased in the
same fashion to 5 km/h. From then on the speed was decreased in 1 km/h increments until
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the subject was not able stabilize the bicycle any longer. Therefore, there were two sets of
data for each speed and each bicycle except speeds below 5 km/h. Several additional runs
were also performed with the rider pedaling using a different gear and thus a different
cadence.

Without pedaling This was the same as the normal pedaling task except that a string was
attached to the head tube of the bicycle such that the bicycle was fixed longitudinally
relative to the treadmill and no pedaling was required. The rider kept the feet in the same
position throughout the task.

No-hands The rider stabilized the bicycle without using steering for control. They were in-
structed to keep their hands on their hips while bicycling. The rider started at 30 km/h
and decreased in 5 km/h increments through 20 km/h and thereafter the speeds were de-
creased in 1 or 2 km/h increments until the rider was not able to comfortably stabilize the
bicycle.

Line tracking This was the same as normal pedaling except that the rider was instructed to
track a line on the treadmill surface with the front wheel. A smaller subset of speeds was
performed.

These tasks were designed with the intent to answer several questions:
1. What upper body motions are used while bicycling?
2. How does the motion of the system change with respect to change in forward speed?
3. How much does pedaling influence the control actions?
4. Can the open loop rigid body dynamics be detected in the controlled state?
5. What does the rider do differently to control the bicycle when riding no-hands?
6. Do different bicyclists perform similar motions while performing the same task?
7. Is there a difference in motion when stabilizing and trying to track a line?

Since there is no room to address all of these questions in this paper, we focus on a single rider
on the Browser bicycle and two of the tasks: normal pedaling and without pedaling. We were
able to draw some conclusions on questions 1 through 4 with this smaller data set.

3 OPEN LOOP RIGID BODY DYNAMICS

One question we have is whether or not the eigenfrequencies of the weave motion for the
uncontrolled system can be detected in the results from the stabilization tasks. In order to
predict the uncontrolled (open loop) eigenvalues of the rigid rider system, the basic geometry,
mass, center of gravity locations, and moments of inertia of the bicycle were measured as in [3]].
Also, the riders were measured and weighed such that the body segment geometry, mass, center
of gravity locations, and moments of inertia could be estimated using the method described in
[S]. This data was used to calculate eigenvalues and eigenvectors of the uncontrolled open loop

system Fig. ().
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Figure 4: Eigenvalues of the Browser bicycle with the third rider as a function of speed. Note
that the initially unstable weave motion becomes stable above 16 km/h, the weave speed.

4 DATA PROCESSING
4.1 Missing markers

The Optotrack Certus Motion Capture System [6] is based on the cameras’ ability to detect
the infrared light from the sensors so there are occasional gaps in the coordinate data due to
the markers going out of view. We attempted to minimize this by careful marker and camera
placement but were not able to totally eliminate the error. Any missing markers on the bicycle
were reconstructed using the fact that the bicycle is a rigid body. We had more than three
markers on both the frame and fork, so if one marker location was not detected we used the
relative location of the remaining markers to reconstruct the missing marker. The gaps in the
data of the markers on the human were repaired by fitting a cubic spline through the data. The
spline estimated the marker coordinates during the gaps. We only used the splined data if the
gaps were less than 10 time steps, or 0.1 sec, otherwise the trials were discarded.

4.2 Relative motion

We were interested in the analysis of three different marker combinations: the bicycle, the
rider and the bicycle/rider. The motion of the bicycle and the bicycle/rider were calculated
with reference to the N inertial frame and the motion of the rider was calculated with respect
to the rear frame of the bicycle B Fig. (5). These three marker combinations allowed us to
differentiate more easily between rider specific and bicycle specific motions. Furthermore, six
of the variables that describe the configuration of the bicycle in time were calculated to give
insight into the rigid body dynamics. Details of these calculations are shown in Appendix

4.3 Principal Component Analysis

We used Principal Component Analysis [1]] to extract and characterize the dominant motions
of the system. Calculating the principal components effectively transforms the space of the
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Figure 5: Diagram of the bicycle’s inertial frame N, rear frame B, front frame E and configu-
ration variables.

data to a space that maximizes the variance of the data. The typical advantage of PCA is that
the dimension of the system can be reduced and still retain enough information to adequately
describe the system. We are primarily interested in the way that PCA is able to extract linear
components and rank them in order of variance from the mean position. If we assume that
the components with the largest kinematic variance are motions that are the dominant motions
used for control and propulsion (which in general is not necessarily true for dynamical systems)
the comparison of these components for different riding conditions can give insight into what
motions may be important for developing a biomechanical control model of the bicyclist.

The repaired data from the motion capture measurements contained the x, y, and z coordi-
nates of each marker 1 through [ at each time step ;7 = 1, 2, ..., n. Each marker has three
coordinates so there are a total of m = 3[ coordinates < = 1, 2, ..., m. The coordinates at each
time step can be collected in vector p;.

pf = [l‘lj e xlj ylj e ylj le e le] = [plj Pon . ng]

We can organize these coordinate vectors into a matrix, P, where the rows, ¢, map a single
coordinate of a marker through n time steps.

. | |
.

The principal components were calculated for the three marker combinations as described
earlier where n = 60-100 = 6000 time steps. The number of rows of P were (m = 3-31 = 93),
(m =311 = 33) and (m = 3 - 21 = 63) for the bicycle/rider, the bicycle alone and the rider
alone, respectively.

One method of determining the principal components is to calculate the eigenvectors of the
covariance matrix of the mean-subtracted data. We begin by calculating the mean Eq. (I)) of the

7



Jason K. Moore, J. D. G. Kooijman and A. L. Schwab

rows of P and subtracting it from each column of P to form the mean-subtracted data matrix B

Eq. (2).

1 n
u=—>% p, (D
ni=
A vector of ones
h! =[hy hy ... h; ... hy,] where h; =1forall j
allows us to subtract u from each column of P,
B =P — uh” 2)
The covariance matrix C of B can then be calculated with Eq. (3).
1
C= BB” (3)
n—1

Calculating the eigenvectors v; and eigenvalues \; of the covariance matrix effectively trans-
forms the space to one where the variances are maximized and the covariances are zero. The
eigenvectors are the principal components of the data set and the corresponding eigenvalues rep-
resent the variance of each principal component. The eigenvectors are ordered by decreasing
eigenvalue where v; is the eigenvector corresponding to the largest eigenvalue. The eigenvalues
and eigenvectors are calculated by finding the independent solutions to Eq. ().

CVZ' = )\ivi (4)
Each time step can now be represented as a linear combination of the principal components.
p; = u-+a; Vi + ayvo + ...+ UiV, &)

The coefficients a;; can be solved for each time step j by reformulating Eq. (5) and solving the
system of linear equations.

| | ‘ ayl ... Qip
P—uhl=|v, vo ... v, o : = VA (6)
| | Qi . Gom
and
A =V Y{P —uh”). (7

With the principal components v; being constant, the behavior in time is described by the co-
efficients a;; where the discretization in time is indexed by j. The order of the system can be
reduced by eliminating principal components that have little variance. We arbitrarily decided
to examine the first £ = 10 principal components knowing that the first five would be based
around the larger motions such as pedaling and that the remaining five may reveal some of the
motions associated with control. The variance of each component, var(a;) = \;, is summed to
determine the cumulative percentage of variance of the principal components, gj.

2?21 )\z

m .
=1 "%

gr = 100 where 1 < k <m (8)
Highly correlated data will show that even when & << m, g is close to 100%. Using 10
components g,y covers 100% (o = 2 - 1071%%) of the variation in the data for the bicycle, rider
and bicycle/rider. The matrix A can then be reduced to a k£ X n matrix and eigenvectors greater
than v;, can be eliminated.
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Figure 6: Screen shot of the MATLAB graphical user interface (GUI) used to visualize principal
components and compare between different components and trials.

4.4 Data Visualization

We developed a graphical user interface in MATLAB that easily allows different trials to
be compared with one another Fig. (6). The program loads in two different trials along with
information on the trial. A graphical representation of the rider and bicycle are displayed in
two adjacent screens and can be viewed from multiple perspectives. The animations of the
runs can be played at different speeds, rewound and fast forwarded. The principal components
are shown beside the corresponding animation display and combinations can be turned on and
off for identification and comparison. Frequency and amplitude information for the temporal
coefficients a;; can also be displayed for comparison.

5 RESULTS
5.1 Motion identification

The reduced set of data provides two important pieces of information for the identification
of motion: the principal components v; and the corresponding coefficients a;;. The principal
components represent linear trajectories of the markers and the coefficients show how the mark-
ers follow the trajectories with time. We began processing the data by reviewing each principal
component of each trial in the GUI and noting down what type of motion we saw Tab. (I]). These
descriptions were subjective because we grouped marker movement based on our preconceived
understanding of rider and bicycle motion. Some of the modes displayed motions that were not
physically possible such as the upper leg stretching in length during the knee bounce. This is
possible when examining a single component but when superimposed over the rest of the com-
ponents the unrealistic motions are not present. Furthermore, for each component we examined
amplitude and frequency content of the associated coefficients a;; as shown in Fig. (7) and
noted down the shape of the frequency spectrum and the frequencies at any distinct spikes.

9
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7

% Variance

Motion Description

Frequency Description

1 45.50 primarily longitudinal motion, some max amp=0.6m, most freq below
lateral 0.5hz, tiny spike at 1.6hz
2 29.39 primarily lateral motion, some longitu- little spike at 0.8hz, max amp=0.35m,
dinal, small feet motion most freq below 0.5hz
3 15.41 vertical pedaling, slight spine bend, large dominant spike at 0.8hz, max
hip/head/shoulder sway out of phase amp=0.27m
with pedaling
4 8.27 horizontal pedaling, head/shoulder large dominant spike at 0.8hz with
sway 0.19m amp
5 0.82 yaw, knees stay still most freq below lhz, spike at 0.33hz
and 0.04m
6 0.27 erratic left hand movement max amp=0.018hz, most freq. below
2hz
7 0.21 steer, left hand movement, slight roll most freq below 2hz, spike at 0.33hz
and 1.58hz
8 0.07 knee and head bounce dominant spike at 1.58hz
9 0.04 lat knee movement, head jiggle spikes at 1.58hz and 2.37hz, most freq
below 2.5hz
10 0.02 head and knee jiggle spikes at 1.58hz and 3.17hz, most freq
below 3.5hz

Table 1: Example raw trial description for the bicycle and rider during normal pedaling at 10
km/h.

Several conclusions can be drawn from examining the coefficient data. First of all, some
of the components are linked by the frequencies of the coefficients and describe an identifiable
motion. The most obvious being that the vertical and horizontal pedaling components make
up the circular pedaling motion. They both vary periodically and have a dominant frequency
which is defined by the cadence. In the example trial, Tab. (TJ), the upper body motions are also
linked to the pedaling. Components 8 and 9 are both based around a frequency that is twice the
pedaling frequency which may be due to the forces created at each pedal stroke. Component
6 seems to be the result of a bad marker signal. Components 5 and 7 are interesting because
they display motions of the bicycle that are not dominated by the pedaling frequency and may
be candidate control motions. The percentage variance of each component gives an idea of the
relative amplitude of the components. The descriptions of each trial were used to compile a list
of motions that contribute to the principal components. These motions, illustrated in Fig. (8),
are:

Drift The bicycle and rider drift longitudinally and laterally on the surface of the treadmill. The
motions are typically defined by two components that are not necessarily orthogonal or
aligned with the inertial coordinate system. The motion is random and at low frequencies.

Steer Rotation of the front assembly with respect to the rear frame. The steering may appear
linked to one of the pedaling components at the pedaling frequency or may be in one or
more components sometimes combined with roll and/or yaw at more random frequencies,

Fig. (8a).

Roll The bicycle and the rider roll with respect to the ground plane. Roll is typically linked
with steer and/or yaw and often at the pedaling frequency, Fig. (8a).

10
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Figure 7: (a) Coefficients a;; versus time and (b) the frequency content of the first five principal
components for normal pedaling at 10 km/h. The vertical line in (b) represents the open loop
weave frequency (0.28hz) determined from Fig. (]Z_f[) at this forward speed .

Yaw The heading angle of the bicycle and rider change together with respect to the ground
plane. This is typically linked with steer, roll and/or the drift, Fig. (8b).

Pedaling This motion is defined by two or more components, typically a vertical and horizontal
motion of the feet, that show the feet rotating around the crank axle at a distinct frequency
and the legs following suit, Fig. (8c).

Bend The spine bent laterally and was always connected with the vertical pedaling component,
Fig. (8d).

Lean The upper body, shoulders and head lean laterally with respect to the rear frame and was
always linked with the horizontal pedaling component, Fig. (8¢).

Twist The shoulders rotate about the torso axis. This was linked to components that contained
steering motions both random and at the pedaling frequency, Fig. (8f).

Bounce The knee markers bounce up and down, the back straightens and the head nods at twice
the pedaling frequency, Fig. (8g).

Knees The knees move laterally relative to the bicycle frame in both opposing directions and
the same direction at random low frequencies, Fig. (8h).

Head Head twists and random head motions showed up often. These seemed to be due to the
rider looking around randomly.

5.2 Motion Identification and Characterization

To identify how bicycling changes with speed it would be ideal to investigate how the am-
plitude of each component varies with speed. However as the analysis does not return the

11



Jason K. Moore, J. D. G. Kooijman and A. L. Schwab

e

(e) ® (€9) (h)

Figure 8: Diagrams of the common motions. (a) Top view of the bicycle steer and roll, (b)
the bicycle yaw, (c) the horizontal and vertical components of pedaling, (d) the spine bend, (e)
rider lean, (f) top view of the rider twist, (g) knee bounce and (h) two knee motions. All but the
pedaling are exaggerated for clarity.

same set of components for each run such a comparison is typically not possible. Therefore
components were grouped into classes, where each class shows a specific physically relevant
motion. The same total motion of the class can be described by one set of components in one
trial and another, probably different, set of components in another trial. How the amplitudes of
these classes change between two experiments can be used as a measure for how bicycling has
changed among trials.

To objectively identify which coefficients show the same type of motion and could therefore
form a class, the frequency content of each of the time coefficients in a single trial was correlated
to that of each of the other components in that trial. Next a minimum correlation value was set
to determine which coefficients were correlated to each other. When the minimum was set
at 0.9 only the coefficients making up the pedaling motion could be considered correlated.
On the other hand when a minimum level of 0.7 was used practically every coefficient was
correlated to each other. The only exception was the coefficient that displayed the bounce.

12
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Its maximum correlation with another coefficient was no higher than 0.4 for any of the tested
speeds. The 0.8 level gave a number of distinct classes of components and thus this level was
used to identify which coefficients were connected. Finally, the correlated coefficients were
viewed simultaneously in the GUI enabling the determination of the motion class.

The correlated coefficients were used to form six different classes of motions, each made up
of combinations of the previously described motions, with reference to Fig. (8):

Drift Drift.

Pedaling Pedaling (8c]), Bend (8d), Lean (8¢)), Twist (8f).
Steer-Yaw-Roll Steer and Roll (8a)), Yaw (8b).

Bounce Bounce (8g).

Knees Knees (8hl).

Others Head and components that showed noise of some sort.

In most cases the correlated coefficients described a single class. However, in some cases
this was not the case and the coefficients were used to describe more than one class. An example
is that at low speed the components containing the drift motions also contained large steer, yaw
and roll motions. Therefore, the motions were placed in both the Drift and the Steer-Yaw-Roll
classes.

Since the rider was not instructed to hold a specific location on the treadmill the Drift class,
which was usually the class with the largest amplitude, was not used in further analysis of the
motion and neither was the ‘Other’ class. For each of the remaining classes, the percentages of
variance of the remaining components were recalculated without the components placed in the
Drift and the Other classes.

By transforming the bicycle marker locations into rigid body motions for the bicycle (See
Appendix [A)) it was also possible to investigate the bicycle lean, yaw and steering motions.
By carrying out a Fourier transform these bicycle motions could also be investigated in the
frequency domain.

5.3 Characterization of motions during normal pedaling

Figure (9) shows how the percentage of the four classes: Pedaling, Steer-Yaw-Roll, Bounce
and Knees vary with speed. From the graph it is clear that at 10 km/h and higher speeds
practically all the motion that is taking place is the pedaling motion class. Below 10 km/h,
the Steer-Yaw-Roll class becomes increasingly active and the relative percentage of the motion
taking place in the pedaling class drops. Also at speeds below 10 km/h the lateral knee motion
(Knees) class percentage increases with decreasing speed. The increase is not as significant as
that of the Steer-Yaw-Roll class (increase to roughly 5% at 2 km/h), but it is certainly visible.
The Bounce roughly remains constant at all speeds.

The steer angle amplitude-frequency plot for each of the speeds calculated from the bicycle
rigid body motions is given in Fig. (T0). It clearly shows that the steering actions take place at
(high speed) or around (low speed) the pedaling frequency. It also shows that the amplitude of
the steering angle increases by 5000% when the speed decreases from 30 km/h to 2 km/h. Figure
also shows the open loop, rigid rider, weave eigenfrequency for each speed obtained from
Fig. (4). Apparently the open loop eigenfrequency is not a frequency in which the bicycle/rider
operates.
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Figure 9: The percentage of the motion from each of the four classes: Pedaling, Steer- Yaw-Roll,
Bounce and Knees, at the different speeds when the Drift and ‘Other’ classes were removed
from the results for normal pedaling. The solid lines are scaled to 100% (left axis), the dotted
lines are scaled to 10% (right axis).

5.4 Characterization of motions without pedaling

At normal pedaling, all motions, including the control tasks, are dominated by the pedaling
motions. Therefore we also looked at the motions bicycle/rider system without the influence
of pedaling. Figure shows how the percentage of the motion caused by Steer-Yaw-Roll,
Bounce and Knees varies with speed. Since the bicycle is towed and the riders feet remain in
the same, constant, position relative to bicycle, there is no pedaling class present in analysis.
Furthermore, no bend, lean or twist motions were detected during the experiments.

It is clear that at all speeds most motion takes place in the Steer-Yaw-Roll class. Also in-
teresting is that unlike in the normal pedaling situation, the Knee motion percentage does not
increase at low speeds.

Figure (12)) shows the bicycle rigid body steer angle frequency-amplitude plot for different
speeds. Compared to the normal pedaling the amplitudes are about half the size at the low
speeds and one tenth the size at high speeds, indicating that smaller steering angles were made.
The frequency content now also shows a much wider, flatter spectrum compared to normal
pedaling. At 10 and 15 km/h the frequency with the largest amplitude is near the open loop
weave eigenfrequency. However, at the other speeds this is not the case, once again indicating
that the rigid body open loop weave eigenfrequency is not the frequency in which the bicycle is
controlled.

6 CONCLUSIONS

From the analysis on the measured rider motions during normal bicycling by means of prin-
cipal component analysis we come to the following conclusions:

e During normal bicycling the dominant upper body motions: lean, bend, twist and bounce,
are all linked to the pedaling motion.

e We hypothesize that lateral control is mainly done by steering since we observed only
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Figure 10: Steer angle amplitude plot for the nine different speeds for normal pedaling exper-
iment. Solid vertical line indicates the pedaling frequency. Dashed vertical gray line indicates
the bicycle & rigid rider open loop weave eigenfrequency from Fig. @)

upper body motion in the pedaling frequency.
e If upper body motions are used for control then this control is in the pedaling frequency.

e When pedaling at low speed we observe lateral knee motions which are probably also
used for control.

Future work will be directed in answering the remaining questions listed in Sec. (2).
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A Inertial frames and configuration variables

The transformation from marker coordinates to rigid body inertial frames and configuration
variables shown in Fig. (5) is described here. A reference frame, N, with origin n,, correspond-
ing with the benchmark bicycle [4] is defined with respect to the Optotrack reference frame, M,

Eq. (9).

fll 1 0 0 rhl
N=|f,|=|0 -1 0]] 9)
flg O O —1 IhS

Thirty-one marker locations were recorded and the vector to each is defined as r™*/™ where
k=1, 2, ..., [ for the original markers and k = [ 4 1, ... for any additional virtual markers.
To calculate the reference frame attached to the rear bicycle we formed a frame center plane
from the seat post marker, mq4, and two new additional virtual markers at the center of the rear
wheel, msg, and the center of the head tube, m33. For example, the center of the rear wheel was
calculated by Eq. (I0) where mo; and mg; are the left and right rear wheel markers.

I.m36/no — (rm25/no + I.m31/no)/2 (10)
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The normal vector to the plane through the rear wheel center, seat post and the head tube center

1S
. rma6/26 w pmas/2e

by = (11)

|rm36/26 % 1M33/26 |

The heading vector of the rear frame is then 131 = 132 X nsz and 133 = Bl X 62 follows. These
unit vectors define a reference frame that leans and yaws with the rear frame. We assumed that
the rear frame pitch is negligible. The marker locations of the rider can now be expressed in the
B frame with reference to a point on the rear frame mgs6, Eq. (12)), and these were used in the
PCA of the rider only markers.

I‘mk’/m36 = (I‘mk/md(’ . 61)61 + (rm’“/m*’b . Bg)f)z + (I'mk/msﬁ . 63)63 (12)

A reference frame D that is aligned with the steering axis of the rear frame can be formulated by
rotation about the b, axis through the steer axis angle A which is measured from each bicycle.

(211 cosA 0 —sinA t}l
D=|d | = 0 1 0| b, (13)
ds sinA 0  cosA\ bs

The handlebar/fork inertial frame E is then calculated by defining the e, to be aligned with front
wheel axle Eq. (I4).

rmm/no _ rm27/no

€y — |rm21/no — rm27/no| (14)
The handlebar/fork frame rotates around 613 = €3 and then €; = €3 X €&,. The instantaneous

rear wheel radius is

m36/mo .
b3 * N3
This is used to formulate the vector to the rear wheel contact point Eq. (16).
R Y (16)

This now allows us to calculate six of the eight configuration variables of the bicycle as a
function of time.

Distance to the ground contact point: g; = r™¥/™ . 1, (17)
Distance to the ground contact point: g, = r'*/™ . 1, (18)
Yaw angle: g3 = arccos (61 . rfl) (19)

Roll angle: ¢4 = arccos (153 . rig) (20)

Pitch angle: ¢gs = 0 21

Steer angle: q; = arccos (cil . e}) (22)
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