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Chapter 1

Introduction

Beginning my studies the first step pleas’d me so much,

The mere fact consciousness, these forms, the power of motion,

The least insect or animal, the senses, eyesight, love,

The first step I say awed me and pleas’d me so much,

I have hardly gone and hardly wish’d to go any farther,

But stop and loiter all the time to sing it in ecstatic songs.

(Walt Whitman, Leaves of Grass)

In the dynamic analysis of engineering problems a multibody model in which
all structural elements are assumed to be rigid suffices for a quick judgement
about the motion and forces in the system. However, in cases where a high accu-
racy is required, for instance in positioning mechanisms, or where the structural
elements are rather compliant, vibrations due to deformation can become im-
portant and have to be considered. Incorporation of these deformations in the
dynamic analysis of the system enlarges the number of degrees of freedom, the
frequency range of interest, and the stiffness of the differential equations, which
results in a longer simulation time.

To reduce the simulation time and to gain more insight in the vibration phe-
nomena at hand we assume that the effect of deformation may be approximated
by superimposing small linear vibrations on the nominal rigid body motion.
This idea has been inspired by the computational results from simulations of
flexible multibody systems where one often recognizes a gross rigid body motion
with small-amplitude nearly harmonic vibrations added.

The method of superimposition as presented here systematically leads to a
system of linear differential equations with time-varying coefficients and time-
varying forcing. In particular, if the nominal reference motion is periodic, the
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2 Introduction

coefficients and forcing are also periodic. The equations are amenable to several
kinds of analysis, such as the determination of transient and periodic solutions,
the investigation of the stability of these solutions and the continuation of these
solutions if a parameter, for instance the driving speed of the multibody system,
is varied.

The equations of motion for the flexible multibody system and their lin-
earization, which describe the small vibrations, are derived by a finite element
method. With the help of a limited number of element types it is possible to
model a variety of flexible multibody systems. Typical types of elements are
beam, truss and hinge elements, while more specialized elements are used to
model joint connections and transmissions of motion. The finite element ap-
proach for the kinematic and dynamic analysis of mechanisms and machines
was initiated by Besseling [2] who, in his study of discretization methods for de-
riving finite dimensional element models for the mechanics of continua, pointed
at the complete analogy between the discrete case and the continuous case. The
analogues of the physical stresses and strains for the continua are the so-called
generalized stresses and generalized strains for the finite elements. Van der
Werff [83] used the large displacement formulation of Visser and Besseling [86]
to model (partly) rigid elements by equating some generalized deformations
to zero and introduced the transfer function formalism. With these methods
he started the development of computer programs for the kinematic analysis
of two-dimensional (planar) and three-dimensional (spacar [84]) mechanisms
and machines. The author implemented the first extension for the dynamic anal-
ysis of flexible multibody sytems in the program [67]. The method for dynamic
analysis and the corresponding software matured by the thesis of Jonker [29].
In the course of years, the spacar program system [31] has been enlarged,
among others, by Jonker [32] for handling of controlled robotic manipulators,
and by Meijaard [45] for the direct determination of periodic solutions of flexible
multibody systems and many other options.

The method of superimposition as presented here can also be applied to
systems having rolling contact, as in road vehicles and track-guided vehicles.
If these contacts are ideal, they impose, in addition to some holonomic con-
straints, also non-holonomic constraints on the system, which can be expressed
as constraints of special finite elements like the wheel on a surface. These new
element types and a procedure for formulating the equations of motion for such
flexible non-holonomic systems and their linearization are part of this thesis.

To implement these elements and methods in the spacar program system a
more versatile implementation was needed than the original fortran-iv version
started in 1980 by Van der Werff. After thorough investigation we, the author
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and J. P. Meijaard, decided to re-code the software in fortran77. Keeping in
mind an object oriented approach for the element procedures and using include-
files and parameters to define the global memory allocation, we came up with
an implementation, spacar95, which has proved its functionality over the past
years. Some of the ideas which helped the viability of this implementation can
be found in the “credo” part of the manual [72].

The outline of this thesis is as follows. In Chapter 2 the method of finite
element modelling as applied to flexible multibody systems is briefly described.
The equations of motion and their linearization for both holonomic and non-
holonomic constrained systems are derived. In Chapter 3 an extension to the
typical set of element types is presented. With the introduced belt (or cable)
and pulley pair and gear pair element a broad range of planar mechanisms and
machines can be analysed. The cylindrical bearing element and the redefined
three-dimensional cylindrical hinge element can be used for describing large
relative motion in the system. Finally two elements for describing rolling contact
are introduced, the two-dimensional wheel element or knife edge element and the
three-dimensional wheel element like a sharp edge bounded disk on a surface.
In the definition of the spatial element types finite rotations are described by
Euler parameters, in which a fruitful use of quaternion algebra is made. All
element types are illustrated with an appropriate engineering examples. In
Chapter 4 the solution techniques for the determination of the transient and
periodic solutions of the small vibration problem are presented. For the stability
analysis of the periodic solutions a method directly based on the Floquet theory
is used. The techniques are illustrated by examples with increasing complexity.
In Chapter 5 the effect of joint clearance on the dynamic response of a flexible
multibody system is discussed. Joint clearances due to manufacturing tolerances
and wear can seriously affect the dynamic response of multibody systems. In
unlubricated joints it is usually accompanied by rattling, excessive wear and
noise, caused by peak contact forces. A critical factor in the precise prediction
of the peak forces is the contact model being used. In this chapter a comparison
is made between a continuous and a discontinuous contact force model. For the
discontinuous model, impact with rebound, a method is presented to predict
the maximum impact force for given elastic joint material properties. Since
many of the joint clearances in mechanisms and machines are in lubricated
bearings, a comparison is made between an unlubricated and a hydrodynamic
lubricated bearing in a slider-crank mechanism. The effect of the joint clearance
on the dynamic response of the multibody system is handled with the concept
of small vibrations superimposed on non-linear rigid body motion as described
in Chapter 4.
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The work presented here is partly based on some of the earlier publications
of the author. Preliminary versions of the wheel element can be found in [68],
whereas some of the other special finite elements are presented in [70]. A mature
version of the wheel element together with methods for dynamic analysis of
flexible non-holonomic multibody systems are presented in [71]. The method
of superimposition was first published in [69] and found its final form in [73].
The part on the effect of joint clearance on the dynamic response of flexible
multibody systems is reproduced in [74].

As for the applied notation, algebraic vectors and matrices are denoted by
bold face symbols, where typically lower-case characters are used for vectors
and upper-case characters for matrices.



Chapter 2

Finite Element Modelling

On ne trouvera point de Figures dans cet Ouvrage. Les méthodes que

j’y expose ne demandent ni constructions, ni raisonnemens géométriques

ou méchaniques, mais seulement des opérations algébriques, assujetties

à une marche réguliere et uniforme. Ceux qui aimant l’Analyse, verront

avec plaisir la Méchanique en devenir une nouvelle branche, et me sauront

gré d’en avoir étendu ainsi le domaine.

No figures will be found in this work. The methods I present require
neither constructions nor geometrical or mechanical arguments, but solely
algebraic operations subject to a regular and uniform procedure. Those
who appreciate mathematical analysis will see with pleasure mechanics
becoming a new branch of it and hence, will recognize that I have enlarged
its domain.

(Joseph Louis Lagrange, Mécanique analitique)

The dynamics of multibody systems with deformable bodies may well be mod-
elled by finite elements. The finite element method is usually presented as a
numerical method for solving partial differential equations that describe con-
tinuum problems in structural mechanics and other fields. On the other hand,
one may look on a finite element description of a mechanical system and its
physical behaviour as a model in its own right. This latter approach has been
used successfully in the analysis of the strength and stiffness of structures and
has proved to be useful in the kinematic and dynamic analysis of mechanisms
and machines.

The distinguishing point in the finite element approach is the specification
of independent deformation modes of the finite elements, the so-called general-
ized deformations or generalized strains. These are the algebraic analogue to

5



6 Finite Element Modelling

the continuous field description of deformations. Rigid body motions are dis-
placements for which the generalized strains are zero. If the specification of the
generalized strains remains valid for arbitrary large translations and rotations,
rigid multibody systems such as mechanisms and machines can be analysed
by setting all generalized strains to zero. These strain equations are now the
constraint equations which express rigidity. Deformable bodies are handled by
allowing non-zero strains and specifying constitutive equations for the general-
ized stresses, which are the duals of the generalized strains.

Instead of imposing constraint equations for the interconnection of bodies,
which is a widespread approach in multibody system dynamics formalisms, per-
manent contact of elements is achieved by letting them have nodal points in
common. With the help of a rather limited number of element types it is possi-
ble to model a wide class of systems. Typical types of elements are beam, truss
and hinge elements, while more specialized elements can be used to model joint
connections and transmissions of motion.

This chapter is organized as follows. In Section 2.1 the formulation of the
equations of motion for flexible multibody systems is summarized. The rigid
body motion is treated in Section 2.2, whereas the linearized equations of mo-
tion, describing the small vibrations, are derived in Section 2.3. These for-
malisms are the basis for solution techniques of the small vibrations superim-
posed on the rigid body motion, as presented in Chapter 4. In Section 2.4 the
extension to the equations of motion and its linearization for flexible multibody
systems having non-holonomic constraints, as may arise from the condition of
rolling without slipping, are treated. Examples of such systems are presented
in Chapter 3 on special finite elements. A detailed description of the equations
of motion for both holonomic and non-holonomic systems and its linearization
which is well fitted for coding of the presented methods can be found in Ap-
pendix A.

2.1 Equations of Motion

In a finite element description of a multibody system the configuration is de-
scribed by a number of nodal points with coordinates x and a number of elements
with generalized deformations or generalized strains ε. The nodal coordinates
can be absolute coordinates of the position or parameters that describe the
orientation of the nodes. The generalized deformations depend on the nodal
coordinates and can be expressed as

ε = D(x). (2.1)
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Usually constraints are imposed on some generalized deformations and nodal
coordinates, which we assume, for the present section, to be holonomic. For
instance, the conditions for rigidity of element e are

εe = De(xe) = 0. (2.2)

If the constraints are consistent, the coordinates can locally be expressed as
functions of the generalized coordinates q, the kinematic degrees of freedom
(configuration coordinates), by means of a transfer function F as

x = F(q). (2.3)

The generalized coordinates can be chosen from components of the nodal coor-
dinate vector x and the generalized deformation vector ε. Generally the transfer
function cannot be calculated explicitly, but has to be determined by solving
the constraint equations numerically in an iterative way. Partial derivatives are
calculated by means of implicit differentiation.

The equations of motion for the constraint multibody system will be de-
rived from the principle of virtual power and the principle of D’Alembert. This
method can be traced back to Lagrange who by his monumental Méchanique

analitique [39] became the founder of the study of motion of systems of bodies.
First for each node and element in the system, we determine a mass matrix Me

and a force vector f e, which give a contribution to the virtual power of

δẋeT (fe −Meẍe). (2.4)

The unreduced equations of motion for the multibody system are obtained by
assembling the contribution of all elements and nodes in a global mass matrix
M and a global force vector f , which results in the virtual power equation

δẋT [f(ẋ,x, t)−M(x)ẍ] = 0. (2.5)

Here, δẋ are kinematically admissible virtual velocities, which satisfy all instan-
taneous kinematic constraints. The degrees of freedom can be split in prescribed
ones, qr, which are known explicit functions of time and represent the rheonomic
constraints, which are the prescribed input motions, and the dynamic degrees
of freedom qd. By differentiating the transfer function (2.3) we obtain

ẋ = F,qq̇, ẍ = F,qq̈ + F,qqq̇q̇, δẋ = F,qdδq̇d. (2.6)

Here a subscript comma followed by one or more variables denotes partial deriva-
tives with respect to these variables. The way in which higher-order derivatives



8 Finite Element Modelling

have to be multiplied by the juxtaposed vectors goes without saying. Substi-
tuting these expressions in the virtual power equation (2.5) yields the reduced
equations of motion

M̄(qd, t)q̈d = f̄(q̇d,qd, t), (2.7)

with the reduced global mass matrix,

M̄ = FT
,qdMF,qd , (2.8)

and the reduced global force vector,

f̄ = FT
,qd [−M(F,qqq̇q̇ + F,qr q̈r) + f ]. (2.9)

2.2 Nominal Rigid Body Motion

The nominal state of the multibody system for the small vibration superimpo-
sition method is that state in which all elements are assumed to be rigid. The
input motions qr are prescribed functions of time, usually periodic, and the dy-
namic degrees of freedom, qd, which describe the small vibration problem, are
identically equal to zero. In order to maintain these prescribed values for the
deformations, additional generalized forces, f d, dual to the generalized deforma-
tions qd have to be introduced in the right-hand side of the reduced equations
of motion (2.7) and the sum of all reduced forces has to be zero,

FT
,qd [−M(F,qrqr q̇rq̇r + F,qr q̈r) + f ] + fd = 0. (2.10)

From this equation the additional forces f d are found.

2.3 Linearized Equations of Motion

To describe the small vibration we have to linearize the equations of motion
about the nominal solution in which the deformation mode coordinates qd are
zero. Linearizing the reduced equation of motion (2.7) at qd = 0, q̇d = 0 and
q̈d = 0 results in

M̄∆q̈d + C̄∆q̇d + K̄∆qd = −fd + fda . (2.11)

Here M̄ is the system mass matrix from (2.8), C̄ is the velocity sensitivity
matrix and K̄ contains the stiffness terms; fd are the forces from (2.10) and
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fda represents additional applied forces. These may arise from independently
modelled elements or subsystems which were not included in the calculation of
the nominal solution, for instance actuators with a control system or bearings
and seals in rotor dynamics (see the example given in Section 4.4.3), and often
they represent the non-linear contribution to the small vibration problem. The
system mass matrix M̄ is symmetric, but C̄ and K̄ need not be so.

The matrices of the linearized equations are determined in the following way.
First, for all elements and nodes the contribution to the global stiffness matrix
K and the global velocity matrix C are determined as

Ce = −(fe),ẋe , Ke = (Meẍe − fe),xe . (2.12)

These global matrices having been determined, the matrices in the linearized
equations are given by

C̄ = FT
,qdCF,qd + 2FT

,qdMF,qdqq̇,

K̄ = FT
,qdKF,qd + FT

,qdqd [Mẍ− f ]+

FT
,qd [M(F,qdqq̈ + F,qdqqq̇q̇) + CF,qdqq̇].

(2.13)

The independently modelled elements or subsystems can be included in the small
vibration problem in a linearized form. For such an element e, the additional
reduced forces fdea follow from linearized constitutive equations and inertia terms
as

fdea = FeT
,qd(−Ke∆xe −Ce∆ẋe −Me∆ẍe + fe). (2.14)

The kinematics of such an additional element e are determined from the transfer
functions and the degrees of freedom as

∆xe = Fe
,qd∆qd,

∆ẋe = Fe
,qd∆q̇d + Fe

,qdq
q̇∆qd,

∆ẍe = Fe
,qd∆q̈d + 2Fe

,qdq
q̇∆q̇d + [Fe

,qdq
q̈ + Fe

,qdqq
q̇q̇]∆qd,

(2.15)

which yields the incremental displacements, velocities and accelerations. Sub-
stitution of these results in (2.14), expansion and collection of terms gives us
the contributions to the total reduced mass, velocity sensitivity and stiffness
matrices and the right-hand side of the linearized equations of motion.

The resulting set of linearized equations (2.11) is amenable to several kinds of
analysis. If the nominal motion is periodic and there are no non-linear terms in
the additional forces, the linear differential equations have periodic coefficients
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and periodic forcing. The solution techniques for the determination of periodic
solutions of these equations in closed form approximation, their stability and
transient solutions are described in Chapter 4. If there are non-linear additional
forces in the system, a simple shooting method as described by Meijaard [43, 45]
can be used to determine the periodic solutions of the periodic forced non-linear
system. Transient solutions can be found by direct numerical integration of the
equations of motion.

If the actual input motion is not fully described, as for instance in the case
of a motor driven mechanism with a given motor characteristic, the angular
deviation of this input from the nominal value can be included as an additional
dynamic deformation mode coordinate by putting two hinge elements in series.
The first hinge describes the nominal motion while the second hinge describes
the angular deviation.

2.4 Non-Holonomic Systems

The motion of mechanical systems having rolling contact, as in road vehicles
and track-guided vehicles, has intrigued the author from early childhood on.
In broadening our horizons we make use of different means of transport, evolv-
ing from tricycles, skates, scooters, bicycles, motor scooters and cars to trains,
ships and planes. The motion of each of these systems can be investigated ap-
proximately by a mechanical model having non-holonomic constraints. In the
excellent book by Nĕımark and Fufaev [55], the kinematics and dynamics of
non-holonomic mechanical systems are treated in great detail. They illustrate
the presented theory with worked-out examples, and the book has an elaborate
reference list with over 500 items.

The case of small vibrations and stability of conservative non-holonomic sys-
tems near equilibrium states has lead to some controversy in the past. Whittaker
concluded in his Analytical Dynamics [88, Section 90] that for such cases “the
difference between holonomic and non-holonomic systems is unimportant” and
that the vibration motion of a given non-holonomic system with n independent
coordinates and m non-holonomic constraints is the same as that of a certain
holonomic system with n−m degrees of freedom. Bottema [4] showed that these
conclusions are incorrect, and pointed out that the characteristic determinant
of a non-holonomic system is asymmetric and that the corresponding charac-
teristic equation possesses as many vanishing roots, as there are non-holonomic
constraints. However, besides a manifold of equilibrium states, non-holonomic
systems also possess a manifold of steady motion. Due to these non-zero motions
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some vanishing roots may get non-zero values.

The inclusion of the non-holonomic constraints in the dynamics of flexible
multibody systems as presented here, surpasses the conventional Lagrangian
multipliers approach by the introduction of generalized kinematic coordinates.
These coordinates, as many as there are non-holonomic constraints, describe
together with the degrees of freedom the configuration of the system, whereas
the velocities of the system in a given configuration are uniquely determined
by the velocities of the degrees of freedom. The derivation of the linearized
equations of motion is straightforward and they can, among other things, be
used to analyse the stability of a nominal steady motion.

2.4.1 Equations of Motion

Besides the non-holonomic constraints, we assume that there are also holonomic
constraints imposed on the system. The latter, as described in Section 2.1,
reduces the coordinates x to the independent generalized coordinates q by means
of a transfer function F as in

x = F(q, t). (2.16)

The prescribed motions, or rheonomic constraints, which are known explicit
functions of time, are represented here by the time t. The non-holonomic con-
straints, as may arise from elements having idealized rolling contact, can be
expressed in terms of zero slip functions. Such a slip function is usually defined
as some relative velocity between the two bodies in the contact area, and is
therefore linear in the velocities. For instance, if element e has non-slipping
components, it has to satisfy the constraints se = Ve(xe)ẋe = 0. Assembly of
all non-slipping components for the system results in the non-holonomic con-
straints

V(x)ẋ = 0. (2.17)

Owing to these constraints, the generalized velocities q̇ are now dependent.
This dependency is expressed by a splitting of the generalized coordinates q

into the degrees of freedom qd and the generalized kinematic coordinates qk.
The velocities of the system can now be expressed in terms of the first order
transfer function H times the velocities of the degrees of freedom and a term
representing the prescribed motion, as in

ẋ = H(q, t)q̇d + v(q, t). (2.18)



12 Finite Element Modelling

The expressions for the first order transfer function and the prescribed motion
terms are found by differentation of (2.16) and splitting of terms as in

ẋ = F,qd q̇d + F,qk q̇k + F,t, (2.19)

and substitution of this result in the non-holonomic constraints (2.17) resulting
in

V[F,qd q̇d + F,qk q̇k + F,t] = 0. (2.20)

From these equations, as many as there are kinematic coordinates qk, their
velocities q̇k can be solved as

q̇k = −(VF,qk)−1[VF,qd q̇d + VF,t]. (2.21)

Substitution of this result in (2.19) and comparing terms with (2.18) results in
the first order transfer function

H = [I− F,qk(VF,qk)−1V]F,qd , (2.22)

and the velocities v, representing the prescribed motion, as

v = [I− F,qk(VF,qk)−1V]F,t. (2.23)

In both expressions we identify the use of the inverse of the Jacobian of the non-
holonomic constraints with respect to the generalized kinematic coordinates

VF,qk . (2.24)

If this Jacobian is singular, we have to choose another set of generalized kine-
matic coordinates and consequently another set of degrees of freedom to describe
the system uniquely. Having taken into account all constraints we can define
the state of the system as

(q̇d,qd,qk, t). (2.25)

Next we will treat the dynamics of the system; the transition of the system with
respect to time or, in other words, the time derivative of the state of the system.

The derivative of the first part of the state vector, q̇d, with respect to time
follows from the equations of motion of the system. In the generation of the
equations of motion, for each node and element, we determine a mass matrix
Me and a force vector f e, which give a contribution to the virtual power of

δẋeT (fe −Meẍe) (2.26)
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The virtual power equation of the system is obtained by assembling the contri-
bution of all elements and nodes in a global mass matrix M and a global force
vector f , which results in

δẋT [f(ẋ,x, t)−M(x)ẍ] = 0. (2.27)

Here, δẋ are kinematically admissible virtual velocities, which satisfy all instan-
taneous kinematic constraints. They follow directly from (2.18) as

δẋ = Hδq̇d. (2.28)

The coordinate accelerations are obtained by differentation of the velocities
(2.18), resulting in

ẍ = H(q, t)q̈d + g(q̇,q, t), (2.29)

where we have collected all convective and prescribed accelerations in the g

terms. These accelerations, which depend only on the state of the system, are
given by

g = H,qq̇
dq̇ + H,tq̇

d + v,qq̇ + v,t. (2.30)

Substitution of the acceleration (2.29) in the virtual power equation (2.27) yields
the reduced equations of motion

M̄(qd,qk, t)q̈d = f̄(q̇d,qd,qk, t), (2.31)

with the reduced global mass matrix,

M̄ = HTMH, (2.32)

and the reduced global force vector,

f̄ = HT [f −Mg]. (2.33)

The time derivative of the second part of the state vector, qd, is obviously
the first part of the state vector itself. The time derivative of the generalized
kinematic coordinates, qk, as found in (2.21), can in general be expressed as

q̇k = A(q, t)q̇d + b(q, t), (2.34)

where the matrix A and the velocity vector b, which represents the velocities
of the rheonomic constraints, are given by

A = −(VF,qk)−1VF,qd , and b = −(VF,qk)−1VF,t. (2.35)
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Note in both expressions the presence of the inverse of the Jacobian (2.24).
We summarize by writing down the time derivative of the state vector or the

state equations as

d

dt





q̇d

qd

qk



 =





M̄−1f̄

q̇d

Aq̇d + b



 (2.36)

2.4.2 Linearized Equations of Motion

To describe the small vibrations or motions which are superimposed on the non-
linear rigid body motion we have to linearize the dynamical equations (2.36) in
the undeformed state with respect to deformation mode coordinates of those el-
ements we assume deformable and the generalized kinematic coordinates. The
deformation mode coordinates are chosen to be the degrees of freedom qd. Lin-
earization of the first part of the state equations (2.36), the reduced equations
of motion (2.31), results in

M̄∆q̈d + C̄∆q̇d + K̄d∆qd + K̄k∆qk = −fd, (2.37)

where the prefix ∆ denotes a small increment. The case of additional forces
fda as in (2.11) will not be considered here. The linearization is done in the
undeformed state which is characterized by (q̇d,qd,qk) = (0,0,qk

0), where qk
0

stands for the kinematic coordinates in the reference state. M̄ is the reduced
mass matrix as in (2.32), C̄ is the velocity sensitivity matrix which contains
terms resulting from damping and gyroscopic effects, K̄d and K̄k are the to-
tal stiffness matrices. Note that the variation of these kinematic coordinates
gives rise to an extra stiffness term in comparison with the pure holonomic case
(2.11). The forcing, −fd, on right-hand side of the equations results from the
rigid body fundamental solution. In order to maintain the prescribed values for
the deformations and the kinematic coordinates during this motion, additional
forces have to be introduced in the right-hand side of the reduced equations of
motion (2.31). The sum of the reduced forces has to be zero, as in

HT [f −Mg] + fd = 0, (2.38)

from which the forces fd are found.
The matrices of the linearized equations are determined in the following way.

First for all elements and nodes the contribution to the global stiffness matrix
K and the global velocity matrix C are determined as

Ce = −(fe),ẋe and Ke = (Meẍe − fe),xe . (2.39)
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These global matrices having been determined, the matrices in the linearized
equations are given by

C̄ = HTCH + HTMg,q̇d ,

K̄ = [K̄d K̄k] = HTKF,q + HT
,q[Mẍ− f ] + HT [Mg,q + Cv,q].

(2.40)

Note that all matrices are generally a function of time due to the non-linear rigid
body motion. Linearization of the second part of equation (2.36) is trivial. The
last part, the linearization of the rate of the generalized kinematic coordinates
is derived from (2.34) as

∆q̇k = A(q, t)∆q̇d + Bd(q, t)∆qd + Bk(q, t)∆qk. (2.41)

The B-matrices express the sensitivity of the generalized kinematic velocities
with respect to the generalized coordinates, and are given by

Bd(q, t) = b,qd and Bk(q, t) = b,qk (2.42)

We conclude by summarizing the linearization of the state equations in ma-
trix vector form as




M̄ 0 0

0 I 0

0 0 I









∆q̈d

∆q̇d

∆q̇k



+





C̄ K̄d K̄k

−I 0 0

−A −Bd −Bk









∆q̇d

∆qd

∆qk



 =





−f̄d

0

0



 .

(2.43)
The stability of a system in steady motion can be investigated by the ho-
mogeneous linearized state equation from (2.43). Under the usual assump-
tion of an exponential motion with respect to time for the small variations
(∆q̇d,∆qd,∆qk)T we end up with a characteristic equation for the unknown
exponents. The stability of an equilibrium state, the case of zero steady motion
as investigated by Bottema [4], corresponds to vanishing B-matrices and evi-
dently results in vanishing roots, as many as there are kinematic coordinates or
non-holonomic constraints. An example of the stability analysis of a steady mo-
tion is the application to a swivel wheel, as presented in the chapter on special
finite elements, in Section 3.5.2.
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Chapter 3

Special Finite Elements

. . . ‘and what is the use of a book,’ thought Alice, ‘without pictures or
conversation?’

(Lewis Carroll, Alice’s Adventures in Wonderland)

With the help of a rather limited number of element types it is possible to model
in a finite element approach, a wide class of flexible multibody systems. Typical
types of elements are beam, truss and hinge elements, while more specialized
elements can be used to model joint connections, transmissions of motion or
rolling contact. In this chapter an extension to the typical set is presented.
These special finite elements are: the planar cylindrical bearing, the planar belt
and pulley pair, the planar gear pair, the spatial hinge, and the disk rolling on
an arbitrary surface, both in planar and spatial version. Every element type is
illustrated by a suitable example problem.

3.1 Cylindrical Bearing

The planar cylindrical bearing element is very useful for the modelling of multi-
body systems having a compliant joint or joint clearance. Usually the relative
displacements in the joint are small in comparison with the overall dimension of
the mechanism. By the introduction of a bearing element in a joint the effect of
these displacements on the kinematic and dynamic behaviour of the mechanism
can be analysed.

The layout of a planar cylindrical bearing element is shown in Figure 3.1.
The position and orientation of the sleeve are given by the coordinates xp and
yp and the angle βp + β0

p , expressed in a global inertial system Oxy. For the

17
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journal these are respectively xq, yq and βq+β
0
q . The angles β

0
p and β0

q represent
the initial orientations of the sleeve and the journal. The bearing element,

x

y

o

sleeve

journal

p

q
x’

y’ x"y"

ε1

ε2

βp + β0
p

βq + β0
q

Figure 3.1: Planar cylindrical bearing element.

consisting of the journal and the sleeve, has 3 degrees of freedom as a rigid
body, while the positions and orientations of the nodes, grouped together in a
vector xT = (xp, yp, βp, xq, yq, βq), represent 6 degrees of freedom. Hence the
deformation of the element can be defined by 3 independent generalized strains,
which are functions of the positions and orientations of the nodes p and q. We
define these strains, ε = D(x), as

ε1 = (xq − xp) cos(βp + β0
p) + (yq − yp) sin(βp + β0

p),

ε2 = (yq − yp) cos(βp + β0
p)− (xq − xp) sin(βp + β0

p),

ε3 = (βq + β0
q )− (βp + β0

p).

(3.1)

The first generalized strain, ε1, is the horizontal displacement of the journal
relative to the moving frame of the sleeve. The second strain, ε2, is the corre-
sponding vertical displacement. The relative rotation of the journal with respect
to the sleeve is the third generalized strain. A rotational joint without clearance
can now be modelled by a bearing element with ε1 and ε2 set to zero and ε3
let free to deform. The first two generalized strains, the relative displacements
in the joint, can also be very useful in the analysis of the effect of small joint
clearance on the behaviour of a multibody system.

The dual quantities of the generalized strains ε, are the generalized stresses
σ, and can be interpreted from the element equilibrium conditions f = DT

,xσ.
The first two generalized stresses σ1 and σ2 are the horizontal and the vertical
bearing force with respect to the moving frame of the sleeve. The third stress,
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σ3, is the torsion moment in the bearing. Each individual strain can be assumed
either zero or non-zero, representing respectively the rigid and the deformable
case. In the deformable case, or in the case of a lubricated bearing, a constitutive
equation for σ has to be applied.

An example of the application of the planar cylindrical bearing element is the
analysis of the slider-crank mechanism with joint clearance from Section 4.4.5.
Another, more widespread application of the element with different types of
constitutive behaviour, can be found in Chapter 5; it presents a study on the
effect of joint clearance on the dynamic behaviour of mechanisms and machines.

3.2 Belt and Pulley Pair

The planar belt and pulley pair element consists of two pulleys with constant
radius and one half, or open, belt as shown in Figure 3.2. The definition of an

x

y

o

p

q

l

tn

a

b

|rp|

|rq|

α

δ

βp + β0
p

βq + β0
q

Figure 3.2: Planar belt and pulley pair element.

open belt makes it possible to create serpentine belt systems by putting the belt
and pulley pair elements in series. The serpentine belt system can be closed by
taking at the start and at the end of the serpentine belt the same nodal position,
orientation, and pulley radii. The open belt configuration can also be looked
upon as a straight cable running on and off two cable drums.

The configuration of the element is defined by the positions and orientations
of the two pulleys and the initial belt length. The position and orientation of
pulley p are given by the coordinates xp and yp , and the angle βp+β

0
p , expressed

in a global inertial system Oxy. For pulley q these are respectively xq, yq and
βq + β0

q . The angles β0
p and β0

q describe the initial orientations of the pulleys.
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The element, consisting of two pulleys and an inextensible belt, has 3 degrees
of freedom as a rigid body, while the positions and orientations of the nodes,
grouped together in a vector xT = (xp, yp, βp, xq, yq, βq), represent 6 degrees of
freedom. Hence the deformation of the element can be defined by 3 independent
generalized strains. However, we only define one strain, the elongation of the
belt between the two pulleys. The fixation, if needed, of the two remaining
deformation modes, like for instance the fixation of the distance between p and
q and a fixed orientation of pulley p, can be achieved by other construction
elements. The belt is assumed to come into contact with pulley p at a and leave
pulley q at b or vice versa, and we assume no slip. From this configuration two
angles and one distance can be calculated, the angle α between the centre line
and the x-axis, the angle δ between the belt and the centre line and the distance
l between the two pulley centres, see Figure 3.2, as

tanα =
yq − yp
xq − xp

, sin δ =
rq − rp

l
, and l =

√

(xq − xp)2 + (yq − yp)2.
(3.2)

The configuration for positive pulley radii rp and rq is shown in Figure 3.2,
whereas a change of sign in the radii changes the configuration from upper to
lower belt or with only one radius negative, to a cross-belt situation. With no
slip, the rate of change of length of the belt between the pulleys, which is the
velocity difference in the tangential direction t of the belt of point a and b, is

ε̇ = cos(α+ δ)(ẋq − ẋp) + sin(α+ δ)(ẏq − ẏp)− β̇qrq + β̇prp. (3.3)

If this generalized strain rate originates from a holonomic condition then the
partial derivatives according to ε̇ = (∂ε/∂xi)ẋi must be

∂ε

∂xi
= D,i = (− cos(α+ δ),− sin(α+ δ), rp, cos(α+ δ), sin(α+ δ),−rq). (3.4)

It is easily checked that the second order partial derivatives of ε are symmetric,
ε,ij = ε,ji which is a sufficient proof that ε is a holonomic condition. The
expression for ε can be found by partial integration of equation (3.4). In this
way we come up with the following definition of the generalized strain for the
belt and pulley pair element,

ε =
√

(xq − xp)2 + (yq − yp)2 − (rq − rp)2 + rpβp− rqβq +(rq− rp)(α+ δ)− l∗0 .
(3.5)

The value of l∗0 is a constant determined in the initial configuration such that ε
equals zero; it is a kind of initial belt length. In the generalized strain definition
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of equation (3.5) we clearly distinguish the first part as the distance between
point a and b,

lab =
√

(xq − xp)2 + (yq − yp)2 − (rq − rp)2. (3.6)

The second part, rpβp− rqβq, is the change in belt length due to the rotation of
the two pulleys. The last part, (rq − rp)(α+ δ), describes the effect on the belt
length due to the change of orientation of the element as a whole at constant
pulley orientation. The generalized strain from equation (3.5) is invariant under
arbitrary rigid body motions, and it describes the amount of elongation in the
non-slipping belt between the two pulleys.

The generalized stress σ, the dual of ε̇, can be interpreted from the el-
ement equilibrium condition f = DT

,xσ. With the nodal force vector fT =
(Fxp, Fyp,Mp, Fxq, Fyq,Mq) written out in components as

















Fxp

Fyp

Mp

Fxq

Fyq

Mq

















=

















− cos(α+ δ)
− sin(α+ δ)

rp
cos(α+ δ)
sin(α+ δ)
−rq

















σ, (3.7)

the generalized stress σ is interpreted as the tensile force in the belt.
The usual linear relation between the physical stress and strain in the belt

can be applied to the belt between the contact points a and b yielding for the
generalized stress

σ = Sε, with S = EA/lab. (3.8)

Here, E is the modulus of elasticity (Young’s modulus), A is the area of cross-
section and lab the length of the belt between the two contact points a and b
according to equation (3.6). Note that with this constitutive model there is no
conservation of energy in the belt system. The elastic energy from a deformed
belt with finite length wounded under tension on a pulley is lost when the
belt is subsequent unwound under zero tension. If on the other hand the belt
is wounded undeformed under zero tension and next unwound under tension,
energy is gained. For a serpentine belt system the model is approximately right
but care should be taken in other cases.

The derivation of the consistent mass formulation for the flexible belt and
pulley pair element is based on the elastic line concept. This means that rota-
tional inertia of the cross-section is neglected and moreover only the longitudinal
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vibration of the belt is taken into account. If we want to describe the lateral vi-
bration of the belt extra deformation modes and consequently extra coordinates
have to be taken into account. In the inertia contribution we can distinguish
two parts, the mass of the belt wound at pulley p and at pulley q, and the belt
between the contact points a and b. We start with the latter. The interpolation
on the elastic line between a and b is now taken to be

r(ξ) = (1− ξ)xa + ξxb, (3.9)

where ξ is a normalized material co-ordinate along the elastic line, 0 ≤ ξ ≤ 1.
The inertia terms are obtained by equating the virtual power integral of the dis-
tributed inertia forces with the nodal inertia forces for arbitrary virtual velocity
fields, yielding

−ρAlab
∫ 1

0

(δṙ · r̈) dξ = δẋ · fin. (3.10)

Note that ρAlab stands for the total mass of the cable between the contact
points a and b. The nodal inertia forces according to d’Alembert, fin, are
usually written as

fin = −(Mẍ + h), (3.11)

where h originates from the convective inertia terms. The velocity of a material
point of the belt on the elastic line is according to (3.9) given by

ṙ(ξ) = (1− ξ)ẋa + ξẋb, (3.12)

where the velocities of the belt at the contact points a and b expressed in terms
of the nodal point velocities are determined by

ẋa = ẋp − β̇prpet
ẋb = ẋq − β̇qrqet,

(3.13)

with the unit tangent belt direction, et ,given by

eTt = (cos(α+ δ), sin(α+ δ)). (3.14)

From these results the accelerations r̈(ξ) can be calculated and the integral
(3.10) can be evaluated. Equating the result with (3.11) results in a mass
matrix for the belt as

Mbelt =
ρAlab
6

















2 0 −2crp 1 0 −crq
2 −2srp 0 1 −srq

2r2p −crp −srp rprq
2 0 −2crq

2 −2srq
sym. 2r2q

















, (3.15)
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and convective inertia forces

hbelt =
ρA

6

















−svn(2rpβ̇p + rqβ̇q)

cvn(2rpβ̇p + rqβ̇q)
0

−svn(rpβ̇p + 2rqβ̇q)

cvn(rpβ̇p + 2rqβ̇q)
0

















. (3.16)

Here we have used the shorthand notation

s = sin(α+ δ), and c = cos(α+ δ), (3.17)

and the component of the velocity of node q with respect to node p normal to
the direction of the belt has been indicated as

vn = s(ẋq − ẋp)− c(ẏq − ẏp). (3.18)

The next step is the mass contribution of the belt wound on the two pulleys.
Let us assume that in the initial state the amount of belt wound on pulley p
measured from contact point a, counterclockwise, has a total length of rpκp and
for pulley q measured from contact point b, clockwise, a length of rqκq. By
using the same approach as in equation (3.10) this results for the pulleys p and
q in a mass matrix

Mpulleys = ρA

















rpφp 0 −r2pcsp 0 0 0
rpφp −r2pssp 0 0 0

r3pφp 0 0 0
−rqφq 0 r2qcsq

−rqφq r2qssq
sym. −r3qφq

















, (3.19)

and convective inertia forces

hpulleys = ρA

















r2psspβ̇
2
p

−r2pcspβ̇2
p

0

−r2qssqβ̇2
q

r2qcsqβ̇
2
q

0

















, (3.20)
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where
φi = βi + κi − (α+ δ) + (α0 + δ0),
csi = 2 cos(φi/2 + (α+ δ)) sin(φi/2),
ssi = 2 sin(φi/2 + (α+ δ)) sin(φi/2), i = (p, q).

(3.21)

The orientation of the belt in the initial state is determined by α0+δ0. The total
mass matrix and convective inertia forces for the belt and pulley pair element
are given by the sums M = Mbelt+Mpulleys and h = hbelt+hpulleys. Additional
mass and inertia of the pulleys can be added to the system as lumped mass and
inertia in the nodes. An alternative approach for the derivation of the inertia
terms which makes use of the kinetic energy expression for the element can be
found in Appendix A starting on page 109.

Note the effect of the individual mass matrices of the pulleys on the system
mass matrix in the case of a serpentine belt and pulley system. Under the
assumption of equal radii r and equal angle of revolution φ, pulley q of element
i gives a negative contribution on the main diagonal and pulley p from element
i+1 has positive diagonal terms. The sum −rqφq + rpφp, which appears on the
diagonal of the system mass matrix, is constant. Mass is created nor destroyed.

3.2.1 Cable Drum

The changing mass distribution in a belt and pulley pair system is illustrated by
the rolling motion of an unwinding cable drum, see Figure 3.3. On a drum with
radius r, a cable with mass m per revolution is wound. The drum can roll over a

ϕ

Figure 3.3: Rolling and unwinding cable drum.

horizontal plane while one end of the cable is fixed to the ground, resulting in the
unwinding of the cable. Given an initial speed, the drum will lose mass and gain
speed. To illustrate the effect of the changing mass distribution on the motion
of the drum we neglect the mass of the drum and we do not consider gravity.
The cable is modelled as inextensible. Under these assumptions the system is
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energy conservative since the belt touches the ground with zero velocity during
the unwinding motion.

The system is modelled by one belt and pulley pair element, with rp = 0
and rq = −r. Node p is fixed in position and orientation while node q is
only restricted in the vertical direction. Then the remaining coordinates, the
horizontal position x of the drum centre and the rotation ϕ of the drum are
constrained by the inextensible cable, which takes in this case the simple form of
x = rϕ. As a degree of freedom we take the angle ϕ. In the initial configuration
the drum is wound with 10 turns of cable and the initial angular velocity of the
drum is ω0.
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Figure 3.4: Angular velocity ϕ̇ and angular acceleration ϕ̈ of the cable drum
during unwinding as a function of the number of revolutions n of the drum,
with initially 10 turns of cable on the drum and an initial angular speed of ω0.

The ever increasing angular velocity of the drum during unwinding of the
cable is shown in Figure 3.4. At the end of the 10th turn of the drum its
angular velocity goes to infinity since the drum itself has no mass. This result
from the model can easily be checked with the conservation of kinetic energy
of the system. Consider an infinitesimal part dm of the cable located at the
angle θ, counterclockwise and starting at the contact point. The square of the
velocity of this particle is

v2 = 2(ϕ̇r)2(1− cos θ). (3.22)

Summing up the kinetic energy contribution 1/2v2dm of all particles from θ = 0
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Figure 3.5: Cable tension F and normal force N exerted by the ground on the
system during unwinding of the cable as a function of the number of revolutions
n of the drum, with initially 10 turns of cable on the drum and an initial angular
speed of ω0.

to θ = 20π − ϕ, results in the total kinetic energy T of the system as

T = (10− ϕ

2π
+

1

2π
sinϕ)mr2ϕ̇2. (3.23)

The angular acceleration of the drum in the model, ϕ̈, which is shown in the
same figure, oscillates with increasing amplitude and is zero after each full turn.
The forces exerted by the ground on the cable and the drum in the model are
shown in Figure 3.5. The cable tension F exhibits of course the same behaviour
as the angular acceleration while the normal force N , exerted by the ground on
the drum, oscillates with ever increasing amplitude around zero. The negative
values of this contact force can only be achieved by a slotted guide way or a
gravitational pre-stress.

3.3 Gear Pair

An interesting thing happens when one of the radii of the belt and pulley pair
element is negative, for instance rp, and the other radius is positive. This
configuration, which is shown in Figure 3.6, is a model of a spur gear pair with
involute teeth. The radii of the base circles of the involute tooth profiles are
given by |rp| and |rq|. The line of action or contact, is from a to b and the
pressure angle αn is π/2− δ.
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Figure 3.6: Spur gear pair with involute teeth.

For the generalized strain ε, which represents the deformation of the engaged
teeth, we take the change of distance between point a and b. This definition
of the generalized strain is the same as in the belt and pulley pair element,
equation (3.5). In gear design we are used to the concept of transmission ratio
i, pressure angle αn and centre distance l. From these parameters the two radii
rp and rq can be calculated as,

rp = ± l cosαn

1 + i
, and rq = −irp. (3.24)

The generalized stress σ is the normal tooth force working along the line of
action a-b. If a tensile tooth force is found during the simulation, the sign of the
pressure angle can be changed to obtain a compressive contact force. The line of
action is then mirrored with respect to the centre line. The sign of the pressure
angle can be changed by changing both signs of the base circle radii. The nodal
forces expressed by the element equilibrium equations f = DT

,xσ (3.7), with the
gear parameters i and αn from (3.24), and in the case of a horizontal centre line
(α = 0), are given by

















Fxp

Fyp

Mp

Fxq

Fyq

Mq

















=

















− sinαn

− cosαn

rp
sinαn

cosαn

irp

















σ. (3.25)

In these expressions we recognize the driving torques σrp and iσrp, and the
horizontal force with magnitude σ sinαn, which push the wheels apart. In the
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case of deformable teeth, the stress-strain relation can for instance be described
by a Hertzian contact model with an elliptic contact area.

p q

l

a

b |rq|

|rp|

αn

βq
βp

Figure 3.7: Spur gear pair with external (pinion) and internal (annulus) teeth.

Not only spur gear with external teeth but also internal gear, as shown in
Figure 3.7, can be modelled by choosing the appropriate rp, rq and l. Note that
in the general case of a pinion and annulus pair, as shown in Figure 3.7, the
transmission ratio i is negative, and the base circle radii have the same sign.

a

b

c

d

l

|rp|
|rq|

(I)

a

b

l

|rp|
|rq|

(II)

Figure 3.8: Belt drive and gear pair configurations, as summarized in Table 3.1.

rp rq (I): |rp|+ |rq| < l (II): |rp − rq| < l
a + + Belt Internal Gear
b – – Belt Internal Gear
c – + Belt or External Gear –
d + – Belt or External Gear –

Table 3.1: Belt drive and gear pair configurations, as shown in Figure 3.8.

Potential belt drive and gear pair configurations are shown in Figure 3.8 and
summarized in Table 3.1. The combination where one base or pulley circle is
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completely enclosed by the other, as is the case for |rq − rp| > l, represents no
physical belt drive or gear pair.

The mass and inertia of the individual gears can be added to the system as
lumped mass and inertia in the nodes.

3.3.1 Application to a Step-Dwell Mechanism

As an example of the application of the belt and pulley pair and the gear pair
element we will analyse the step-dwell mechanism with tooth belt as described
by Rankers [61]. This mechanism has the advantage of a large displacement
between two dwells in comparison with the overall dimension of the construction.
The mechanism, which is shown in Figure 3.9, consists of a serpentine tooth

s

P
P1

A

G

P2

P3P4

P5
r

r

ϕ

Figure 3.9: Step-dwell mechanism with tooth belt.

belt running over five pulleys P1 to P5, driven by an isosceles slider-crank
mechanism. The slider-crank mechanism is materialized by its dual form, a
hypocycloidal gear pair with a transmission ratio of i = 2. The annulus A, with
pitch radius r, is fixed and the centre path of the pinion P , with pitch radius
r/2, is generated by a crank. The driven pulley P1, with radius r, is rigidly
attached to the pinion in the imaginary slider position, in which manner it will
move back and forth while rotating. The remaining four pulleys, P2 to P5 with
radii r/2, are hinged to the base. A fixed guide way G prevents the tooth belt
from disengaging. The tooth belt is assumed to be inextensible.

As a first result of the analysis, the belt displacement s as a function of the
crank angle ϕ is shown in Figure 3.10a. Note the rest in the belt motion at
ϕ = 90◦ and the large displacement, 2πr, after one crank revolution.

Secondly, the driving torque M and the normal tooth force σ in the gearing
are shown in Figure 3.10b, in the case where the mechanism is driven by a



30 Special Finite Elements

 0 90 180 270 360
  0

1/4

1/2

3/4

  1

Crank angle ϕ [degrees]
(a)

s  [2πr]

 0 90 180 270 360
-2

-1

 0

 1

 2

Crank angle ϕ [degrees]
(b)

M [mω2r2],  σ [mω2r]

M

σ

Figure 3.10: Belt displacement s (a), and crank driving torque M and normal
tooth force σ in the gearing (b), as a function of the crank angle ϕ for a step-dwell
mechanism.

constant angular velocity of ϕ̇ = ω. The pinion and pulleys are assumed to
be solid disks with equal thickness and density. The reference mass of pulley
P1 with radius r is m, whereas the pinion P and the pulleys P2 to P5 have
radius r/2 and consequently a mass of m/4. The moments of inertia about the
mass centre are respectively 1/2mr2 and 1/32mr2. The hypocycloidal gear pair
has a pressure angle of αn = 20◦, and the tooth belt is assumed massless. The
inextensible serpentine belt with fixed positioned pulleys P2 to P5 is a statically
indeterminate system. The redundant constraint is removed by releasing one
belt and pulley pair element, for instance the belt between pulley P3 and P4.

3.4 Spatial Hinge

Whereas in the planar case a cylindrical joint between two elements can be es-
tablished by those elements having one position node in common and having
different orientations at that node, this is not possible in the spatial case. We
would end up with a spherical joint which has three independent relative ro-
tations. There is need for a spatial cylindrical joint which can describe large
relative rotation, the hinge element.

The description of orientation in space, to be precise, the parameterizations
of the three by three rotation matrix R, has been given a long and intensive
study by many authors over the last centuries. The choice of Euler parame-
ters [5] seems very fruitful, they show no singularity and the rotation matrix
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is a homogeneous quadratic function in the parameters. According to Euler’s
theorem on finite rotation, a rotation in space can always be described by a
rotation along a certain axis over a certain angle. With the unit vector eµ rep-
resenting the axis and the angle of rotation µ, right-handed positive, the four
Euler parameters q = (q0, q1, q2, q3) can be interpreted as

q0 = cos(µ/2) and q = (q1, q2, q3)
T = sin(µ/2)eµ. (3.26)

These four parameters are dependent and satisfy the constraint equation

q20 + q · q = 1. (3.27)

Such a constraint is added to the system, for every spatial node, with a defor-
mation parameter

εq = q20 + q · q− 1, (3.28)

and putting this deformation equal to zero. Euler parameters are, due to their
unit length defined by

|q| =
√

q20 + q21 + q22 + q23 , (3.29)

a special case of quaternions; they are unit quaternions. The Euler parameters
for successive rotations are given by the quaternion product of the Euler param-
eters describing the individual rotations. The properties of quaternions and its
calculus together with the application to finite rotations, as in the case of Euler
parameters, and the derivation of the equations of motion for the rotation of a
rigid body in terms of Euler parameters, is treated in Appendix B. Some results
will be repeated here.

The hinge element describes the relative rotation between two spatial rota-
tional nodes p and q. This element can be used to model a cylindrical joint
between two parts. For this element, there are six independent nodal coordi-
nates and three rigid body motions, so three independent deformations can be
defined. If the rotations of the two nodes are described by means of the Euler
parameters p = (p0,p) and q = (q0,q), with the unit quaternion properties
|p| = 1 and |q| = 1, the relative rotation of node q with respect to node p can
be described by the Euler parameters r = (r0, r). The sequence of rotation,
first with r and then with p, is expressed in terms of the quaternion product,
denoted by ‘◦’, as

p ◦ r = q. (3.30)

The quaternion product is defined in terms of a combination of scalar and vector
products as

p ◦ r = (p0r0 − p · r, p0r + r0p + p× r). (3.31)
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Note that this product is non-commutative. With the adjoint Euler parameters
p = (p0,−p), and the knowledge that p ◦ p = (1,0) is the unit element, the
relative rotation r can be written as

r = p ◦ q. (3.32)

These are the relative rotations expressed in components with respect to a global
Oxyz reference frame. Usually the hinge is initially oriented according to a local
reference frame (ex, ey, ez). The Euler parameters expressed in this frame are
given by

s = (s0, s) = (r0, r · ex, r · ey, r · ez). (3.33)

The three generalized strains of the hinge element are defined as

ε1 = 2arctan (s1/s0),
ε2 = 2(s0s2 − s1s3),
ε3 = 2(s1s2 + s0s3).

(3.34)

If we use the hinge to model a cylindrical joint, ε1 represents the large relative ro-
tation along the joint axis ex, and ε2 and ε3 represent the bending ψ of the joint
axis with sinψ =

√

ε22 + ε23 in a plane perpendicular to the joint axis. The rela-
tive rotation can be thought to be built up from two successive rotations. First, a
rotation about the local ex axis over an angle ϕ and then a rotation over an angle
ψ about a line perpendicular to the ex axis. This line can be denoted by the unit
vector n = (0, ny, nz) expressed in components along the rotated p−frame. The
Euler parameters for the first rotation are given by u = (cos(ϕ/2), sin(ϕ/2), 0, 0)
and for the second rotation by v = (cos(ψ/2), 0, ny sin(ψ/2), nz sin(ψ/2)). The
relative rotation of the hinge is given by

s = v ◦ u =









cos(ψ/2) cos(ϕ/2)
cos(ψ/2) sin(ϕ/2)

ny sin(ψ/2) cos(ϕ/2) + nz sin(ψ/2) sin(ϕ/2)
−ny sin(ψ/2) sin(ϕ/2) + nz sin(ψ/2) cos(ϕ/2)









. (3.35)

From this relative rotation the generalized deformations according to equations
(3.34) are calculated as ε1 = ϕ, the rotation along the hinge axis, and ε2 =
ny sinψ and ε3 = nz sinψ, the bending of the joint axis. It is interesting to see
that a bended hinge can still rotate over an arbitrary angle.

The generalized stresses σ can be identified as the joint moment σ1 along the
joint axis and the bending moment (0, σ2, σ3) perpendicular to the joint axis.
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3.4.1 Application to a Cardan Joint

An application of the hinge element is the Cardan joint. This joint, also known
as Hooke’s joint or cross-type universal joint, has been used as a shaft coupling

γ

ωout

ωin
A

C

B

x

y

z

Figure 3.11: Cardan joint with an angular misalignement γ in the xy-plane.

in a wide range of machinery, which include locomotive as well as automotive
drive lines. A drive line connected by a Cardan joint may exhibit torsional
oscillations due to fluctuating angular velocity ratios, which are inherent to the
system.

Figure 3.11 shows a one-degree-of-freedom shaft system incorporating a Car-
dan joint with an angular misalignment γ in the xy-plane. A straightforward
model of the mechanism with four sequential hinges is shown in Figure 3.12a.
The first hinge, marked in, describes the rotation of the input axle with respect

x

y

z

(a)

in
A

CB

out γ

γ

ε3-in

ε2-out

(b)

in
C

out
γ

Figure 3.12: A straightforward (a) and an alternative (b) finite element model
of a Cardan joint with an angular misalignement γ in the xy-plane.

to the inertia frame. The relative rotation of the cross ACB with the input and
the output yoke is modelled by the hinges A and B. The rotation of the output
shaft is modelled by the hinge marked out. The rotations of the hinges A, B
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and out are released in their principal joint direction.
An alternative model of the mechanism with only two flexible hinges is shown

in Figure 3.12b. The bending deformation of the input hinge along the local
z-axis, ε3−in, is released and takes over the function of hinge A from model a.
Hinge B is replaced by the released bending deformation of the output hinge
along the local y-axis, ε2−out. The motion of the cross ACB is described by
the coordinate frame in C. Since the hinge deformations are expressed in the
principal directions of the frame attached to the first node of the element, the
first node for both the input and the output hinge is in C.
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Figure 3.13: Angular velocity ratio ωout/ωin as a funtion of the input shaft angle
for a Cardan joint with an angular misalignement of γ = 45◦.

The angular velocity ratio, ωout/ωin, for this last model is shown in Figure
3.13, and corresponds fully with the results as obtained for the straightforward
model with four hinges. The joint rotations for the hinges A and B, representing
the rotation of the cross with respect to the input and the output yoke, is shown
in Figure 3.14a. The corresponding bending strains from the alternative model
are shown in Figure 3.14b, and, according to the element description from the
previous section, are equal to the sine of the joint rotations in the hinges A
and B.

3.5 Two-Dimensional Wheel

The two-dimensional finite wheel element is a model of an infinitesimally thin
disk with constant radius r standing upright on a horizontal plane. The position
and orientation of the wheel can be described by the position of the centre of
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Figure 3.14: Joint rotations (a) of hinge A and B as in model a and bending
strains (b) of the input and output shaft for model b as a function of the input
shaft angle of a Cardan joint with an angular misalignement of γ = 45◦ .

the wheel axis xc = (xc, yc), the orientation angle β of the wheel axle and the
rotation angle γ about the wheel axle. In the case of pure rolling, we need four

γ

β
r

(xc ,yc )
ed

ew

O x

y

Figure 3.15: Two-dimensional wheel element.

coordinates to describe the position and orientation, while the contact condition
imposes two non-holonomic constraints on the velocities. Hence the separate
element has two degrees of freedom. The non-holonomic conditions will be
described in terms of zero slip. In this way we can easily treat the case of a
skidding or slipping wheel by releasing the non-holonomic constraints. With the
rotated unit vectors ew in the direction of the wheel axle and ed in the driving
direction as described by the transformation from body fixed frame to inertia
frame as in e = R(β)ē, where the rotation matrix is given by

R(β) =

(

cosβ − sinβ
sinβ cosβ

)

, (3.36)
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the slips are defined as
s1 = (ed)

T ẋc − γ̇r
s2 = (ew)

T ẋc
(3.37)

The first, s1, is the longitudinal slip and the second, s2, is the lateral one. The
slip is in general a function of the position and orientation of the wheel and linear
in the velocity. If the coordinates which describe the position and orientations
are grouped together in a vector xT = (xc, yc, β, γ), and the vector of slips is
denoted by s, the expressions for the slip can be written symbolically as

s = V(x)ẋ. (3.38)

Pure rolling is described by zero slips, s = 0.
The dual quantities of the slips s are the generalized forces λ. They are

defined by the balance of the external and internal virtual power of the ele-
ment. The external virtual power is given by fT δẋ with the nodal force vector
fT = (Fxc, Fyc,Mβ ,Mγ) while the internal virtual power is defined as λT δs.
Equilibrium is expressed by the balance of these two,

fT δẋ = λT δs, (3.39)

for arbitrary variations δẋ and corresponding variation of the slip components
(3.38) and the equilibrium conditions become

f = VTλ. (3.40)

From these equations the generalized forces λ1 and λ2 can be interpreted as
the longitudinal and the lateral contact forces. In the case of longitudinal slip
and/or lateral slip, any type of constitutive behaviour of the form λ = λ(s) can
be applied.

3.5.1 Application to a Planimeter

A kinematic application of the planar wheel element is the Von Amsler (1854)
polar planimeter. This measuring instrument can be used to determine the area
enclosed by a contour and has found its application in major industry. This
device, among many other mathematical instruments, is treated in the excellent
book by Meyer zur Capellen [50]. The mathematical treatment of the non-
holonomic aspects of such kinematic integrating mechanisms can be found for
example in the works of Nĕımark and Fufaev [55].



3.5. Two-Dimensional Wheel 37

The polar planimeter, Figure 3.16, consists of three major parts; the pole
rod PQ with fixed pole P , the moving arm MQF with pointer F , and the
measure wheel attached perpendicular to the arm in M . The wheel can slide in
the lateral direction but rolls without slipping in the longitudinal direction. To

P
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F

Q

M

L

l

q

r
ϕ

Figure 3.16: Polar planimeter.

measure the area enclosed by the contour L, for example an indicator diagram
of a two-stroke cycle in a diesel engine as shown in Figure 3.16, one must guide
the pointer F around the contour L. The rotation, ϕ, of the measure wheel
along the wheel axis is proportional to the enclosed area and can be read off the
drum attached to the wheel. If the pole P lies outside the contour L, which is
usually the case, then the enclosed area A is given by

A = lrϕ, (3.41)

with moving arm length l and measure wheel radius r. When the pole lies within
the contour we have to add a circular area with radius g which is not indicated
by the measure wheel, in which case the desired area is obviously

A = lrϕ+ πg2. (3.42)

The radius g is the distance from the pole P to the pointer F in the configuration
where the line PM is perpendicular to the rotation axis FM of the wheel. If the
planimeter is now rotated as a rigid body around the pole, the measure wheel
will not rotate. In this arrangement the square of the radius g is given by

g2 = R2 + l2 + 2lq. (3.43)
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The finite element model of the planimeter consists of a rigid truss element,
two rigid beam elements (QF and QM), and a wheel element. The three in-
dependent coordinates of the system are the horizontal and vertical position
x and y of the pointer F , and the rotation, ϕ, of the wheel. There is one
non-holonomic condition; the wheel is assumed to roll without slipping in the
longitudinal direction, s1 = 0, while the lateral slip constraint, s2, is released
(3.37). Obviously the system has two degrees of freedom, x and y, and one
kinematic coordinate, ϕ.
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Figure 3.17: Rotation ϕ of the planimeter measure wheel as a function of the
the travelled distance t along the contour of the square OABC, left figure, and
longitudinal rate, vl = rdϕ/dt, of the wheel centre and lateral slip of the wheel,
s2, as a function of the contour distance t, right figure.

As an example we will measure the area of a square OABC of 100x100 [mm].
The dimensions of the mechanism, see Figure 3.16, are a pole length of R =
200 [mm], a measure arm with l = 200 [mm], and a wheel with radius r =
12.5 [mm] at a distance q = 40 [mm] from the pole hinge A. In the initial
configuration the vertical pole rod is perpendicular to the horizontal measure
arm, and the rotation of the measure wheel is set to zero. The pointer F is
at the lower-right corner of the horizontally aligned square and the contour is
travelled counter-clockwise. In the left part of Figure 3.17 the rotation ϕ of
the measure wheel is presented as a function of the travelled distance t along
the contour. The rotation of the measure wheel after one contour travel is
3.9998 [rad] making the area of the square equal to 9999.5 [mm2] which is
within 0.005% of the correct answer. The numerical integration was done by
the explicit predictor/corrector algorithm as described (and coded in fortran)
by Shampine and Gordon [77], where the absolute local error for all variables
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was set to 10−3. The finite element model was expressed in the units [m] and
[rad]. The numerical integration took a total of 125 function evaluations, which
indicates an average stepsize of dt = 3.2 [mm]. The lateral slip, s2, and the
longitudinal rate of the wheel, vl = rdϕ/dt, both in [mm/mm], are shown in
the right part of Figure 3.17. They clearly demonstrate the skidding (s2) of the
rolling (vl) wheel. Note the jumps in the differential ratios at the corners of the
square, they are caused by the discontinuous direction of t at these corners.

3.5.2 Swivel Wheel Shimmy

To illustrate the general method for the derivation of the state equations of a
non-holonomic system and its linearization we shall revisit the shimmy problem
of an aircraft landing gear as treated by Den Hartog [12]. He simplified the
problem in order to show the principal mechanism responsible for the shimmy
phenomenon. The mass and stiffness of the airplane are assumed large with
respect to those of the swivel landing wheel, so that the attachment point of the
swivel axis to the airplane may be assumed to move forward with a constant
speed. The tire is assumed to be rigid and the inertia along the axis of rotation
of the wheel is not taken into account. Then in Figure 3.18, which is a plan
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Figure 3.18: Swivel wheel

view of the shimmying wheel seen from above, point C is the point where the
wheel strut is built into the airplane. Point B is the bottom point of the strut;
normally B is right under C, but while shimmying the strut is assumed to flex
sideways through distance u at a stiffness k. The wheel is behind B with angle
φ, the shimmy angle, which is zero for normal ideal operation. A is the centre
of the wheel, and G is the centre of gravity of the combined landing gear. The
finite element model consists of a wheel element attached in point A to a rigid
beam. The wheel has zero lateral slip which is the non-holonomic condition in
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the system. The beam is connected in point B to a cylindrical bearing element.
The bearing is rigid in the longitudinal and flexible in the lateral and rotational
direction and the generalized deformations are denoted by u and φ. The lateral
stiffness is k while the rotational stiffness is assumed to be zero. The bearing
is moved forward with a constant speed of v. The generalized coordinates of
the system are given by q = (u, φ). The zero lateral slip condition on the wheel
reduces the coordinates to the degree of freedom qd = (u) and the kinematic
coordinate qk = (φ). The steady state undeformed motion is characterized by
(u̇, u, φ) = (0, 0, 0). With the variations ∆q̇d = ∆u̇, ∆qd = ∆u and ∆qk = ∆φ,
the coefficients of the linearized state derivatives according to (2.43) are

M̄ = m(
a2 + r2

l2
),

C̄ = m(
ab− r2
l2

)
v

l
, A =

1

l
,

K̄d = k, Bd = 0,

K̄k = −m(
ab− r2
l2

)
v2

l
, Bk = −v

l
,

f̄ = 0.

(3.44)

These coefficients are usually numerically calculated by the program but we
present them here in an analytical form so we can compare them with the ap-
proach as presented by Den Hartog [12]. His ad hoc analysis leads to an eigen-
value problem. The systematically derived linearized state derivatives (3.44)
lead to the same eigenvalue problem and consequently to the same prediction
of unstable shimmy behaviour.

To investigate the shimmy motion we start with the usual assumption of an
exponential motion for the small variations ∆q of the form ∆q0 exp(λt). The
characteristic equation of the eigenvalue problem from (2.43) with the coeffi-
cients from (3.44) is

λ3 + (1 + µ)ωλ2 + ω2
nλ+ ωω2

n = 0, (3.45)

with the mass distribution factor µ = (ab− r2)/(a2 + r2), the driving frequency
ω = v/l and the natural frequency ωn =

√

kl2/(m(a2 + r2)). A neccessary and
sufficient condition for asymptotic stability is given by the requirement that all
roots of (3.45) have negative real parts. Application of Hurwitz’s theorem on
the characteristic equation (3.45) yields

ω > 0 and µ > 0. (3.46)
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In other words, the motion is stable if the driving speed v is positive and the
centre of mass is positioned such that a(l − a) > r2. The latter corresponds
to a region of ±

√

(l/2)2 − r2 around the midpoint a = l/2. For the critical
case, where a(l − a) = r2, there is one real eigenvalue λ1 = −ω describing
the non-oscillating decaying motion and a pair of conjugated imaginary values
λ2,3 = ±ωni which describe the undamped oscillatory solution. This critical case
corresponds to a mass distribution where point B is the centre of percussion or
in other words, if a lateral force is applied in B then the lateral reaction force
in the contact point A of the wheel will be zero.
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Figure 3.19: Root loci of the eigenvalues λ for the swivel wheel with moment
of inertia I = 0.21ml2 in the centre of mass position range of 0 ≤ a/l ≤ 1 and
eigenmode for the undamped oscillatory case a/l = 0.3, with driving frequency
ω = v/l and undamped eigenfrequency ω0 =

√

k/(0.3m).

The general solution for the eigenvalues can be found by solving the char-
acteristic equation (3.45). However, the general solution of a cubic equation,



42 Special Finite Elements

as first published by Cardano [80], leads to lengthy expressions and give little
insight in the nature of the solution. To illustrate the behaviour of the system
at the non-critical cases, consider a swivel wheel with mass moment of inertia
I = 0.21ml2. The motion is stable if the centre of mass position a is between
0.3l and 0.7l. The root loci for this example in range of 0 ≤ a/l ≤ 1 are shown
in Figure 3.19 together with the eigenmode for the undamped oscillatory case
a/l = 0.3. The lateral displacement of the attachment point B, u, and the
lateral displacement of the centre of the wheel A, denoted by w, are illustrated
in the figure by the vertical projection of the rotating arrows. Note that the
lateral displacements are not in phase. The phase angle, ψ, and the amplitude
ratio, ∆w0/∆u0, are for given eigenvalue λ = γ0 + ω0i uniquely determined by
the kinematic rate equation (2.41) and read

tanψ = − ω0

ω + γ0
and

∆w0

∆u0
=

ω
√

(ω + γ0)2 + ω2
0

. (3.47)

The wheel centre and the attachment point are always out of phase, even in the
undamped oscillatory case where γ0 = 0.

3.6 Three-Dimensional Wheel

The three-dimensional flexible wheel element is a model of a disk bounded by a
sharp edge with radius r, which can roll over a fixed surface. The position and
orientation of the wheel will be described by the position of the wheel centre
w, the orientation of the wheel axle ew, specified by the four Euler parameters
q = (q0,q), and the position of the contact point c as shown in Figure 3.20.
Note that the contact point is a geometric point, it is not a fixed material point
of the wheel nor of the surface. In the case of pure rolling as a rigid body the
element has three degrees of freedom, while we have ten coordinates describing
the position and orientation. Hence we have to impose seven constraints upon
the velocities. Only two of these constraints are non-holonomic constraints, all
other velocity constraints are time derivatives of holonomic conditions originat-
ing from the rigidity conditions.

The first two generalized strains for the wheel element are defined as

ε1 = 1
2 (r

T r− r20)/r0
ε2 = eTwr

(3.48)

with the radius vector r = c − w, the undeformed radius length r0 and the
rotated wheel axle ew = R(q)ēw, see Figure 3.20. The rotation matrix R(q) in
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Figure 3.20: Three-dimensional wheel element

terms of the four Euler parameters q is described in Appendix B by equation
(B.7). The first strain, ε1, is a quadratic approximation of the elongation of
the wheel radius. Using this approximation has the advantage of constant sec-
ond order derivatives. The second strain is a measure for the lateral bending
deformation. The next two generalized strains deal with the surface contact,

ε3 = g(c)
ε4 = (r× ew)

Tn
(3.49)

with the surface defined by a function g(c) = 0. The normal vector to the
surface in the contact point is given by nT = ∂g/∂c. Note that this is not a
unit vector. Normalization of this vector would lead to far more complex first
and higher order partial derivatives of ε4. The third strain is a measure for
the distance of the contact point with respect to the surface. By imposing the
constraint ε3 = 0 the contact point will stay on the surface. By setting the
fourth strain to zero we are certain of having only one contact point or in other
words, the rim must be tangent to the surface. The last strain is used for the
normalization condition, |q| = 1, which we have to impose on the four Euler
parameters q = (q0,q) to ensure that they represent a three-dimensional finite
rotation, and reads

εq = q20 + qTq− 1. (3.50)

The constraint, εq = 0, is no part of the wheel element but comes with every
set of Euler parameters and is shown here for completeness.

Finally we define the longitudinal and lateral slip. The velocity of the ma-
terial point of the wheel at contact in c is given by v = ẇ+ω× r+ vε. In this
expression vε stands for the contribution to the velocity due to the rate of defor-
mation of the wheel. The angular velocity of the wheel ω in terms of the Euler
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parameters is described in Appendix B, and can be derived from the quaternion
product of the adjoint quaternion q̄ = (q0,−q) and the velocity q̇ = (q̇0, q̇) rep-
resented by (q̇◦ q̄) = 1

2 (0,ω) (B.13). Note that the scalar part of this quaternion
product is zero only when the norm of the quaternion is constant, as in |q| = 1.
In the contact point the two orthogonal surface tangents are the longitudinal
direction (r× ew) and the lateral one (n× (r× ew)). With these directions the
longitudinal and lateral slip are defined as

s1 = (r× ew)
T (ẇ + ω× r)

s2 = (n× (r× ew))
T ċ

(3.51)

Since vε is perpendicular to the longitudinal direction it is not included in the
definition of s1. If the generalized coordinates which describe the positions and
orientation of the element are grouped together in a vector xT = (wT , cT , q0,q

T ),
and the vector of slips is denoted by s, the expressions for the slip can be written
symbolically as

s = V(x)ẋ. (3.52)

Pure rolling is described by zero slips, s = 0.
With the vector of element strains expressed as ε = D(x), the generalized

stresses σ and forces λ dual to the slips can be interpreted from the element
equilibrium equation,

f = DT
,xσ + VTλ. (3.53)

The first two generalized stresses σ1 and σ2 are the radial force and the lateral
bending force. The third stress, σ3 is the force in the contact point exerted on
the wheel perpendicular to the surface. The fourth stress, dual to the tangent
condition ε4 = 0, can be interpreted as a torque divided by the radius of the
wheel acting in the contact point along the s2 direction. This torque is always
zero under normal loading. Only when forces are applied in the contact point c,
which is unrealistic since this node is a non-material point, the torque will be
non-zero. The generalized forces dual to the slip can be interpreted as λ1 being
the longitudinal contact force divided by the actual radius length |r| and λ2 the
lateral force divided by the actual radius and normal vector length |r||n|. This
scaling seems awkward but excluding normalization in the slip definitions (3.51)
results in much simpler first and higher order partial derivatives.

Each individual strain can be assumed either zero or non-zero, represent-
ing respectively the rigid and the deformable case. In the deformable case a
constitutive equation relating σ to ε has to be applied. The same holds for
a longitudinally and/or laterally slipping wheel. In this case the generalized
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stresses, in particular the normal stress σ3, are usually incorporated in the con-
stitutive behaviour, taking the form λ = λ(s,σ). A detailed description of the
constitutive behaviour of three-dimensional elastic bodies in rolling contact can
be found in the books by Kalker [35] and Johnson [28].

3.6.1 The Rolling Disk

One of the simplest and most intriguing examples of a spatial non-holonomic
system is a disk rolling without slip on a horizontal plane. From experience we
know that such an object, if given enough initial speed, shows stable motion
which is quite different from the behaviour at low speed. We will investigate
the stability of the rectilinear motion with the help of the wheel element from
Chapter 3.6. The rolling of a disk on a horizontal plane has in detail been
studied by for example Nĕımark and Fufaev [55] and we shall compare the
results. The finite element model of the system consists of a wheel element,

v

roll

pitch

yaw

xy

z

Figure 3.21: Disk rolling on a horizontal plane.

rolling on a horizontal plane z = 0, and three orthogonal hinges attached to
the wheel centre to describe the three degrees of freedom: pitch, roll and yaw
(Figure 3.21). The two kinematic coordinates are the x and y position of the
point of contact in the plane. We will assume that the infinitesimally thin disk
has uniformly distributed unit mass m, unit radius r and a unit gravitational
force field g in the downward direction.

The stability of the rectilinear motion at longitudinal speed v is investigated
by the determination of the eigenvalues of the linearized equations of motion as
described in Section 2.4.2 by equation (2.43). The dimension of the eigenvalue
problem is eight; namely two times the number of degrees of freedom plus the
number of kinematic coordinates. Beforehand we know that there are six zero
eigenvalues. The first two pairs are a consequence of the two cyclic coordinates,
the pitch and the yaw, in the system. The potential energy is only a function
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of the rotation along the longitudinal axis, the roll angle. The last two zero
eigenvalues describe the kinematic motion of the point of contact (x, y). The
remaining two non-zero eigenvalues of the perturbed rectilinear motion in the
speed range of 0 ≤ v ≤ 1, where speed scales according to

√
gr, are shown in

Figure 3.22. At low speed there are two equal and opposite real eigenvalues

-1.0 -0.5   0  0.5  1.0
-1.5
-1.0

-0.5 

    0

 0.5 

 1.0
 1.5

Re(λ)

Im(λ)
vv

0 0.2 0.4 0.6 0.8 1.0
-1.5
-1.0

-0.5 

    0

 0.5 

 1.0
 1.5

Im(λ)

v

-1.0 -0.5   0  0.5  1.0
   0

0.2

0.4

0.6

0.8

1.0

Re(λ)

v

Figure 3.22: Root loci of the eigenvalues λ for the rectilinear motion of a rolling
disk on a horizontal plane in the speed range of 0 ≤ v ≤ 1.

describing unstable perturbed motion, just like an inverted pendulum. At in-
creasing speed these eigenvalues move to zero, where at the critical speed [55],
v = 1/

√
3 ≈ 0.58, they change into a pair of conjugated imaginary values which

describe an undamped oscillatory motion. The corresponding eigenmode is of
the slalom type and can best be characterised by a 90◦ phase angle between the
roll and the yaw motion. Further increase of the speed shows an approximately
linear increase in the eigenvalues.

The unstable perturbed motion, below the critical speed, is illustrated by a
transient analysis. The initial conditions are a vertical position with a forward
speed of v = 0.4116, an angular roll velocity of -0.01 and a zero yaw rate. The
path of the centre of the disk and the path of the contact point in the plane
are shown in Figure 3.23 for the time period of 87 units, where one time unit
scales according to

√

r/g. The low roll velocity starts the initially exponen-
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Figure 3.23: Path of a rolling disk on a horizontal plane at subcritical speed
for a time period of 87 units, with an initial forward velocity 0.4116 and a roll
velocity -0.01.

tially increasing inclination of the disk, after which it makes a sharp turn and
rises up again to the vertical position. This motion is repeated at equal time
intervals and in alternating turning directions. The unstable rectilinear motion
is transformed into a quasi periodic motion where the disk continues to wobble
forward.

The forces in the contact point exerted by the wheel on the plane for this
quasi periodic motion are shown in Figure 3.24. During cornering the lateral
and normal force increase in magnitude whereas the longitudinal contact force
shows a short oscillation indicating an accelerating and decelerating longitudinal
motion. The ratio of the in-plane contact force to the normal contact force
during cornering is at most 0.52. The friction coefficient must be above this
value to ensure rolling without slipping.

However, if we assume a force contact model which is linear in the slip
velocities at the contact point then the disk on a smooth surface will slip into
an almost cyclic motion during the first turn. In this motion the centre of
mass mainly moves in the downward direction while the rotation of the point
of contact increases rapidly. The disk eventually will come to the singular
horizontal rest position in a finite time. Compare this to the behaviour of the
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Figure 3.24: Forces in the contact point of a rolling disk on a horizontal plane at
subcritical speed for a time period of 87 units, with an initial forward velocity
0.4116 and a roll velocity -0.01.

contemporary executive toy known as “Euler’s disk”; a smooth edged disk on a
slight concave supporting bowl which whirrs and shudders to a horizontal rest
[52].

3.6.2 Bombardier-ILTIS Road Vehicle

The wheel element and the formulation of the dynamic equations for flexible
non-holonomic systems are applied to the analysis of the dynamic behaviour of
the Bombardier-ILTIS road vehicle. At the 1990 IAVSD workshop on Multibody

CGc

0.570

0.970 1.0470.615 0.615

0.356

Figure 3.25: The Bombardier Iltis vehicle.
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System Analysis Methods and Computer Codes held in Herbertov, Czechoslo-
vakia, this vehicle was chosen for benchmark purpose. The complete benchmark
problem together with the results as calculated by some major computer codes
are presented in the book by Kortüm and Sharp [38]. On page 32 Sharp de-
scribes the model as:

The ILTIS problem involves a rigid cabin structure with six degrees
of freedom connected to its four independently suspended wheels
by specified links. Track rods connect the steering rack to the wheel
carriers at the front, while, at the rear, a similar arrangement applies
except that the inner joints are fixed to the cabin structure. The
tyres have radial flexibility and are able to generate longitudinal
force by interaction of the radial elasticity with sloping ground but
not by longitudinal slip. The tyres can sideslip and a detailed tyre
lateral force model (for no longitudinal slip) gives the side force and
aligning moment as functions of the wheel load, sideslip angle and
camber angle.

We interpret this that the longitudinal slip is zero. Front and rear suspension
are depicted in Figure 3.26, showing the rear suspension to be a mirror im-
age of that of the front, while the right front suspension is shown in detail in
Figure 3.27. Application of the formalism presented in this thesis on the ILTIS
problem resulted in a finite element model with 85 elements, 239 generalized de-
formations, 70 nodes, 226 generalized coordinates, 14 independent coordinates
and 10 degrees of freedom.

The first test, the computation of the equilibrium state, was applied to this
model and the results are presented in Table 3.2; for comparison the values
as calculated by two major computer codes as presented in [38] are listed in
the same table. The computed values show a good correspondence with those
obtained by the neweul and the simpack program.

In addition the first handling performance test was applied to our model.
This test involves a ramp-to-step steer manoeuvre with a forward velocity of
30 [m/s]. The steering rack is displaced with a constant velocity during 0.5
seconds and kept at a constant position for the rest of the simulation time. In
the tyre model (calspan), as described in the benchmark [38], it is assumed
that the radial compliant tyres roll without longitudinal slip when the vehicle is
moving. The lateral tyre force is described as a non-linear function of the radial
tyre force, the sideslip, the camber angle, and the tyre velocity. In addition to
this force a vertical non-linear aligning torque, originating from the finite contact
area, is applied to the tyre. For the tire model two cases have been considered.
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Figure 3.26: Layout of the ILTIS vehicle with front and rear suspensions.
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Figure 3.27: Right front wheel suspension details.
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Interaction Dim. spacar neweul simpack
cabin: vert. displacement mm -7.111 -7.100 -7.094
cabin: pitch angle 0 0.1503 0.1509 0.1468
right front tyre N -3835.02 -3834.63 -3831.32
right rear tyre N -3588.81 -3588.60 -3591.91
shock absorber right front N -337.51 -336.54 -335.51
shock absorber right rear N -240.35 -240.43 -241.76
leaf spring right front (spring) N -3071.87 -3071.13 -3069.15
leaf spring right front (rod) N -1422.45 -1406.13 -1404.68
leaf spring right rear (spring) N -2883.87 -2883.07 -2885.75
leaf spring right rear (rod) N -1310.38 -1331.68 -1333.80

Table 3.2: Static equilibrium results for the ILTIS vehicle; the results of the
present study with spacar and those from [38] are given for comparison.

First a simplified version of the model as defined in the benchmark was used.
The simplification neglects the minor influence of camber and the tire aligning
torque since the wheel element as described in Section 3.6 has no generalized
spin defined in the contact point. The resulting yaw rate of the vehicle is shown
in Figure 3.28 as the solid line, and is in moderate agreement with the results
as computed by the simpack program, represented by the dotted line in the
same figure. Second the case is considered in which the lateral slip of the tires
is constrained to zero, as in the case of pure rolling. The result for the yaw rate
is shown by the dashed line in Figure 3.28. We see that the finite tire stiffness
reduces the stationary yaw rate of the vehicle. Note the transient behaviour
after the steering rack is held at a constant position.
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Figure 3.28: Yaw rate of the ILTIS vehicle for v = 30 [m/s], solid line is with
simplified tire model, dashed line is with zero lateral slip, dotted line is with
complete tyre model as computed by simpack [38] for comparison.



Chapter 4

Solution Techniques for Small
Vibrations

John Franklin war schon zehn Jahre alt und noch immer so langsam, daß
er keinen Ball fangen konnte. . . . Er sah nicht genau, wann der Ball die
Erde berührte. Er wußte nicht genau, ob es wirklich der Ball war, was
gerade einer fing, oder ob der, bei dem er landete, ihn fing, oder nur die
Hände hinhielt.

(Sten Nadolny, Die Entdeckung der Langsamkeit)

A number of formalisms for deriving the equations of motion of rigid and flexible
multibody systems are available [65, 76] and have nowadays been implemented
in computer codes [66] such as adams, dads, and simpack. With these codes it
is possible to make simulations of the motion of the systems under consideration.
The simulation is made by numerical integration of the equations of motion, that
is, by performing a transient analysis with a specific set of initial conditions.
Some codes provide tools for finding equilibrium configurations and calculating
eigenfrequencies and eigenmodes.

For many applications to engineering problems a model in which all struc-
tural elements are assumed to be rigid suffices for a quick judgement about
the motion and forces in the system. However, in cases where a high accu-
racy is required, for instance in positioning mechanisms, or when the structural
elements are rather compliant, vibrations due to deformation can become im-
portant and have to be considered. Incorporation of these deformations in the
dynamic analysis of the system enlarges the number of degrees of freedom, the
frequency range to be considered, and the stiffness of the differential equations,
which results in a longer simulation time.

53
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To reduce the simulation time and to gain more insight in the vibration
phenomena at hand we propose to superimpose small linear vibrations on the
nominal non-linear rigid body motion. This idea has been inspired by the com-
putational results from simulations of flexible multibody systems where one
often recognizes a gross rigid motion with small-amplitude nearly harmonic vi-
brations added. This idea can at least be traced back to Cleghorn et al. [10],
who use an ad-hoc Lagrangian approach and only describe the periodic solutions.
The stability of these solutions and the transient solutions are not considered.

The method of superimposition as presented here systematically leads to a
system of linear differential equations with time-varying coefficients and time-
varying forcing. In particular, if the nominal reference motion is periodic, the
coefficients and forcing are also periodic. The structure of the solutions of the
equations with periodic coefficients is given by the Floquet theory [15]. Most
books on this subject, for instance Yakubovich & Starzhinskii [89], deal almost
exclusively with the homogeneous system and the determination of boundaries
of regions with stable solutions in a parameter space. The book by Bolotin [3]
is more directed towards applications in mechanics and includes a discussion
of forced systems and the influence of non-linear terms, as is relevant to the
subject of the present study.

Numerical methods for the direct determination of stationary and periodic
solutions of the system, the investigation of the stability of these solutions and
the continuation of these solutions if a parameter, for instance the driving speed
of a mechanism, is varied, are given by Meijaard [43, 45]. He uses a simple shoot-
ing method for the determination of the periodic solutions. The stability of these
solutions is investigated by examining the eigenvalues of the monodromy ma-
trix, the matrix in which every column represents the state after one period for a
unit initial condition. Overviews of some other numerical methods for analysing
the systems are given by Friedmann [16] and Aannaque et al. [1]. They base
their methods on the efficient numerical computation of the transition matrix,
or monodromy matrix. We propose to use a harmonic balance method for de-
termining periodic solutions, a kind of averaging method for transient solutions
and a method directly based on the Floquet theory for stability analysis.

There are several ways to interpret the superimposition procedure. It can
be seen as a first step in a regular perturbation expansion of the solution, or
as a first step in an iterative solution procedure as proposed by Ling and Wu
[42] and applied by Cardona et al. [8]. Our main point of view is that it should
be interpreted as a first step of a Newton-Kantorovich iteration method [36].
This method has the advantage that no small parameter has to be identified in
advance and that it is robust, so in each step the linearization and the solution
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of the linearized problem has only to be carried out to a certain precision and
remaining errors can be accounted for in the next step. Quadratic convergence
is guaranteed if the initial approximation is sufficiently close to a solution, the
non-linearity is small and the linear operator is not nearly singular.

The complete solution of the motion of a flexible multibody system is ap-
proximated by the nominal rigid body motion, and a periodic solution and a
transient of the linearized equations superimposed on it. The nominal rigid body
motion of the system is described in Section 2.2. In this chapter, approximate
methods for finding the periodic and transient solutions for the small vibrations
and a method for determining their stability will be discussed.

This chapter is organized as follows. The solution techniques for periodic
solutions of the small vibrations are discussed in Section 4.1. The transient
solution, which must be added to the total solution to satisfy the initial condi-
tions, is treated in the next section. The stability of the solutions, which are
investigated by a method directly based on the theory of Floquet, are treated in
Section 4.3. Finally, in the last Section, four examples are presented to illustrate
the techniques: first, a pendulum with prescribed elliptic motion of its support
point, which leads to a forced Mathieu equation; second, a slider-crank mecha-
nism with flexible connecting rod; third, a rotor dynamic system with isotropic
bearings; and fourth, the dynamic analysis of a flexible drive shaft connected
by two universal joints.

4.1 Periodic Solution

The starting point for the periodic solution of the small vibration is the lin-
earized equation of motion (2.11) with the excitation −f d, left over from the
nominal solution, on the right-hand side

M̄(tj)∆q̈d + C̄(tj)∆q̇d + K̄(tj)∆qd = −fd(tj). (4.1)

Additional forces fda are assumed to have been absorbed in −f d if they are
present. Here tj denote the discrete times with j = 0, . . . , p and p being the
total number of discrete positions in which the system is calculated. The period
of the system is T = (tp − t0) = 2π/ω.

As a periodic solution of these equations we propose a truncated Fourier
series for ∆qd with the same fundamental frequency ω as the nominal gross
motion,

∆qd =
m
∑

l=−m

∆q̃d
l e

ilωt. (4.2)
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Here m is the number of frequencies that is expected to determine the solution
to the required accuracy, which is usually much less than p/2. The unknown
coefficients ∆q̃d

l are calculated as follows. First, the linearized equation (4.1) is
transformed for every discrete moment in time as

∆q̈d + P(tj)∆q̇d + Q(tj)∆qd = r(tj), (4.3)

with
P(tj) = M̄−1(tj)C̄(tj),
Q(tj) = M̄−1(tj)K̄(tj),
r(tj) = −M̄−1(tj)f

d(tj).
(4.4)

Second, the coefficients of this equation are transformed into Fourier series [7]
as in

∆q̈d +

(

∑

k

P̃ke
ikωt

)

∆q̇d +

(

∑

k

Q̃ke
ikωt

)

∆qd =
∑

k

r̃ke
ikωt. (4.5)

Here, the summation over k extends from −(p− 1)/2 to (p− 1)/2 for odd p and
from −(p− 2)/2 to (p− 2)/2 for even p. Third, the truncated Fourier series for
∆qd (4.2) is substituted in the differential equations (4.5) and every individual
harmonic is balanced. This means that the convolutions are determined and
the coefficients of exp(ikωt), (k = −m, . . . ,m) on both sides of the equation are
balanced. This results in a set of (2m+ 1)n linear equations of the form
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(4.6)

or in compact notation
∑

l

{Q̃k−l + (ilω)P̃k−l − (lω)2δklI}∆q̃d
l = r̃k, (4.7)

with n the dimension of the deformation mode coordinate vector ∆qd and k
and l extend from −m to m. If k − l falls outside the range, the matrices
Q̃k−l and P̃k−l are replaced by zero matrices. From this harmonic balance
(4.7) the coefficients ∆q̃d

l can be solved. These coefficients are the harmonics of
the periodic solution and tell us how each frequency is present in the response.
Finally, the result can be interpreted in the time domain as in equation (4.2).
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4.2 Transient Solution

The complete solution of the linearized equations consists of a periodic solution
as determined in the previous section and a transient solution that is added to
it in order to satisfy the initial conditions. The transient solution is constructed
with the help of the method of slowly varying coefficients and averaging, as
described for instance by Verhulst [85, Chapter 11]. This transient solution
has to satisfy the homogeneous equations corresponding to (2.11), which are
rewritten as a system of first-order differential equations, as in

ẏ = A(t)y, with y =

[

∆qd

∆q̇d

]

, (4.8)

A(t) =

[

0 I

−M̄−1(t)K̄(t) −M̄−1(t)C̄(t)

]

.

The matrix A(t) from (4.8) is periodic with period T = 2π/ω as stated in the
previous section, and can be written as the sum of a constant part, A0, and a
periodic part, with average equal to zero, Ã(t). The differential equations are
transformed on the basis of eigenvectors of the matrix A0, which results in

ż = [J0 + J̃(t)]z, (4.9)

where Y is the matrix of eigenvectors and

J0 = Y−1A0Y, J̃(t) = Y−1Ã(t)Y. (4.10)

If we assume that all eigenvalues of A0 are distinct, the matrix J0 is diagonal
and J̃(t) is in general a full time dependent matrix with period T , whose entries
are assumed to be small with respect to the diagonal terms of J0. A second
transformation writes the differential equations on the basis of eigensolutions
according to the diagonal matrix J0 with slowly varying coefficients a(t). With

z = eJ0ta, (4.11)

this results in a set of differential equations for the amplitudes a as

ȧ = [e−J0tJ̃(t)eJ0t]a. (4.12)

This equation is still fully equivalent to (4.8). Now if it is assumed that J0 con-
tains only well separated damped eigenfrequencies with a corresponding period
that is small in comparison with T , that is, the diagonal elements of J0 have
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negative real parts, while their imaginary parts are much larger than ω = 2π/T ,
and have relatively large differences, then only the diagonal terms of J̃(t) yield
significant contributions after averaging. The off-diagonal terms give rise to
oscillating terms of the form J̃ij exp[(−J0ii + J0jj)t] (i 6= j) which disappear in
the process of averaging. The solution of the amplitudes becomes

ai(t) = ai(0)e

∫ t

0
J̃ii(τ) dτ . (4.13)

Given the Fourier series of A(t) and of J̃(t), it would be tempting to try and find
the Fourier series of a(t). Owing to the non-linear operator exp(

∫

. . . dt) this is
not straightforward and we propose to solve for the transient solution according
to (4.13) and, if necessary, to calculate the Fourier series of the result.

If the assumptions are fulfilled, the first order averaging appears to have a
sufficient accuracy for our application. In other cases or when a higher accuracy
is required, direct numerical integration of the linearized equations can be used.

4.3 Stability of the Solutions

The stability of the solutions can be investigated by analysing the homogeneous
equations. Several methods can be used. For instance, if the method of slowly
varying amplitude and averaging is used, as in the previous section, the stability
is directly determined by the eigenvalues of A0, as can be seen from (4.11) and
(4.12). If they have all negative parts, stability is expected if the approxima-
tion is sufficiently accurate and the stability margin is sufficiently large. This
method, however, is not always reliable.

Another more exact method used by Meijaard [43, 45], first calculates the
monodromy matrix, the matrix in which every column represents the state after
one period for a unit initial condition, after which the characteristic multipli-
ers are determined as the eigenvalues of this matrix. If all eigenvalues have a
modulus that is smaller than one, the periodic solution is stable and if some
eigenvalue has a modulus larger than one, the periodic solution is unstable. If
some eigenvalue has a modulus equal to one, we are in a bifurcation point.

Yet another approach is proposed here, which is directly based on the theory
of Floquet [15]. This theory states that the solution of the homogeneous system
consists of a sum of 2n (2n is the number of first order differential equations as
in equation 4.8) fundamental solutions of the form of a periodic function mul-
tiplied by an exponential function (in the generic case of distinct characteristic
multipliers). From these, the characteristic exponents and hence the stability
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can directly be read. The relation between a characteristic exponent λ and a
characteristic multiplier ρ is the exponential function eλT = ρ, where T is the
period of the solution.

We assume fundamental solutions of the form

∆qd = eλt
m
∑

l=−m

∆q̃d
l e

ilωt, (4.14)

where λ is a characteristic exponent. This expression can be substituted in the
homogeneous equations (4.5) or an equivalent system of first-order equations
(4.8). By collecting terms with equal exponentials and equating the coefficients
of exp(λt+ilωt) (l = −m, . . . ,m) to zero, we obtain a set of homogeneous linear
algebraic equations for the values of ∆q̃d

l as

∑

l

{λ2δklI + λVkl + Wkl}∆q̃d
l = 0, (4.15)

with k and l ranging from −m to m. The structure of the contribution of V

and W in this set of equations is

V =

















. . .
...

...
...

...

· · · P̃0 − 2iωI P̃
−1 P̃

−2 · · ·

· · · P̃1 P̃0 P̃
−1 · · ·

· · · P̃2 P̃1 P̃0 + 2iωI · · ·

...
...

...
...

. . .

















,

and

W =

















. . .
...

...
...

...

· · · Q̃0 − iωP̃0 − ω2I Q̃
−1 Q̃

−2 + iωP̃
−2 · · ·

· · · Q̃1 − iωP̃1 Q̃0 Q̃
−1 + iωP̃

−1 · · ·

· · · Q̃2 − iωP̃2 Q̃1 Q̃0 + iωP̃0 − ω2I · · ·

...
...

...
...

. . .

















,

with sub-matrices having a dimension of n× n. These individual contributions
can be expressed in a compact form as

Vkl = P̃k−l + 2(ilω)δklI,

Wkl = Q̃k−l − (lω)2δklI + (ilω)P̃k−l.
(4.16)
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Again, if k− l falls outside the range, the matrices P̃k−l and Q̃k−l are replaced
by zero matrices. Note that the matrix W is equal to the matrix from the
harmonic balance (4.6) of the periodic solution. Non-trivial solutions for ∆q̃d

l

are only possible if the determinant of the coefficients of (4.15) is zero, which
leads to an eigenvalue problem for the characteristic exponents λ.

Because this determinant has the order (2m + 1)2n, the number of charac-
teristic exponents obtained in this way is (2m + 1) times as large as their true
number. They appear in clusters of values which differ approximately by an
integral multiple of iω and correspond to the same fundamental solution. From
each cluster, only the exponent that has the smallest imaginary part is consid-
ered as an approximation for the true characteristic exponent. If all exponents
have a negative real part, the periodic solution is stable and if some exponent
has a positive real part, the periodic solution is unstable. The special case of
a complex conjugated pair of exponents with zero real part can lead to bifur-
cation and usually needs closer investigation, as described by Meijaard [47].
Algorithms that calculate only a subset of the eigenvalues with the smallest
absolute values [19] can be used to advantage.

This method of determining characteristic exponents can be seen as an exten-
sion of the method of truncated infinite determinants of Hill [25]. Also Bolotin
[3] gives a description. Naab and Weyh [53] use a similar method.

4.4 Examples and Comparison

4.4.1 Parametrically Excitated Pendulum

As a first example of the described method a pendulum with a forced elliptic
motion of its support point is considered. Especially the cases of purely verti-
cal motion and circular motion constitute well studied problems. The system,
shown in Figure 4.1, consists of a rigidly modelled vertical pendulum of length
l = 1.0 [m] with a point mass at the bottom end. The top end moves on an
ellipse. This path is generated by a hypocycloidal gear pair with a ratio of
annulus over spur radius equal to 2. This gear pair is also known as ‘Cardan
circles’. The top end of the pendulum is pin joined to the pinion at a distance
er from the centre, in this way creating an ellipse with major axis 2(1 + e)r
and minor axis 2(1 − e)r. In this example the pinion radius r is taken 0.5 [m]
and the eccentricity factor e is 0.5. A crank with a uniform angular velocity
ω moves the centre of the pinion. In the joint between the pendulum and the
pinion a viscous damping is assumed which results in 1% of critical damping
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Figure 4.1: Pendulum with a forced elliptic motion of its support point.

in the linearized equations. The system operates in a gravitational field with
g = 9.81 [N/kg]. With the elliptic motion of the support point given by

x = (1− e)r sin(ωt)
y = −(1 + e)r cos(ωt),

(4.17)

the non-linear equation of motion for the pendulum can be derived as

ϕ̈+ 2ζω0(ϕ̇+ ω) + ω2
0 sinϕ+ ρω2[sin(ϕ− ωt) + e sin(ϕ+ ωt)] = 0, (4.18)

with the parameters ρ = r/l, the relative damping ζ and the undamped eigen-
frequency of the isolated pendulum ω0 =

√

g/l. The angle ϕ is measured from
the down-hanging vertical position. The linearized equation of motion, which
describes the small vibration ∆ϕ around ϕ = 0, is

∆ϕ̈+ 2ζω0∆ϕ̇+ [ω2
0 + (1 + e)ρω2 cos(ωt)]∆ϕ = −2ζω0ω + (1− e)ρω2 sin(ωt).

(4.19)
The periodic solution for ∆ϕ is assumed to be a truncated Fourier series with
the fundamental frequency equal to the driving frequency ω. Notice that the
periodic solution of ∆ϕ will show a non-zero mean value due to the term re-
lated to the damping −2ζω0ω in the right-hand side of differential equation
(4.19). A characteristic value for the periodic solution is the amplitude ∆ϕ̂,
being 1

2 [(∆ϕ)max − (∆ϕ)min] (half of the range of ∆ϕ) over one period. This
amplitude is shown in Figure 4.2 for a range of driving speeds ω. Resonance
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Figure 4.2: Amplitude ∆ϕ̂ of the periodic solution of the pendulum for damping
ζ = 0.01 in the driving speed range of 0 < ω/ω0 < 0.9. The solid line is the
linearized result, the dashed line is the full non-linear result.

clearly occurs at about 1/2 of the undamped eigenfrequency ω0. The 1/3 subres-
onance is just discernible. If we compare this with the full non-linear response
curves, the dashed lines, we see approximately the same result; only the reso-
nance peak bends slightly backward due to the non-linearity. The non-linear
response was calculated with a shooting method as described by Meijaard [45].

Although we have shown the equation of motion and its linearization in
an analytic form we must emphasize that all calculations presented here were
done in a discrete and numeric way as described throughout this work. The
finite element model of the system is straightforward. A rigid beam, acting
as crank with length r, drives the centre of the spur of the hypocycloidal gear
pair element. The annulus, with radius 2r, is fixed in position and orientation.
A second rigid beam, with length er, is rigidly attached to the centre of the
spur and rotates with the spur. At the other end of this beam two hinges are
mounted in series. A third rigid beam, acting as a pendulum with length l, is
attached to the other end of these hinges. Finally, a concentrated mass and
force is applied at the end of the pendulum beam. The first hinge rotation is
released, whereas the middle node of the two hinges is fixed with respect to the
inertia frame. In this way the relative rotation of the second hinge describes the
orientation of the pendulum with respect to a fixed vertical and can be used as
the degree of freedom, qd, the coordinate to be linearized. The periodic input,
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one full rotation of the crank, was discretised into 32 evenly spaced intervals,
and up to seven harmonics were included in the periodic solutions. The results
from Figure 4.2 suggest that the inclusion of only three harmonics would have
been accurate enough.
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log10(∆ ϕ̂ ) Re( λ/ω0)max

Figure 4.3: The solid line is the logarithmic amplitude ∆ϕ̂ for the periodic
solution of the pendulum for damping ζ = 0.01 in the driving speed range
0 < ω/ω0 < 1.4. The dashed line is the maximum of the real part of the
dimensionless characteristic exponents λ/ω0.

The same response as in Figure 4.2 but on a logarithmic scale over a wider
range of driving speeds together with an indication upon the stability of the
periodic solution is shown in Figure 4.3. If the maximal real part of the charac-
teristic exponents λ, defined in (4.14), is negative, the solution is stable. From
the figure we see that stable periodic solutions can be found within the driving
speed ranges 0 ≤ ω/ω0 < 0.91 and 1.02 < ω/ω0 < 1.31. All periodic solu-
tions within the range 0.9 < ω/ω0 < 1.2 must be discarded due to the large
amplitudes which are in contradiction with the assumption of small vibrations.

The nature of the instabilities of the periodic solutions is best demonstrated
by a stability analysis were only two harmonics are considered. The charac-
teristic exponents for this analysis are shown in Figure 4.4.1. The number of
exponents obtained is (2× 2+1) = 5 times as large as the number of first order
differential equations, being 2, making a total of 10. The appearance in clusters
of values which differ approximately by an integral multiple of iω is apparent.
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Figure 4.4: Three-dimensional plot of the dimensionless characteristic expo-
nents λ/ω0 indicating the stability of the periodic solutions with only 2 har-
monics for the pendulum with damping ζ = 0.01, in the driving speed range
0 < ω/ω0 < 1.4.
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The instabilities near ω/ω0 = 0.91 and ω/ω0 = 1.02 are of the transcritical
type, in which a characteristic exponent becomes zero and the resonance peaks
become unbounded. The amplitudes as shown in Figure 4.3 remain bounded
because the response was calculated for a finite number of discrete values of ω.
Near ω/ω0 = 1.31 a Neimark-Hopf bifurcation occurs, where a pair of complex
conjugated characteristic exponents cross the imaginary axis and no resonance
appears.

4.4.2 Slider-Crank Mechanism

As a second and more engineering type of example a slider-crank mechanism
is considered. The same mechanism has been used as an example in a series
of publications by Song and Haug [78], Jonker [30] and Meijaard [45], among
others. With [45] a comparison will be made.

The system consists of a rigidly modelled crank of length 0.15 [m], a flexible
connecting rod of length 0.3 [m] and a plunger. The crank and the connect-
ing rod have a uniform mass distribution of 0.2225 [kgm−1], the mass of the
plunger is 0.033375 [kg], the flexural rigidity of the connecting rod is EI =
12.72345 [Nm2] and the centre line is assumed inextensible. The crank rotates
at a constant angular velocity ω, so this system is periodically forced. Two
values of material damping according to the Kelvin-Voigt model are considered,
such that the damping in the connecting rod of the first eigenmode for small vi-
brations when the crank is fixed is 1% respectively 2% of critical damping. The
connecting rod is modelled by two planar beam elements (4 dynamic degrees of
freedom).

Figure 4.5 shows the periodic and the total, summed periodic and first period
transient, response for ω = 150 [rad/s] of the dimensionless lateral deflection of
the centre of the connecting rod, that is, the distance of the centre point of the
rod to the line connecting the endpoints divided by the reference length of the
rod. The deformations and deformation rates of the connecting rod are zero
at t = 0 and the shown solution corresponds to the 2% damping case. If we
compare the linearized results with the results from Meijaard [45] we note the
good agreement. However, in the transient response we see a small difference
at the start, due to non-linearity and inaccuracy in the process of averaging.

Figure 4.6 shows the dimensionless maximal midpoint deflection for different
values of the angular velocity of the crank for the periodic solution. Resonances
occur at about 1/5, 1/4 and 1/3 of the first eigenfrequency. For the numerical
model of the connecting rod with pinned joints and modelled by two beam
elements, this frequency is 832 [rad/s]. If we compare this with the full non-
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Figure 4.5: Dimensionless midpoint deflections of the connecting rod at ω = 150
[rad/s] and a damping of 2%. The smooth curves are the periodic solutions and
the oscillating curves are the sum of the periodic and the transient solutions.
The fully drawn lines are the linearized results, the dashed lines are the full
non-linear results from Meijaard [45].

linear response curves, the dashed lines, we see that the resonance at 1/5 of the
first eigenfrequency is not observed and the resonance peaks bend backwards
owing to the non-linearity.

Figure 4.7 shows the amplitude of the first four harmonics of the periodic
solutions as a function of the driving frequencies ω in the same range as Figure
4.6. The dotted lines show the corresponding quasistatic forcing solution, i.e.
the harmonic forcing multiplied by the inverse of the average stiffness matrix.
It is clearly seen that the third harmonic has a resonance peak near 1/3 of the
first eigenfrequency and also a secondary peak near 1/4 of this frequency. This
phenomenon can be observed in nearly all harmonics. The most interesting
one is the fourth harmonic, which shows a resonance peak near 1/4 of the first
eigenfrequency, notwithstanding the fourth harmonic in the forcing is absent.
In the non-linear analysis the lower solution around the backbones (Figure 4.6)
is unstable and the jump phenomenon can occur. This is not present in the
small vibrations model.
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Figure 4.6: Maximal dimensionless midpoint deflections of the periodic solutions
for 1% and 2% damping in the driving speed range of 150 < ω < 300 [rad/s].
The drawn lines are the linearized results, the dashed lines are the full non-linear
results from Meijaard [45].
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Figure 4.7: The amplitude scaled from 0 to 0.04 of the first four harmonics for
2% damping in the driving speed range of 150 < ω < 300 [rad/s] from Figure
4.6. The dotted lines show the quasistatic forcing solution.
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4.4.3 Rotor Dynamics Model [48]

The approach of this work can directly be applied to derive rotor dynamic
models and to analyse their linearized behaviour. In order to assess the validity
and accuracy of the models, a comparison with a problem from literature [81]
is made.

By the linearization procedure the structural equations of the rotor system
are obtained in a linearized form, and if the original non-linear model is com-
prehensive, all kinds of effects that give a contribution to the linearized equa-
tions, such as load-dependent terms, initial deflections, and mass unbalances,
are automatically taken into account. The influence of the rotor speed can be
distinguished in linear contributions to the velocity sensitivity matrix C and
quadratic contributions to the stiffness matrix K. This speed dependency can
be identified in detail in the individual contributions to the linearized equations
of motion as summarized on page 122 of Appendix A. The kinematics of the
additional elements such as bearings, seals, squeeze film dampers and air gaps,
can be linearized in the same way, as shown in Chapter 2 by Equation (2.15).
The constitutive equations of these elements can be added to the structural
equations as explained by Equation (2.14). In the context of the present work,
these have to be linearized.

seal disksbearings

10" 10" 10" 10" 10"

4"
ω

Figure 4.8: Rotor system consisting of a shaft, two isotropic linearly elastic
bearings, a seal and two disks.

As the data for the example was originally given by Glasgow and Nel-
son [18] in imperial technical units, the following conversion factors have been
used, where needed: 1 [in] = 0.0254 [m]; 1 [lb] = 0.45359237 [kg]; 1 [lbf] =
4.4482216 [N]; normal acceleration of gravity gn = 9.80665 [N/kg].

The example system consists of a solid circular cylindric shaft of length
50 [in] and diameter 4 [in] made of steel with density 0.283 [lb/in3] and modulus
of elasticity 3.0 ·107 [lbf/in2], see Figure 4.8. This shaft is supported at one end
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and at a position 10 [in] from the same end by isotropic bearings with stiffness
100 000 [lbf/in]. A liquid annular seal is placed 20 [in] from the same end. This
seal is not included in the calculation of the nominal solution. The additional
forces as in (2.11) exerted on the shaft are given by the linearized equations

[

fy
fz

]

= −
[

K k
−k K

] [

∆y
∆z

]

−
[

C c
−c C

] [

∆ẏ
∆ż

]

. (4.20)

Here, fy and fz are the lateral forces on the shaft, ∆y and ∆z are the lateral
displacements, and K = 89 542 [lbf/in], k = 27 028 [lbf/in], C = 171.42 [lbf s/in]
and c = 12 [lbf s/in] are the stiffness and damping parameters of the seal. The
constitutive equations are the same in a co-rotating reference frame. In addition
a part of the mass of the seal, 6.68 [kg], is added to the shaft at the position
of the seal. Two disks with mass 0.028 [lbf s2/in], axial moment of inertia
0.224 [lbf s2in] and transverse moment of inertia 0.114 [lbf s2in] are placed at
the other end and 10 [in] away from that end.

forward/backward present from [81]
forward -7.97 + 223.62 i -8.04 + 224.13 i
backward -45.93 + 226.44 i -45.87 + 226.05 i
backward -277.46 + 988.02 i -277.95 + 988.32 i
forward -205.18 + 1030.30 i -205.31 + 1031.00 i
backward -44.45 + 1893.45 i -44.30 + 1893.95 i
forward -45.51 + 1921.67 i -45.77 + 1922.70 i
backward -158.01 + 4232.13 i -158.48 + 4233.10 i
forward -153.39 + 4302.12 i -153.89 + 4305.32 i

Table 4.1: Eigenvalues (in [rad/s]) of an example rotor system; the results of
the present study and those from [81] are given for comparison.

The eigenfrequencies when the shaft turns at 4000 revolutions per minute are
calculated. The shaft is modelled with five finite beam elements of equal length
with neglected shear deformations but with inclusion of the rotary inertia of the
cross-section of the shaft. As the eigenfrequencies are determined with respect
to a co-rotating frame of reference in the present study, the corresponding fre-
quencies with respect to an inertia frame are determined by adding the rotary
speed to the frequencies of forward whirling modes and subtracting this speed
from the frequencies of backward whirling modes. The first eight eigenvalues
are given in Table 4.1; for comparison, the values from [81] are listed in the
same table. The differences are less than one percent, despite some difference
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in modelling. Note that for the first pair of modes, the forward whirling mode
has a lower frequency than the corresponding backward whirling mode.

4.4.4 Cardan Drive Shaft

The dynamic analysis of a flexible drive shaft connected by two universal (or
Cardan, or Hooke’s) joints is the subject of this example. The input and output
shaft are assumed rigid, parallel and rigidly supported in lateral direction. The
drive shaft is mounted in the plane of the input and output shaft under a
misalignment angle α. The two universal joints are mounted in such a way
that, for a rigid drive shaft, the rotation of the output shaft equals the rotation
of the input shaft, see Figure 4.9. The misalignment causes an uneven angular

ω

Mo

Io
α

Figure 4.9: Drive shaft connected by two in-plane universal joints.

velocity of the drive shaft of

ω′ =
cos(α)

1− sin2(α) sin2(ωt)
ω (4.21)

where α is the angle of misalignment. The corresponding variation of the drive
shaft torque at constant output torque M0 and no inertia is

Mt =
1− sin2(α) sin2(ωt)

cos(α)
M0. (4.22)

In addition, a bending moment is induced in the drive shaft by the applied
torque of

Mb = tan(α) sin(ωt)

√

1− sin2(α) sin2(ωt)M0. (4.23)

These results can be found for instance in [57].
The drive shaft of length 1.0 [m] has a solid circular cross section with ra-

dius 0.03 [m]. The shaft made of the steel has a mass density of 7850 [kg/m3],
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a modulus of elasticity E = 210 · 109 [N/m2] and Poisson’s ratio ν = 0.3. The
centre line of the shaft is assumed inextensible. The material damping (Kelvin-
Voigt) is such that the damping of the first eigenmode for small transverse and
torsional vibrations is 1% of critical damping. The flexible shaft is modelled by
two beam elements (no shear deflection). The misalignment angle α is π/6 [rad].
At the output side a concentrated moment of inertia Io = 0.345 555 [kgm2] is
attached, simulating the reduced moment of inertia of the driven system. The
input shaft is driven at a constant angular velocity ω while on the output shaft
a constant torque Mo = 1060.288 [Nm] is applied, opposed to the direction
of rotation, creating a situation of power transmission. The first two bending
eigenfrequencies of the undamped, pin jointed shaft are equal due to its sym-
metry and can be calculated as ωb = 766 [rad/s]. The concentrated moment of
inertia, Io, is chosen in such a way that, if there is no misalignment, the first
torsional eigenfrequency of the undamped shaft (with lumped rotary inertia)
equals 1/

√
2 times the first bending eigenfrequency.
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Figure 4.10: Maximal dimensionless midpoint deflection (v/l)max for the peri-
odic solution of the drive shaft in the driving speed range of 0 < ω/ωb < 1.0.
The thin lines between circles are the regions of unstable periodic solutions.

Figure 4.10 shows the maximal dimensionless midpoint deflection of the drive
shaft in the lateral plane for the periodic solution for different values of the driv-
ing speed ω. Resonance occur at about 1/2, 1/3 and 1/4 of the first bending
eigenfrequency and not at the eigenfrequency itself since the configuration of
the shaft with symmetric cross-section has a period of π. It is interesting to see
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that the resonances at 1/2 and 1/4 show two peaks close together: the two ini-
tially equal eigenmodes in the lateral plane are separated by the torque load in
combination with the misalignment. The thin lines between the circles show the
regions of unstable periodic solutions, these zones stretch from 0.65 unto 0.68
and from 0.78 unto 0.92. At the boundaries, a pair of complex conjugate char-
acteristic exponents crosses the imaginary axis and Neimark-Hopf bifurcations
occur.

The computational effort for calculating, at every individual driving speed,
the gross motion, the linearized equations, and the periodic solution was in
the order of one second whereas the effort for determining the stability of the
solution, by calculating the characteristic exponents according to (4.15), was
in the order of one minute. Algorithms that calculate only a subset of the
eigenvalues would speed up the stability analysis.
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Figure 4.11: Maximal twist angle φmax for the periodic solution of the drive
shaft in the driving speed range of 0 < ω/ωb < 1.0. The thin lines between
circles are the regions of unstable periodic solutions.

Figure 4.11 shows the maximal twist angle between the input and the output
end of the shaft for the periodic solution for different values of the driving speed
ω. Keeping in mind that the first torsional eigenfrequency equals 1/

√
2 times

the first bending eigenfrequency ωb we see that resonance clearly occurs at
about 1/2, 1/3 and 1/4 of the first torsional eigenfrequency. Again resonance
at the eigenfrequency itself is not present. The resonance at 1/2 of the first
bending eigenfrequency is due to the coupling between the bending and the
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torsion modes. The maximal twist angle at minimum and maximum driving
speed is 0.012 [rad], which is about 20 % higher than the static twist angle at
zero misalignment.

Figure 4.12 shows the amplitude on a logarithmic scale of the first seven
harmonics of the dimensionless midpoint deflection of the shaft for the periodic
solution as a function of the driving speed ω in the same range as Figure 4.10.
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Figure 4.12: The logarithmic amplitude of the first seven harmonics for the
dimensionless midpoint deflection v/l of the drive shaft from Figure 4.10 in the
driving speed range of 0 < ω/ωb < 1.0.

All even harmonics are zero due to the symmetry of the system. First
of all the coupling between bending and torsion is visible in the deflection at
zero speed. Second we clearly see all subharmonics resonance with decreasing
amplitudes at increasing harmonics. Figure 4.13 shows the same presentation
for the twist angle. Now all odd harmonics are zero due to the symmetry of the
system. Harmonic number zero shows the average twist angle which is about
constant over the range of speeds. In the second harmonic we clearly see the
resonance at 1/2 of the first bending eigenfrequency together with resonance at
1/2 of the first torsion eigenfrequency. Note the high amplitude contribution of
the 4th harmonic at ωb/2.

All results presented here show hardly any difference with full non-linear
results.
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Figure 4.13: The logarithmic amplitude of the first seven harmonics for the
twist angle φ of the drive shaft from Figure 4.11 in the driving speed range of
0 < ω/ωb < 1.0.

4.4.5 Slider-Crank Mechanism with Joint Clearance

In this last example the effect of joint clearance on the dynamic response of
an offset slider-crank mechanism is considered. This example illustrates the
application of additional applied non-linear forces to the linearized equations
of motion that were not included in the calculation of the nominal solution.
In this case the non-linear forces originate from the unilateral contact in the
clearance joint. The mechanism originates from a publication by Rogers and
Andrews [64].

The system, as shown in Figure 4.14, consists of a crank of length 0.0508 [m],
a connecting rod of length 0.1524 [m], and a horizontally moving plunger with a
vertical offset of 0.0508 [m]. The crank and the connecting rod are modelled as
rigid elements. The uniformly distributed mass of the crank and the connecting
rod are respectively 0.1366 [kg] and 0.3406 [kg]. The mass of the plunger is
0.3406 [kg]. The joint between the crank and the connecting rod with journal
radius 3.18 [mm] has a radial clearance of c = 51 [µm]. The contact between the
steel journal of the connecting rod and the babbit bearing wall of the crank is
approximated linearly with a stiffness of 1.09 108 [N/m] and a material damping
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of 100 [Ns/m] according to the Kelvin-Voigt model. Starting from a horizontal
position, the crank rotates anticlockwise at a constant angular velocity of θ̇ =
150 [rad/s].
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Figure 4.14: Radial journal displacement r with respect to the crank bearing
as a function of the crank angle θ for the first one and a half crank revolutions
in an offset slider-crank mechanism. The strongly oscillating curve is the total
response and the smooth curve represents the periodic solution at zero clearance
but with compliance, drawn relative to r = c.

The effect of the small joint clearance on the dynamic behaviour of the
mechanism can be described by the superimposed motion of the journal with
respect to the crank bearing. This leads, for the small vibration analysis, to a
system with two degrees of freedom, the horizontal and vertical displacement
of the journal with respect to the crank bearing reference frame. The forces
exerted in the elastic bearing with clearance can be modelled in this small
vibration analysis as additional applied non-linear forces.

In a first analysis the dynamic response is calculated taking into account the
clearance and compliance in the joint. The nominal motion of the system is with
zero clearance and no compliance. The analysis is done by numerical integration
of the equations of motion for the small vibration problem with the additional
non-linear forces from the unilateral compliant contact in the clearance joint
added on the right-hand side. The result of this transient analysis is the strongly
oscillating curve in Figure 4.14. The strong oscillation clearly takes place around
a smooth curve. This curve represents the periodic solution of the system where
the joint is modelled without clearance but with compliance. In the model with
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clearance the first contact loss appears at a crank angle of 312◦ after which
several impacts with high amplitudes in the displacement start off the transient
again, resulting in a kind of periodic transient behaviour. The contact loss is

c

0 o

45 o

90 o

135 o

180 o

225 o

270 o

315 o

360 o

Figure 4.15: Journal centre path with respect to the crank bearing reference
frame. Dots with numbers indicate the crank orientation in degrees starting
from a horizontal position θ = 0◦. The first complete revolution is shown.

visualised by the journal centre path with respect to the crank bearing centre
in Figure 4.15. This shows that the bearing is only loaded at the outer region
and that the contact loss happens due to the sudden change in vertical bearing
force after θ = 270◦. The transient behaviour corresponds very well with the
full non-linear results from Rogers and Andrews [64].

In a second analysis the system is even more simplified. The clearance in the
compliant joint is disregarded and the periodic solution of the linearized equa-
tions of motion is calculated. This result is shown in Figure 4.14 and Figure 4.16
as the smooth curve relative to the horizontal axis c. The heavily oscillating
curve in Figure 4.16 is the total dynamic response, the summed periodic and
transient solution. The initial conditions for the transient solution are all taken
zero except for the horizontal relative displacement in the bearing being 3.5 [µm]
with respect to the periodic solution at θ = 0◦ . This approximates the initial
transient of the non-linear analysis from Figure 4.14. There are two grounds for
discarding the approximated transient response from Figure 4.16 in comparison
with the non-linear results as presented in Figure 4.14. First, there is no onset
of transient due to the several impacts at θ = 312◦. Second, after low force level,
around θ = 90◦, the amplitude of the vibration sustains while in the response of
the non-linear model the elastic vibration mode is transformed to a pendulum
motion of the journal in the bearing.
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Figure 4.16: Radial journal displacement r with respect to the crank bearing
as a function of the crank angle θ for the first one and a half crank revolutions.
The smooth curve represents the periodic solution at zero clearance but with
compliance, the heavily oscillating curve is the sum of the periodic and the
transient solution. Both curves are drawn relative to r = c.

We conclude by remarking that the approximate periodic solution from the
second analysis, at zero clearance but with compliance, can predict the aver-
age bearing displacement together with the frequency of the periodic transient.
The onset and amplitudes of this transient can not be predicted by this linear
model. However, the non-linear vibration analysis on the two degrees of freedom
model for small vibrations is far more efficient in computation time than the
full analysis on the complete system.
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Chapter 5

Joint Clearance

Zeno: But in that very short flash, the Tortoise has managed to inch
ahead by ever so little, and so Achilles is still behind. Now you
see that in order for Achilles to catch the Tortoise, this game of
“try-to-catch-me” will have to be played an INFINITE number
of times—and therefore Achilles can NEVER catch up with the
Tortoise!

Tortoise: Heh heh heh heh!
Achilles: Hmm . . . hmm . . . hmm . . . hmm . . . hmm . . . That argu-

ment sounds wrong to me. And yet, I can’t quite make out what’s
wrong with it.

Zeno: Isn’t it a teaser? It’s my favorite paradox.

(Douglas R. Hofstadter, Gödel, Escher, Bach)

Joint clearances due to manufacturing tolerances and wear can seriously affect
the dynamic response of mechanical systems. In unlubricated joints it is usu-
ally accompanied by rattling, excessive wear and noise, which is caused by peak
contact forces. A critical factor in the precise prediction of the peak forces is the
contact model being used. In the past a considerable amount of experimental
and theoretical work has been done to study the effect of joint clearances on the
dynamic response of mechanical systems. An overview of the English language
literature on this subject up to 1980 is given by Haines [21]. In an early German
study Hain [20] discusses the effect of radial joint clearance on the forces in an
experimental set-up of a scotch-yoke mechanism. After 1980 Soong and Thomp-
son [79] did experimental work on a slider-crank mechanism with revolute joint
clearance between the connecting rod and the slider and they made a compari-
son with calculated results from a rigid-link model. A spatial manipulator with

79
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joint clearance was modelled by Kakizaki et al. [34], who included the effects of
elastic links and the control system. Deck and Dubowsky [11] published results
from experiments on a spatial slider-crank mechanism. The possibility of occur-
rence of chaotic motion was shown by Seneviratne and Earles [75]. Finally, the
treatment of unilateral constraints in a multibody system is described in detail
in the book by Pfeiffer and Glocker [59].

This chapter will focus on the modelling of joint clearances in a computer
code environment for dynamic analysis of mechanical systems. First of all the
kinematics of a planar journal bearing will be discussed. In the subsequent sec-
tion two continuous contact force models are treated, a Hertzian contact model
with dissipation and a lubricated, hydrodynamic bearing model. Both models
are applied in illustrative examples. In Section 5.3 the basic equations for a dis-
continuous contact force model (impact with rebound) in a mechanical system
are derived. The numerical aspects of such an analysis are treated in depth and
an estimate for the maximum contact force during impact is presented. The
various contact models are illustrated for a high-speed slider-crank mechanism
with a revolute joint clearance between the connecting rod and the slider. The
results for the case of rigid links and Herztian contact forces obtained with a
finite element based multibody software system are compared with results as
presented by Ravn [62].

5.1 Joint Clearance Model

Joint clearance in a planar revolute joint, see Figure 5.1, is usually modelled by
the introduction of two extra degrees of freedom, the horizontal and the vertical
displacements, x and y, of the journal centre relative to the sleeve centre. If the
planar cylindrical bearing element from Section 3.1 is used to model the joint
then these displacements are represented by the first two generalized strains ε1

and ε2 (3.1). Since for a revolute joint the relative rotation is unconstrained,
this means that in a non-contact condition, no constraints are introduced by
the joint. During contact, the interaction between the two parts in the joint is
solely achieved by normal and tangential contact forces. The kinematic contact
condition for a revolute joint with radial clearance c and relative displacements
x and y is given by

gN = c−
√

x2 + y2 ≤ 0. (5.1)

A situation without contact corresponds to gN > 0, whereas contact with local
deformation near the contact zone, to be indicated as penetration, is indicated
by a negative value of gN . When the journal comes into contact with the sleeve
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Figure 5.1: Planar revolute joint with clearance.

and the contact is assumed rigid, one degree of freedom is removed from the
system. The two remaining degrees of freedom are a relative rotation of the two
parts and a rotation of the journal centre around the sleeve centre. In the case
of friction in the contact region there is a possibility of sticking. When sticking
occurs, again a degree of freedom is removed and there is only one possible
relative motion in which the cylindrical surface of the journal rolls without slip
along the inner sleeve surface.

5.2 Continuous Contact Force Models

5.2.1 Hertzian Contact Force Model with Dissipation

Since the primary interest is not the shape nor any other detail of the contact
region, we are in need of a global contact model with few parameters. For an
unlubricated joint the Hertzian contact force model is an appropriate choice.
Whereas the original Hertzian model does not include any energy dissipation,
an extension by Lankarani and Nikravesh [40, 41] includes energy loss due to
internal damping. In this model the compressive contact force FN in terms of
the penetration depth δ = −gN , and velocity δ̇ = −ġN , is given by

FN =

{

Kδn +Dδ̇ δ > 0
0 δ ≤ 0

. (5.2)
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For the frictionless Hertzian contact between two spheres the exponent n = 3/2
and the stiffness parameter K is given by [23]

K =
4

3π(h1 + h2)

√

R̄, (5.3)

where

R̄ =
R1R2

R1 +R2
; hi =

1− ν2
i

πEi
i = 1, 2;

with radius Ri, Poisson’s ratio νi and Young’s modulus Ei associated with each
sphere. A form for the hysteretic damping coefficient according to

D = Hδn, (5.4)

was proposed by Hunt and Crossley [27]. The so-called hysteresis damping
factor H can be estimated from a comparison of the energy loss in a central
impact of a sphere with a rigid barrier, using Newton’s impact law and the
present model. The energy loss after impact of a sphere with mass m at a
penetration velocity δ̇− just before impact, and with coefficient of restitution e
according to Newton’s impact law, is

∆T = −1

2
(1− e2)m(δ̇−)2. (5.5)

On the other hand, this energy loss can be expressed by integration of the
contact force of the present model (5.2), over one hysteresis loop as

∆T = −
∮

FN dδ = −
∮

Hδnδ̇ dδ. (5.6)

For small energy dissipation, the motion of the sphere can be approximated by
the fully elastic motion as

δ̇2 =
2

n+ 1

K

m
(δn+1

max − δn+1), (5.7)

with the maximum penetration δmax as in

(δ̇−)2 =
2

n+ 1

K

m
δn+1
max. (5.8)

Substitution of this motion in the contour integral and evaluation yields

∆T = −
∮

Hδnδ̇ dδ ≈ −2
∫ δmax

0

Hδnδ̇ dδ = −2

3

H

K
m( ˙δ−)3. (5.9)
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Equating this with the Newtonian impact law result (5.5), approximates the
hystersis damping factor H for small energy dissipation as

H =
3(1− e2)K

4δ̇−
. (5.10)

A major drawback of this model is the dependency of the hystersis damping
factor H on the impact velocity δ̇−. In finding this we have to track down the
precise moment of impact which makes the continuous model partly non-smooth.
Furthermore it can be shown that the approximate model underestimates the
amount of dissipated energy, and consequently results in a higher velocity after
impact. For a restitution factor e of 0.75 and above, the error in the velocity after
impact is less than 10%, while the error in the dissipated energy is less than 25%.
This contact law is derived for colliding spheres having circular contact regions.
In the case of a planar revolute joint we have to deal with cylindrical line contact.
This line contact will only be present when we have two extremely precise aligned
long cylinders. This is usually not the case and therefore Harris [22] proposes the
sphere contact model should be used. According to Ravn [62] this is reasonably
close to the more complicated force-displacement relation for cylindrical line
contact.
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Figure 5.2: Hertzian contact law according to (5.2) with penetration depth δ,
contact force FN and hysteresis loop of an elastic sphere impacting an elastic
barrier; m = 0.145 [kg]; δ̇− = 5 [m/s]; K = 65.8 · 109 [N/m1.5]; e = 0.95.

An illustrative example of the dissipative Hertzian contact force model is an
elastic sphere impacting an elastic barrier. The parameters for this example are
chosen in conformity with those of the slider-crank example to be discussed in
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Section 5.4. The sphere with radius R1 = 9.5 [mm] and mass m = 0.145 [kg]
has an initial velocity just before impact of δ̇− = 5 [m/s]. The fixed barrier has
a concave spherical curvature with radius R2 = −10.0 [mm]. The materials in
contact have the properties of steel with Young’s modulus E = 2.06·1011 [N/m2],
Poisson’s ratio ν = 0.3 and coefficient of restitution e = 0.95. Figure 5.2
shows the penetration depth, the contact force and the hysteresis loop for a
representative impact.

5.2.2 Hydrodynamic Contact Force Model

Since most of the joint clearances in mechanisms and machines are in lubricated
bearings, a model is needed for this type of bearing. The simplest type of fluid
film bearing for a revolute joint is the plane full journal bearing. Rogers and An-
drews [64] are among the few who incorporate a simple empirical hydrodynamic
bearing model in a linkage dynamic analysis. In the work of Moes et al. [51]
simple but nevertheless accurate closed-form analytical expressions for the load
carrying properties of fluid film bearings are introduced. These solutions are
based upon the Reynolds equation for a thin film. Incorporated is the effect of
cavitation and the finite length of the bearing. An algorithmic interpretation
of their expressions for the determination of the bearing force as a function of
the relative position and speed of the journal and the physical parameters of
the bearing is presented in Appendix C. This straightforward algorithm can be
coded in any numerical procedure. It returns the forces exerted by the fluid film
on the sleeve expressed in the Cartesian reference frame Oxy of the sleeve as

[

Fx

Fy

]

= 2µl
(r

c

)3

vs

[

cosϕ − sinϕ
sinϕ cosϕ

] [

Wx

Wy

]

, (C.11)

with journal radius r, radial clearance c, bearing length l, lubricant dynamic vis-
cosity µ, pure-squeeze velocity magnitude vs and orientation ϕ, and impedance
vector components or dimensionless damping coefficients Wx and Wy which are
a function of the shape and the state of motion of the bearing.

An example of the quasi-static load carrying capacity of such a lubricated
journal bearing is shown in Figure 5.3. The sleeve is fixed and the journal rotates
with a constant angular velocity. The bearing force with respect to the fixed
frame is calculated as a function of the scaled horizontal position x/c. In every
position the velocities ẋ and ẏ are zero (quasi-static). The bearing dimensions
are the same as those of the slider-crank example to be discussed in Section 5.4.
From this example a major characteristic of the bearing model is immediately
clear: when the journal approaches the sleeve, e.g. x/c > 0.95, the bearing force
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Figure 5.3: Bearing force F in magnitude (solid line) and orientation (dashed
line) exerted by the lubricant on the journal as a function of the eccentric-
ity x/c (y = 0) for the quasi-static case (ẋ = 0 and ẏ = 0), with a hy-
drodynamic lubricated bearing according to the model by Moes et al. [51];
ω = 163.62 [rad/s]; r = 10.0 [mm]; c = 0.5 [mm]; l = 2r; µ = 0.1 [Ns/m2].

increases very rapidly; note the logarithmic scale used. The bearing becomes
stiff and the numerical analysis will be sensitive to small errors in the relative
journal positions x and y.

5.3 Discontinuous Contact Force Model

5.3.1 Impulse Equations

In the discontinuous contact force model the duration of contact is assumed to
be very short in comparison with the time scale of the problem at hand. Under
this assumption the change in velocity may be considered as instantaneous and
we speak of an impact. The velocity jump is enforced by a very high value of the
contact force acting only during a small time interval of contact. In the limit
case the force is infinite and the time interval is zero. The integral of the force
with respect to time over the duration of the impact, the impulse, has a finite
value which is the cause of the velocity jump. While the impact takes place
all positions remain constant and all non-impulsive forces of the mechanical
system can be neglected. The impact is usually divided into a compression and
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an expansion phase. Newton’s impact law links these two phases by stating that
the relative speed after impact equals e times the relative speed before impact
but it has the opposite direction. The factor e is the coefficient of restitution. A
value of e = 1 corresponds with a fully elastic impact whereas the value of e = 0
represents a completely inelastic impact in which the two parts “stick”together
after impact. For an unconstrained mechanical system the equations of motion
can be written as

Mq̈ = f , (5.11)

with mass matrix M, the accelerations q̈ of the generalized coordinates q and
the sum of all generalized forces f . When contact occurs possibly at a number
of points, indicated by the vector equation gN (q) = 0, the system becomes
constrained and the equations of motion become

Mq̈ + g
′T
N λN = f , (5.12)

with the partial derivatives g
′

N = ∂gN/∂q and the multipliers λN dual to
the relative contact velocities ġN . These multipliers can be interpreted as the
contact forces. Integration of these equations of motion over the time of impact
and taking the limit case yields

lim
t−↑t+

∫ t+

t−
(Mq̈ + g

′T
N λN ) dt = 0. (5.13)

The generalized forces f only contain non-impulsive forces and therefore the
right-hand side vanishes. Under the introduction of the contact impulses,

sN = lim
t−↑t+

∫ t+

t−
λN dt, (5.14)

and noting that the mass matrix, in general a function of the generalized co-
ordinates, stays constant during impact, the momentum equations for the me-
chanical system become

Mq̇+ + g
′T
N sN = Mq̇−, (5.15)

with q̇− the generalized velocities before and q̇+ the generalized velocities after
impact. Together with Newton’s impact law,

ġ+
N = −eġ−N , or g

′

N q̇+ = −eg′N q̇−, (5.16)
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we have a complete set of linear equations reading

[

M g′N
T

g′N 0

] [

q̇+

sN

]

=

[

Mq̇−

−eg′N q̇−

]

. (5.17)

From these equations the velocities after impact q̇+ together with the contact
impulses sN can be found. Because Newton’s impact law (5.16) is often contra-
dicted experimentally in case of multiple impacts, a restriction to simple impacts
is made. With one impact occurring at a time the resulting contact impulse can
be solved as

sN = (1 + e)meg
′

N q̇−, (5.18)

where the effective mass me is given by the expression

me = 1/(g
′

NM−1g
′T
N ). (5.19)

The velocities after impact are given by

q̇+ = q̇− −M−1g
′T
N sN . (5.20)

The change of energy during impact is equal to the difference of the kinetic
energy before and after the impact yielding

∆T = −1

2
(1− e2)me(ġ

−
N )2. (5.21)

Since the coefficient of restitution e is between zero and one, the impact will
always be dissipative except for the limit case e = 1, where we have energy
conservation.

5.3.2 Numerical Aspects of Impact Analysis

In a joint having a clearance three distinct states are to be observed: free
flight where there is no contact between the two parts, impact and permanent
contact. In doing the numerical calculations it is very important to find the
precise moment in time of transition between these different states. If not,
there will be a build-up of errors and the final results are inaccurate. If we rely
on the integration routine to do this job it has to step back and take smaller
steps until a step is taken within the error tolerance. The transition from an
impacting motion to permanent contact leads to an infinite number of impacts
in a finite period of time, a so-called finite time singularity. Very slowly we shall
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reach the moment where the journal will come into permanent contact with the
sleeve. Compare this to the Achilles and tortoise argument of Zeno of Elea [37].
In the next three subsections the handling of the different transitions will be
treated.

Contact Detection

Usually coming into contact is detected by a change of sign in the distance gN
between the discrete moments in time tn and tn+1,

gN (q(tn))gN (q(tn+1)) < 0. (5.22)

This zero crossing of gN (q(t)) can be found with the help of a bisection or a
Newton-Raphson procedure. In both cases we need to calculate intermediate
values of q(t). A fast and accurate approach, as proposed by Meijaard [46], uses
a third-order interpolation polynomial between the already calculated positions
and velocities at tn and tn+1. This interpolation reads

q(t) = (1− 3ξ2 + 2ξ3)q(tn) + (ξ − 2ξ2 + ξ3)hq̇(tn)
+(3ξ2 − 2ξ3)q(tn+1) + (−ξ2 + ξ3)hq̇(tn+1),

(5.23)

with ξ = (t − tn)/h and h = tn+1 − tn. By interpolation of the generalized
coordinates q(t) and evaluation of the distance function gN (q(t)) the moment
of contact can be calculated within a given error tolerance. We thus avoid
repetitive calculation of the accelerations from the system equations to find the
zero crossing.

Permanent Contact

Just as with a bouncing ball on a horizontal plane, the journal may tend to stay
in permanent contact with the sleeve. In the analysis this is often recognized
as a rapidly increasing number of impacts with decreasing impulses. On the
basis of slowly varying forces the motion, after impact with such a low impact
velocity, can be estimated by a constant acceleration flight,

gN (tn + h) = ġN (tn)h+
1

2
g̈N (tn)h

2. (5.24)

The next moment of contact is estimated by setting gN (tn + h) to zero from
which we come up with an estimated duration between contacts,

hc = −2
ġN
g̈N

. (5.25)
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If this estimated duration is within the integration timestep, contact within
one integration step is highly probable. The time in which permanent contact
will occur can be estimated by assuming a number of subsequent impacts with
coefficient of restitution e. After the first impact, the impact velocity is reduced
by a factor e while the acceleration, g̈N , more or less stays the same. The
estimated duration for permanent contact is the sum of the infinite sequence of
durations given by

h∞ = hc + ehc + e2hc + · · · =
1

1− ehc. (5.26)

If, at impact, this estimated h∞ is less than the integration step size h, perma-
nent contact is assumed. The configuration of the system at permanent contact
is found by first interpolating the generalized positions and velocities at the time
of impact, t = tn + hc, and then doing a fully inelastic impact calculation.

If the two parts are in permanent contact the equations of motion for this
constrained mechanical system are according to (5.12). These together with
the contact condition gN = 0 lead to a mixed set of ordinary differential and
algebraic equations (DAEs).

[

M g′N
T

g′N 0

] [

q̈

λN

]

=

[

f

−g′′N q̇q̇

]

(5.27)

These equations can be solved in various ways. In our approach the system
equations are transformed in terms of independent coordinates. The resulting
ordinary differential equations for the position and velocities of the independent
coordinates can be numerically integrated by any scheme. A fast and accurate
method, which exploits the second-order structure of the equations of motion,
is the explicit one stage method as proposed by Meijaard [44]. With the second-
order differential equations of the equations of motion given by q̈(t,q, q̇), where
the set of independent coordinates is denoted by q, the method can be described
as

k1 = q̈(tn + 1
2h,qn + 1

2hq̇n, q̇n)
qn+1 = qn + hq̇n + 1

2h
2k1

q̇n+1 = q̇n + hk1.
(5.28)

The order of the method is 1, but if the accelerations depend weakly on the
velocities the scheme shows order 2 behaviour. Investigation of the stability of
the method shows that undamped systems can be integrated in a numerically
stable way for step sizes smaller than 2 over the largest eigenfrequency of the
mechanical system. Other methods like the classical fourth-order Runge-Kutta
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method or the explicit predictor/corrector algorithm as described (and coded)
by Shampine and Gordon [77], have also been used with success.

Loss of Contact

The loss of contact can be detected by monitoring the contact force λN . If this
force becomes positive, i.e. tension in the contact region, the contact condition,
gN = 0, has to be dropped. In finding the zero crossing of the contact force
intermediate values can be calculated with the mixed differential and algebraic
equations from (5.27). For the intermediate values of q and q̇ the same third
order interpolation polynomial as in (5.23) can be used. On the other hand, if
a numeric integration scheme with intermediate steps is used, like for instance
the classical fourth-order Runge-Kutta method, the intermediate values of the
contact force can be used for direct interpolation in time. This is a fast and
accurate method. In the case of having an intermediate value at the midpoint
h/2 the second order interpolation yields

λN (t) = (1− 3ξ + 2ξ2)λN0 + (4ξ − 4ξ2)λNh/2 + (−ξ + 2ξ2)λNh (5.29)

with ξ = (t− tn)/h and h = tn+1 − tn, the contact force λN0 at the beginning,
λNh/2 at the midpoint, and λNh at the end of the step.

Maximum Contact Force Estimation

The maximum contact force can be estimated from the contact impulse sN and
the elastic material properties of the joint. We shall assume a non-dissipating
contact force model according to

FN = Kδn. (5.30)

The maximum indentation is calculated from the balance of the kinetic energy
just before impact and the elastic energy at maximum indentation,

1

2
me(δ̇

−)2 =
1

n+ 1
Kδn+1

max, (5.31)

where me is the effective mass (5.19) of the mechanical system at the contact
location. With the contact impulse sN = meδ̇

− the maximum indentation yields

δmax =

(

n+ 1

2

s2N
meK

)
1

n+1

, (5.32)
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and the estimated maximum contact force is given by

FNmax =

(

n+ 1

2

K
1
n

me
s2N

)
n

n+1

. (5.33)

In the case of a Hertzian contact, n = 3/2 in the above expressions, whereas
in the case of a linear spring the exponent n is one and the maximum contact
force yields

FNmax = ωcsN , (5.34)

where we have introduced the natural contact frequency

ωc =

√

K

me
. (5.35)

In the expression for the contact force (5.34) we clearly recognize the impact
sN being a product of a high force FNmax and a short time period 1/ωc. The
approximation for the maximum contact force only holds for high contact fre-
quencies in comparison to the other natural frequencies of the system.

5.4 Application to a Slider-Crank Mechanism

A slider-crank mechanism is used as an example to illustrate the effect of the dif-
ferent types of joint clearance models. The same mechanism has been used as an
example by Ravn [62], which allows us to compare some results. The mechanism,

ω

Figure 5.4: Slider-crank mechanism with radial clearance at the slider revolute
joint.

as shown in Figure 5.4, consists of a rigid crank of length 0.05 [m], a rigid or elas-
tic connecting rod of length 0.12 [m] and flexural rigidity EI = 6.2146·103 [Nm2],
and a slider. The slider mass and the uniformly distributed mass of the connect-
ing rod are both 0.145 [kg]. The crank rotates at a constant angular velocity
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ω = 523.6 [rad/s]. The revolute joint between the connecting rod and the slider
is modelled with joint clearance. The journal radius is 9.5 [mm] while the sleeve
radius is 10.0 [mm]. The width of the joint is 20.0 [mm]. The materials in con-
tact have the properties of steel with Young’s modulus E = 2.06 · 1011 [N/m2],
Poisson’s ratio ν = 0.3, coefficient of restitution e = 0.95 and we assume no fric-
tion. For the fluid film lubricated journal bearing a lubricant dynamic viscosity
of µ = 0.1 [Ns/m2] is used. In the initial configuration the slider is in the top
dead centre and the journal centre displacements and velocities are taken to be
zero. Four different cases will be considered. First, all links are considered to
be rigid bodies and a Hertzian contact force model is used at the revolute slider
joint. Second, again all links are rigid but an impact model at the revolute
slider joint is used. Third, a rigid crank and an elastic connecting rod, and a
Hertzian contact force model at the revolute slider joint are used. Fourth, all
links are assumed to be rigid bodies and a hydrodynamic lubricated bearing at
the revolute slider joint is used.

Since clearances are typically at least a hundred times smaller than link
lengths the effect of the clearance can be treated as a small perturbation on
the ideal kinematic motion. This same argument is used by Dubowsky and
Gardner [13]. The perturbations, being the small displacements in the joint,
are handled with the concept of small vibrations superimposed on non-linear
rigid body motion as described in Chapter 4.

5.4.1 Continuous Hertzian Contact Force Model

In this first case the links are considered to be rigid bodies and the contact
force model for the revolute joint at the slider is of the Hertzian type. This
corresponds to the example as given by Ravn [62]. The line contact in the revo-
lute joint will only be present for two cylinders aligned with extreme precision.
Also, a uniform force distribution over the length of the joint can only be the
case if we neglect the boundary effects. With these arguments we propose to
use the Hertzian contact force law between two spheres. With the example
parameters from above the Hertzian stiffness coefficient (5.3) can be calculated

with R1 = 9.5 [mm] and R2 = −10.0 [mm] as K = 65.8 · 109 [N/m
1.5

]. The
slider accelerations and velocities for the time interval of two crank revolutions,
after the transient has died out, are shown in Figure 5.5. In the first half of
the time interval the accelerations show smooth changes while in the second
half they show high peak values which immediately drop back to zero. These
zero accelerations indicate the free flight of the slider and consequently the oc-
currence of impacts in the joint. This is confirmed by step-like changes of the
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Figure 5.5: Acceleration (a) and velocity (b) of the slider for the case of rigid
links and a Hertzian contact force model. The smooth curves correspond to
the case without clearance. The shown time interval corresponds to two crank
revolutions.

velocity during this second half of the interval. The torque applied to the crank
to maintain constant angular velocity is shown in Figure 5.6. Here again we
observe the high peak values due to the impacts. The rigid slider and crank
propagate the high peak forces at the joint instantaneously to the crank. In
the path of the journal centre as shown in Figure 5.6, we recognize the different
contact modes: free flight, impact with rebound, and permanent contact. The
excursions outside the clearance circle are due to the local Hertz deformations.
The dots are plotted equidistantly in time. Results correspond well with those
from Ravn [62].

5.4.2 Impact Model with Estimated Maximum Contact
Force

In this second case the links are again assumed rigid but the interaction in the
revolute joint with clearance is modelled by elastic impacts with dissipation.
These impacts give rise to discontinuous forces in the joint and jumps in the ve-
locities of the system. The maximum contact force which occurs during the short
period of impact is estimated with the simple model from Section 5.3.2. The
slider acceleration and velocity for the time interval of two crank revolutions,
after the transient has died out, are shown in Figure 5.7. The slider acceleration
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Figure 5.6: Torque acting on the crank (a) and journal centre path (b) for
the case of rigid links and a Hertzian contact force model. The smooth curve
corresponds to the case without clearance. The shown time interval corresponds
to two crank revolutions.
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Figure 5.7: Acceleration (a) and velocity (b) of the slider for the case of rigid
links and an impact contact model. The smooth curves correspond to the case
without clearance. The shown time interval corresponds to two crank revolu-
tions.
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is zero during most of the first crank revolution. This means that the slider is
solely moved by impacts. These impacts can clearly be seen in the staircase-like
slider velocity during this first half of the time interval. The second half of the
time interval shows permanent contact. The acceleration and velocity oscillate,
owing to the tangential oscillation of the journal in the sleeve in the absence of
friction, around the smooth curve of the rigid solution. In Figure 5.8 showing
the torques acting on the crank, vertical lines are drawn representing the maxi-
mum torques due to the estimated maximum contact forces according to (5.34).
These estimates match well in magnitude and in mutual distance with the high
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Figure 5.8: Torque acting on the crank (a) and journal centre path (b) for the
case of rigid links and an impact contact model. In the left figure, the smooth
curve corresponds to the case without clearance and the vertical lines indicate
the contribution to the torque from the estimated maximum contact force during
impact. The shown time interval corresponds to two crank revolutions.

torque peaks during the second half of the time interval for the Hertzian contact
model from Figure 5.6. At the end of the first crank revolution in Figure 5.8,
a smooth transition from the estimated maximum torque during impact in the
permanent contact torque can be observed. In the path of the journal centre we
recognize again the different contact modes: free flight, impact with immediate
rebound, and permanent contact. The dots are plotted equidistantly in time.
Note the zero penetration depths.
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5.4.3 Continuous Hertzian Contact Force Model and Elas-
tic Connecting Rod

In this third case we model the connecting rod as an elastic Euler-Bernoulli
beam and the crank as a rigid body, and we use the Hertzian contact force
model at the slider joint. The centre line of the connecting rod is assumed
inextensible since the frequencies of the axial modes are considerably higher
than the frequency of the first bending mode. The material damping in the
connecting rod is considered such that the damping of the first eigenmode for
small vibrations is 1% of the critical damping. The connecting rod is modelled
by two planar beam elements. The model has six degrees of freedom; two degrees
of freedom result from the joint clearance and four degrees of freedom describe
the bending of the connecting rod. Results are shown in Figures 5.9 and 5.10.
The elasticity of the connecting rod has a smoothing effect. Compared with the
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Figure 5.9: Acceleration (a) and velocity (b) of the slider for the case of an
elastic connecting rod and a Hertzian contact force model. The smooth curves
correspond to the case without clearance. The shown time interval corresponds
to two crank revolutions.

case where the connecting rod is modelled as a rigid body (Section 5.4.1), the

maximum acceleration is reduced from 180 · 103 [m/s
2
] to 120 · 103 [m/s

2
] and

the maximum driving torque from 1.35 [kNm] to 0.85 [kNm]. The compliant
elements act as a suspension. This effect of elasticity of the links was also
noted by Dubowsky and Gardner [13]. During the first crank revolution a
high-frequency response in the torque acting on the crank can be observed, see
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Figure 5.10. This is due to high velocity impacts which excite the first and
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Figure 5.10: Torque acting on the crank (a) and journal centre path (b) for
the case of an elastic connecting rod and a Hertzian contact force model. The
smooth curve corresponds to the case without clearance. The shown time in-
terval corresponds to two crank revolutions.

second bending eigenmode of the connecting rod. These eigenfrequencies can
be estimated from a simply supported beam model as ωb1 = 49 · 103 [rad/s] and
ωb2 = 197 · 103 [rad/s], and compared with the first eigenfrequency for axial
vibrations ωa = 268 ·103 [rad/s] justify the assumption of the inextensible beam
model. The natural contact frequency as in (5.35) is ωc = 80 · 103 [rad/s], and
lies between the first and the second bending eigenfrequency of the rod. The
recurring impacts with rebound can also be observed in the journal centre path.

5.4.4 Continuous Contact Force Model with Hydrodynamic
Lubricated Bearing

In this fourth case the links are considered rigid bodies and the revolute slider
joint is modelled with a hydrodynamic lubricated fluid film bearing as presented
in Appendix C. Looking at the results for this case, Figures 5.11 and 5.12,
we see that they are almost the same as for the system without clearance,
being the results for the nominal gross motion which are represented by the
smoother curves in all figures. The responses differ only slightly when the slider
acceleration has to change sign. The horizontal bearing force Fx has to change
sign and the bearing can only supply this by a flight of the journal across the
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Figure 5.11: Acceleration (a) and velocity (b) of the slider for the case of rigid
links and a hydrodynamic lubricated bearing model. The smoother curves cor-
respond to the case without clearance. The shown time interval corresponds to
two crank revolutions.

sleeve. This can be seen in the journal centre path diagram, Figure 5.12. This
crossing will involve high journal centre speeds and subsequently will give rise
to peak forces. The velocity of the slider shows clearly that at the extremes it
has a tendency to lag behind. Note the steady state behaviour; the first and
the second shown crank revolution are practically the same. In the bearing
force locus, Figure 5.13, the peak force after a change of sign of the horizontal
bearing force Fx is evident. The peak force at high velocity and the high stiffness
at maximum radial displacement can be observed in Figure 5.14, the figure
presents a 3-D diagram of the magnitude of the bearing force versus the radial
displacement and the radial velocity.

5.5 Discussion

The results as obtained with the impact model compare well with those from the
Hertzian contact force model. Both models can predict the dynamic response
of mechanisms and machines having unlubricated revolute joint clearance, in-
cluding the peak values of the forces and position and velocity deviations due
to the clearance. However, the impact model requires much less computational
effort.
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Figure 5.12: Torque acting on the crank (a) and journal centre path (b) for the
case of rigid links and a hydrodynamic lubricated bearing model. The smooth
curve in the left figure corresponds to the case without clearance, the dots with
numbers in the righthand figure indicate the corresponding crank angles. The
shown time interval corresponds to two crank revolutions.
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Figure 5.13: Bearing force locus for the case of rigid links and a hydrodynamic
lubricated bearing model. Dots with numbers indicate the corresponding crank
angles. The dashed curve corresponds to the case without clearance.
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Figure 5.14: Magnitude of the bearing force F plotted against the radial dis-
placement ρ and the radial velocity ρ̇ for the case of rigid links and a hydrody-
namic lubricated bearing model. Dots with numbers indicate the corresponding
crank angles.
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In the case of a hydrodynamic oil film lubricated bearing the joint forces
develop much smoother and the peak values are significantly reduced compared
with the unlubricated case. A similar but far smaller reduction can be observed
when the links are no longer stylized as rigid links but are modelled as elastic
elements. The position and velocity deviations of the system due to the clear-
ance stay approximately the same in both cases. The closed-form analytical
expressions for the load bearing properties of a hydrodynamic lubricated fluid
film bearing as described by Moes et al. [51] fit well in the numerical procedure.
One numerical complication is the high stiffness at large eccentricity.

Because of the uncertainty of the unlubricated bearing properties such as
the coefficient of restitution and friction, it is recommended that the different
models presented in this chapter be tested experimentally. Furthermore, it is
recommended that the effect of dry friction be incorporated in the analysis of
unlubricated joints in spite of the complexity that this may add to the analy-
sis. For example the friction coefficient will have a significant influence on the
tangential oscillations shown in Figure 5.7 for the frictionless case.
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Chapter 6

Concluding Remarks

(Johann Sebastian Bach, Opening chorus from Cantate 125 (1725))

6.1 Conclusions

A method has been described for the calculation of small vibrations superim-
posed on a nominal rigid body motion of flexible multibody systems. Periodic
solutions as well as transient responses can be determined. A method directly
based on the Floquet theory has been used successfully to determine the stabil-
ity of the periodic solutions. Instability of these solutions generally shows itself
by a large increase of the amplitude of the solution, where the linearization loses
its value. However, in other cases, like for instance the cardan drive shaft ex-
ample from Section 4.4.4, the solution may lose its stability in a Neimark-Hopf
(secondary Hopf) bifurcation without a large increase in amplitude and with
negligible non-linear effects.

The method is computationally efficient in comparison with a full non-linear
analysis, especially if the system is stiff, that means, high eigenfrequencies rel-
ative to the driving frequency are present, or close to resonance peaks. The
calculation of the stability may cost a factor ten more computer time than the
determination of the periodic solution itself.
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The presented belt and pulley pair and the gear pair finite element type are
very well applicable to the kinematic and dynamic analysis of complex mech-
anisms and machines. The presented wheel-on-surface finite element opens a
wide field of application for the kinematic and dynamic analysis of multibody
systems having rolling contacts as in road vehicle systems. The formulated
equations of motion for flexible non-holonomic systems and their linearization
can be used to predict the stability of systems in steady motion. These meth-
ods have successfully been applied to the modelling and dynamic analysis of the
Bombardier-ILTIS road vehicle. The application of quaternion algebra on the
Euler parameters gives much insight in the description of relative orientation
in space and allows an elegant formulation for a spatial hinge element that still
can bend.

The effect of joint clearance on the dynamic response of flexible multibody
systems can be predicted by the presented discontinuous contact force model.
Together with the impact force prediction this gives insight in force peaks and in
position and velocity deviations of the system. The results from this model com-
pare very well with the continuous Hertzian contact model. The impact model
together with the concept of small vibrations superimposed on non-linear rigid
body motion makes the computation highly efficient. Link flexibility has often to
be introduced to obtain accurate contact forces. In the case of a hydrodynamic
oil film lubricated bearing the force peaks are small. The maximal position and
velocity deviations of the system due to the clearance are approximately the
same for all contact models. The closed-form analytical expressions for the load
bearing properties of a fluid bearing as described by Moes et al. [51] fits well in
the numerical procedure. One numerical problem is the high stiffness at large
eccentricity.

6.2 Suggestions for Further Research

Future work may be directed to the development of a wheel element which allows
more complicated tyre force models, like the incorporation of a spin related
torque in the contact point. An advanced wheel element with finite thickness is
needed for the modelling of the wheel-rail contact as in track-guided vehicles. It
would also be useful to develop a three-dimensional version of the belt and pulley
pair element and the gear pair element. An improved constitutive model for an
elastic belt should be derived which is capable of describing energy conservation.

Because of the uncertainty of the unlubricated bearing properties such as
the coefficient of restitution and friction, it is recommended to test the different
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models presented in Chapter 5 experimentally, first in a simplified setup to test
for the material properties and second in the complete mechanism. Furthermore,
it is recommended for practical applications to incorporate the effect of dry
friction in the analysis of unlubricated joints in spite of the complexity that this
may add to the analysis.

For the analysis and design of controlled systems an interface must be made
between the spacar software and the control design and simulation software.
Jonker and Aarts [33] have shown that such an interface between spacar and
matlab/simulink is quite feasible. This interface then can also be used for
the optimization of dynamical systems.

Although the method of superimposition has been described in connection
with a specific multibody formalism, it can be used with any formalism that
yields linearized equations in a state space form. Finally, procedures for finding
the periodic and transient solutions for the small vibrations in the case of a more
general gross rigid body motion, for example a motor driven mechanism with
given motor characteristic, are interesting and feasible topics for future work.
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Appendix A

Equations of Motion and
Linearization

‘I have made a great discovery in mathematics; I have suppressed the
summation sign every time that the summation must be made over an
index which occurs twice. . . ’

(Albert Einstein, speaking to a friend (1916))

This appendix gives a detailed description of the equations of motion for flexible
multibody systems, both holonomic and non-holonomic, according to the finite
element method, together with the linearized equations of motion. Opposed to
the short-hand matrix-vector notation as used in the main text of this thesis to
point out the general structure of the equations, index notation with Einstein
summation convention and the so-called iota index selector is used throughout
this appendix. This notation eased the implementation of the presented methods
in the spacar software considerably.

First, the equations of motion for the general holonomic flexible system
are derived in terms of independent coordinates. Second, the nominal solution
where all elements are assumed to be rigid is obtained. Third, the linearized
equations of motion, describing small changes around the nominal solution in
terms of small changes in the independent coordinates, are derived; all individual
contributions are treated in full detail and finally summarized. This appendix
ends with the necessary changes and additions in the case of non-holonomic
systems.
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A.1 Equations of Motion

The equations of motion of a flexible holonomic multibody system will be de-
rived with the aid of the principle of virtual power. The inertia properties of
elements and nodes will be described by the consistent mass formulation, re-
sulting in position dependent mass matrices and convective force vectors which
are quadratic in the velocities.

The principle of virtual power applied to a discrete mechanical system states
that the system is in equilibrium when the virtual power of the applied nodal
forces fj vanishes for all virtual nodal velocities δẋj for which all corresponding
virtual strain rates δε̇i are zero, as in

fjδẋj = 0, ∀ {δẋj |δε̇i = 0}. (A.1)

With the index j = 1, . . . , n, and n the total number of nodal coordinates, and
the index i = 1, . . . ,m, and m the total number of generalized deformations.
The generalized deformations εi, or generalized strains, can be expressed by the
deformation functions Di in terms of the nodal coordinates xk, as

εi = Di(xk). (A.2)

Differentiation with respect to time yields

ε̇i = Di,j(xk)ẋj . (A.3)

The virtual variations of these strain rates ε̇i are given by the same linear
velocity expressions

δε̇i = Di,j(xk)δẋj . (A.4)

The subsidiary conditions of having zero virtual deformation rates will be incor-
porated with help of the Lagrangian multipliers σi. This results in the virtual
power balance

fjδẋj = σiδε̇i, ∧ δε̇i = Di,jδẋj ∀ δẋj , (A.5)

or

fjδẋj = σiDi,jδẋj , ∀ δẋj . (A.6)

Since this holds for all virtual velocities δẋj , we obtain j force equilibrium
equations:

fj −Di,jσi = 0. (A.7)
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The unknown Lagrangian multipliers σi can be recognized as the generalized
stresses, they are the energetic duals of the generalized strain rates ε̇i. For
instance in the case of a simple truss element, where ε is defined as the elon-
gation of the truss, the Lagrangian multiplier σ is identified as the tensile force
in the truss. The force equilibrium equations express static force balance. The
equations of motion can be found by application of Newton’s second law “Mu-
tationem motus proportionalem esse vi motrici impressae, & fieri secundum
lineam rectam qua vis illa imprimitur.”(A change in motion is proportional to

the motive force impressed and takes place along the straight line in which that

force is impressed.) [56]. In terms of virtual power, the so-called Lagrange’s
form of d’Alembert’s principle, this reads

fjδẋj = mjkẍkδẋj , k = 1, . . . , n. (A.8)

The matrix, mjk, represents the lumped nodal mass matrix. In the case of
continuous element mass distribution the mass contribution in the virtual power
equation gets an integral form, as

fjδẋj =

∫

V

r̈ · δṙ ρdV. (A.9)

In this integral, r is the position vector of the infinitesimal particle with mass
ρdV , and the integral extends over all material elements. For every element
type the position of the individual mass particles r can always be expressed
by the chosen local interpolation functions in terms of the nodal coordinates
xj . If this procedure is followed we speak of a consistent mass approach. The
evaluation of the integral (A.9) results in general in a position dependent mass
matrix Mjk(xj) and additional convective terms hj(xk, ẋk) being a function of
the coordinates and quadratic in the velocities, as in

∫

V

r̈ · δṙ ρdV = (Mjk(xl) ẍk + hj(xk, ẋk))δẋj . (A.10)

An alternative approach [49] is to determine the kinetic energy T in an element
by summing up the contribution of all infinitesimal particles ρdV at r, and to
equate this with the bilinear expression of the kinetic energy in terms of the
nodal velocities as in

T =
1

2

∫

V

ṙ · ṙ ρdV =
1

2
ẋiMij ẋj , (A.11)
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from which the mass matrix Mij can be found. The convective inertia terms hi
are related to this mass matrix as

hi =

(

∂Mij

∂xk
− 1

2

∂Mjk

∂xi

)

ẋj ẋk. (A.12)

This can be seen by considering only the inertia terms in the Lagrange equations
as in

d

dt

(

∂T

∂ẋi

)

− ∂T

∂xi
=Mij ẍj + hi. (A.13)

This derivation of the convective inertia terms is in most cases more elaborate
than the direct approach from (A.10). On the other hand, the kinetic energy
approach shows that the position dependent mass matrix is the principal element
in the derivation of the inertia forces.

Adding the contribution of the inertia terms to the virtual power, and in-
corporating the subsidiary conditions δε̇i = Di,jδẋj = 0 by the Lagrangian
multipliers σi, leads to the virtual power balance

fjδẋj − σiDi,jδẋj = (Mjkẍk + hj)δẋj ∀ δẋj . (A.14)

From which we derive the equations of motion as

Mjkẍk = fj −Di,jσi − hj . (A.15)

For a system where all elements are considered to be rigid, the unknowns in
the equations of motion are the nodal accelerations ẍk and the Lagrangian
multipliers σi. The known variables are the mass matrix Mjk, the nodal forces
fj , the first order derivatives of the deformation modes Di,j , and the additional
convective inertia forces −hj . To solve the unknowns the algebraic subsidiary
condition εi = 0, which describes the rigidity of the elements, has to be added
to the equations of motion. Yet, since the unknowns are the accelerations, we
have to differentiate the subsidiary condition from (A.2) twice with respect to
time, as in

εi = Di(x) = 0→ Di,kẍk +Di,jkẋj ẋk = 0. (A.16)

The equations of motion, a set of ordinary differential equations, can now be
completed with the subsidiary conditions, a set of algebraic equations, differen-
tiated twice with respect to time. This results in the complete set of differential
and algebraic equations, denoted as the set of DAEs

Mjkẍk +Di,jσi = fj − hj
Di,kẍk = −Di,jkẋj ẋk.

(A.17)
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This can be presented in a more familiar matrix-vector form as

(

M D′T

D′ 0

)(

ẍ

σ

)

=

(

f − h

−D′′ẋẋ

)

, (A.18)

where the prime denotes the partial derivatives.
The behaviour of the system in time is found by numerical integration of the

nodal velocities and accelerations, the latter being the solution of the equations
of motion. The integration is not straightforward. The new coordinates xk+dxk
at t + dt still have to abide the imposed constraints Di(xk + dxk) = 0. The
problem of numerical integration of DAEs can be solved in a number of ways,
as pointed out by Gear [17] and treated in depth by Brenan et al. [6]. In the
spacar system the problem of the algebraic subsidiary conditions, the case
of deformation modes being zero, is solved by rewriting the system equations
in terms of independent coordinates. In literature this is often referred to as
coordinate partitioning. The resulting set of ordinary differential equations can
then be solved by any type of numerical integration scheme.

For the flexible multibody system we are free to choose the independent co-
ordinates from either the nodal coordinates xk or from the generalized deforma-
tions εi. Since the deformations can be looked upon as relative coordinates, they
are in favour for describing the small vibrations superimposed on the nominal
motion. Therefore, in this appendix, we assume only generalized deformations
as being the independent coordinates.

The generalized deformations can be divided into four subsets,

ε = {εo, εm, εd, εc}. (A.19)

The first, εo, holds all rigid modes, in other words, εo is prescribed zero. The
second, εm, describes the input motions, and are usually a function of time.
The third, εd, are the dynamic degrees of freedom, such as flexible modes or
generalized independent coordinates. The last, εc, are the dependent strains,
they originate from the redundancy of the structure and are introduced to make
the structure statically determinate. The prescribed generalized deformations
are {εo, εm}, while the dynamic degrees of freedom εd are determined through
the equations of motion. The state of the system is defined as

(ε̇d, εd, t). (A.20)

The dependent deformations εc can be calculated as a function of the state or
state related variables of the system. In the same manner, the nodal coordinates
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are divided into two subsets,

x = {xo, xc}, (A.21)

with xo for the fixed coordinates and xc the free or to be calculated coordinates.
If the constraints imposed by the rigid modes

εi = Di(xj) = 0, i = ι(εo), j = ι(x), (A.22)

are consistent, that is, the redundancy of the structure is placed in εc, the free
coordinates can locally be expressed as functions of the prescribed motions and
the dynamic degrees of freedom, as in

xj = Fj(εi), j = ι(xc), i = ι(εm, εd). (A.23)

These functions Fj are called the zero order transfer functions.
Here the indices are specified by means of the iota index selector ι( ). This

index selector, as in j = ι(xc), generates the correct indices j for the vector xj
from the subset xc. For example: ι(xc) = 4, 5, 8 for xc = {x4, x5, x8}. This
notation proved most of its usefulness in the coding stage of the algorithms.

The zero order transfer functions Fj and their partial derivatives are only
implicitly known through the independent generalized deformation functionsDi.
From these we can calculate in every discrete position the velocities according
to

ε̇i = Di,j ẋj , i = ι(εo, εm, εd), j = ι(xc), (A.24)

where Di,j is a square matrix. Substitution of the velocities from (A.23) given
by

ẋj = Fj,kε̇k, j = ι(xc), k = ι(εm, εd). (A.25)

in (A.24) yields

Di,jFj,k = δik (A.26)

From these identities the first order transfer function Fj,k can be found as

Fj,k = (Di,j)
−1δik, i = ι(εo, εm, εd), j = ι(xc), k = ι(εm, εd). (A.27)

A necessary and sufficient condition for the existence and uniqueness of the
solution, which is still a kinematic problem, is determined by the Jacobian
Di,j . If this Jacobian is regular, the inverse exists and the kinematic problem is
solvable. This Jacobian is sometimes referred to as the ‘fundamental kinematic
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mapping’. The notation (Di,j)
−1 is somewhat confusing, in the resulting matrix,

after the process of inversion, the indices i and j are interchanged, as in

(Di,j)
−1 = Xji. (A.28)

The accelerations are found in the same manner. First we differentiate (A.2)
twice, as in

ε̈i = Di,j ẍj +Di,jkẋj ẋk, i = ι(ε), j, k = ι(xc). (A.29)

With the same implicit substitution as used to determine the nodal velocities,
we come up with the expressions for the nodal accelerations in terms of the
accelerations of the degrees of freedom and the nodal velocities, as

ẍj = Fj,mε̈m − (Di,j)
−1Di,klẋkẋl,

i = ι(εo, εm, εd), j, k, l = ι(xc), m = ι(εm, εd). (A.30)

For convenience, we rewrite the nodal coordinate accelerations ẍc in terms of
the accelerations of the dynamic degrees of freedom ε̈d and the prescribed and
convective accelerations, as in

ẍj = Fj,iε̈i + gj , i = ι(εd), j = ι(xc), (A.31)

with

gj = Fj,mε̈m − (Di,j)
−1Di,klẋkẋl,

i = ι(εo, εm, εd), j, k, l = ι(xc), m = ι(εm). (A.32)

The dependent strains and their first and second order time derivatives can be
calculated by making use of the velocity (A.25) and acceleration expressions
(A.31), yielding

εi = Di(Fj(εk)),
ε̇i = Di,jFj,kε̇k,
ε̈i = Di,jFj,lε̈l +Di,jgj +Di,jmẋj ẋm,

i = ι(εc), j,m = ι(xc), k = ι(εm, εd), l = ι(εd).

(A.33)

The equations of motion for the dynamic degrees of freedom εd are found by
application of the virtual power principle from (A.14) for all virtual velocities
satisfying the first order transfer functions from (A.25), as in

δẋi = Fi,kδε̇k, i = ι(xc), k = ι(εd). (A.34)
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Taking arbitrary variations for δε̇k and substitution of the accelerations ẍj ac-
cording to (A.31) leads to the reduced equation of motion with respect to the
dynamic degrees of freedom,

(Fj,lMjkFk,m)ε̈m = −σl + Fj,l(fj −Dr,jσr − hj −Mjkgk),

j, k = ι(xc), l,m = ι(εd), r = ι(εc). (A.35)

Note that in the right-hand side, part of the term −Fj,lDi,jσi is simplified with
the identities from (A.26) to the contribution of the generalized stresses −σl,
which are dual to the dynamic degrees of freedom εm, and the contribution of
the redundant stresses −Fj,lDr,jσr. The minus sign is conventional and enters
the expressions due to the definition of −σiδε̇i in (A.5) as the supplied virtual
power of the generalized strains to the system. The constraint forces σo do not
perform any work, and hence drop out of the right-hand of the equation. These
equations (A.35) can be compared to (2.7) in the main body of the text. To
complete the equations of motion we have to supply a constitutive behaviour
for the dynamic degrees of freedom stresses σd and the redundant stresses σc. If
we take, for example, for the dynamic degrees of freedom a linear visco-elastic
Kelvin-Voigt material model, then the generalized stresses can be expressed as

σl = Slmεm + Sd
lmε̇m, (A.36)

with the stiffness matrix Slm, and the damping matrix Sd
lm. The same behaviour

can be used for the redundant stresses, where the indices take the form l,m =
ι(εc). On the other hand, any other material model can be chosen, as long as
it can be expressed in terms of the state or state dependent variables of the
system.

Having solved (A.35) for the accelerations of the dynamic degrees of freedom
ε̈m, the nodal coordinate accelerations follow directly from (A.31). The depen-
dent deformation mode accelerations can be calculated from (A.33). Finally,
the constraint forces and the driving forces or rheonomic constraint forces can
be derived from (A.15) as

σi = (Di,j)
−1(fj −Dr,jσr − hj −Mjkẍk),

i = ι(εo, εm, εd), j, k = ι(xc), r = ι(εc). (A.37)

Note the use of the transposed inverse of the Jacobian Di,j opposed to the non-
transposed one in the expressions for the first order transfer function (A.27).
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A.2 Nominal Gross Motion

The calculation of the nominal gross motion, the multibody system where all
dynamic degrees of freedom set to zero, starts with the equations of motion as
in (A.35). We assume that the redundant stresses, σr, are known functions of
the state. The element forces dual to the fixed dynamic degrees of freedom,
which now play the role of constraint forces, result directly from (A.35) with
ε̈m = 0, as

σ̄l = Fj,l(fj −Dr,jσr − hj −Mjkgk). (A.38)

Indeed, all constraint forces follow directly from (A.37). These equations (A.38)
can be compared to (2.10) in the main body of the text.

Under the assumption of a periodic nominal motion of the system, as in
most mechanisms and machines, the calculation of the fundamental state has
to be performed in a number of subsequent positions, the discretization of the
nominal motion. The transition from one to the next discrete state shall now
be discussed. The state of the system is defined by the moment in time t, from
which the kinematic degrees of freedom εm, which are usually a function of time,
can be calculated. Let us assume that at time t the multibody system is in a
state where all constraints are satisfied, meaning that the nodal coordinates xj
fulfil

Di(xj) = δikεk, i = ι(εo, εm), j = ι(x), k = ι(εm). (A.39)

In this configuration the nodal velocities and accelerations can be calculated
according to (A.25) and (A.31), resulting in

ẋj = (Di,j)
−1δikε̇k, j = ι(xc), (A.40)

and,

ẍj = (Di,j)
−1δikε̈k − (Di,j)

−1Di,lmẋlẋm, l,m = ι(xc). (A.41)

The constraint forces can be calculated according to (A.37). The nodal coor-
dinates in the subsequent position at t +∆t can be approximated by a Taylor
series expansion of xj up to the second order, yielding

xpj (t+∆t) = xj(t) + ẋj(t)∆t+
1

2
ẍj(t)∆t

2. (A.42)

In general, these predicted coordinates xpj do not fulfil the constraints. With
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the help of the following Newton iteration scheme,

∆εi = Di(x
p
j )− εi(t+∆t)

while |∆εi| > tolerance
xpj = xpj − (Di,j(x

p
k))

−1∆εi
∆εi = Di(x

p
j )− εi(t+∆t)

do

xj(t+∆t) = xpj , i = ι(εo, εm), j, k = ι(xc)

(A.43)

the right coordinates can usually be found within a small number of steps at
a given tolerance. If after a maximum number of steps the iteration fails, the
system is usually in a near to singular configuration, and the choice of the
degrees of freedom have to be reconsidered. The determination of subsequent
configurations of the system is found by repetitive analysis, starting from(A.40).

A.3 Linearized Equations of Motion

In order to describe the behaviour of the small vibrations superimposed on the
nominal rigid body motion we have to linearize the reduced equations of motion
(A.35) with respect to the dynamic degrees of freedom εd. The nominal motion
is characterized by the undeformed state εd = 0, and is described in the previous
section. We start by adding small changes, denoted by the prefix symbol ∆, to
all terms in the reduced equation of motion, after which we expand up to the
first order of ∆, resulting in

(Fj,lMjkFk,m)ε̈m +∆(Fj,lMjkFk,m)ε̈m + (Fj,lMjkFk,m)∆ε̈m =

− σl −∆σl + Fj,l(fj −Dr,jσr − hj −Mjkgk)

+ ∆Fj,l(fj −Dr,jσr − hj −Mjkgk)

+ Fj,l(∆fj −∆Dr,jσr −Dr,j∆σr −∆hj −∆Mjkgk −Mjk∆gk),

j, k = ι(xc), l,m = ι(εd), r = ι(εc). (A.44)

Every single ∆ term must eventually be expanded into changes in terms of the
dynamic degrees of freedom,

∆εi,∆ε̇i,∆ε̈i, i = ι(εd),

and terms related to the nominal solution, sometimes referred to as the nominal
reference state. Each contribution to the linearized equations of motion will be
treated separately.
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(Fj,lMjkFk,m)ε̈m: This term is zero since in the nominal reference state ε̈m is
zero.

∆(Fj,lMjkFk,m): This term does not need to be expanded, with the same rea-
soning as above.

∆ε̈m: No further expansion needed.

σl: The generalized stresses σl, are connected to the generalized strains by the
constitutive equations, describing the material behaviour. If we assume
a linear visco-elastic Kelvin-Voigt material model as in (A.36) then the
stresses σl in the nominal reference state will be zero, since in the reference
state εm and ε̇m are zero. These stresses are not to be confused with the
the constraint forces from the nominal solution, σ̄l, as in (A.38) since the
boundary conditions have changed.

∆σl: With the same linear visco-elastic Kelvin-Voigt material model as above,
small variations of the generalized stresses are described by

∆σl = Slm∆εm + Sd
lm∆ε̇m, (A.45)

with the material stiffness matrix Slm, and the damping matrix Sd
lm.

Fj,l(fj −Dr,jσr − hj −Mjkgk): These are the constraint forces σ̄l from the
nominal reference state as in (A.38).

∆Fj,l: Using the identities Di,jFj,l = δil as in (A.26), and taking the first
variation

∆Di,jFj,l +Di,j∆Fj,l = 0, (A.46)

leads to
∆Fj,l = −(Di,j)

−1∆Di,kFk,l. (A.47)

Substitution of the variation of the Jacobian as

∆Di,k = Di,km∆xm, (A.48)

and the variation of the nodal coordinates from (A.25) as

∆xm = Fm,n∆εn, (A.49)

leads finally to

∆Fj,l = −(Di,j)
−1Di,kmFk,lFm,n∆εn,

i = ι(εo, εm, εd), j, k,m = ι(xc), l, n = ι(εd). (A.50)
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∆fj : Under the assumption of dead loads, the externally applied nodal forces
do not vary, and ∆fj = 0.

∆σr: If we assume a linear visco-elastic Kelvin-Voigt material model for the
redundant stresses, then small variations result in

∆σr = Srs∆εs + Sd
rs∆ε̇s, r, s = ι(εc), (A.51)

with the material stiffness matrix Srs and the damping matrix Sd
rs. The

variations of the dependent strains are

∆εs = Ds,jFj,m∆εm, j = ι(xc), m = ι(εd), (A.52)

and the variations of the dependent strain rates are

∆ε̇s = Ds,jFj,m∆ε̇m+Ds,pqẋpFq,m∆εm−Ds,j(Di,j)
−1Di,pqẋpFq,m∆εm,

p, q = ι(xc). (A.53)

∆hj : The convective inertia terms hj are in general a function of the coordinates
and quadratic in the velocities. The variation takes the form,

∆hj =
∂hj
∂xk

∆xk +
∂hj
∂ẋk

∆ẋk. (A.54)

The variation of the nodal velocities ∆ẋk can be calculated from (A.24)
as

∆Di,kẋk +Di,k∆ẋk = δil∆ε̇l →
∆ẋk = −(Di,k)

−1∆Di,mẋm + (Di,k)
−1δil∆ε̇l.

(A.55)

The variation of the nodal velocities is in two parts, the first due to changes
in geometry and the second due to changes in the deformation rates. Sub-
stitution of (A.48) and (A.49) leads to,

∆ẋk = −(Di,k)
−1Di,mj ẋmFj,n∆εn + Fk,l∆ε̇l. (A.56)

Substitution of this result in the expression for ∆hj leads to,

∆hj =

(

∂hj
∂xk

Fk,n −
∂hj
∂ẋk

(Di,k)
−1Di,mj ẋmFj,n

)

∆εn +

(

∂hj
∂ẋk

Fk,n

)

∆ε̇n.

(A.57)
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∆Mjk: The consistent mass formulation according to element mass integral
(A.10) leads, in general, to a position dependent mass matrix. The varia-
tions take the form,

∆Mjk =Mjk,l∆xl. (A.58)

Substitution of the coordinate variations (A.49) results in,

∆Mjk =Mjk,lFl,m∆εm. (A.59)

∆gk: The variations of the convective and prescribed accelerations is an elab-
orate task. We will start with the expression from (A.32) in the implicit
form, reading

Di,jgj = −Di,klẋkẋl + δimε̈m. (A.60)

Taking the first variation leads to,

∆Di,jgj +Di,j∆gj = −∆Di,klẋkẋl
−Di,kl∆ẋkẋl
−Di,klẋk∆ẋl
+δim∆ε̈m.

(A.61)

The first term on the right-hand side is a new and interesting one, it holds
the third order variation of the deformation modes. They expand into,

∆Di,klẋkẋl = Di,klm∆xmẋkẋl
= Di,klmẋkẋlFm,n∆εn.

(A.62)

The second and the third term in (A.61) are the same if all constraints are
holonomic since in that case the second order derivatives are symmetric,
Di,kl = Di,lk. Expansion of the third term leads to,

Di,klẋk∆ẋl = Di,klẋk[−(Dp,l)
−1Dp,rsẋrFs,n]∆εn +Di,klẋkFl,n∆ε̇n.

(A.63)
The last term, the variation of the prescribed degrees of freedom, ∆ε̈m,m =
ι(εm) is zero. Adding up all terms yields,

∆gj = −(Di,j)
−1 [{Di,mkgmFk,n

+Di,klmẋkẋlFm,n

−2Di,klẋk((Dp,l)
−1Dp,rsẋrFs,n)}∆εn

+2Di,klẋkFl,n∆ε̇n].

(A.64)
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Assembly of all contributions to the linearized equation of motion and re-
ordering them with respect to the variations ∆ε̈m, ∆ε̇m, and ∆εm yields

Mlm∆ε̈m + Clm∆ε̇m +Klm∆εm = σ̄l, l,m = ι(εd). (A.65)

The forcings at the right-hand side, σ̄l, are the constraint forces (A.38) from the
nominal reference state. These equations (A.65) can be compared to (2.11) in
the main body of the text. Every matrix in itself is a sum of terms having a clear
origin. These origins will be explained and denoted by a superscript symbol. If
a matrix is symmetric this will be indicated by the abbreviation ‘sym.’ at the
end of a formula.

The first matrix, Mlm, is the mass matrix for which we have only one term,

Mlm =Mr
lm, (A.66)

with the reduced mass matrix M r
lm from the general equation of motion (A.35)

as
Mr

lm = Fj,lMjkFk,m, j, k = ι(xc), sym. (A.67)

The second matrix, Clm, holds all the velocity sensitive terms like for instance
damping and gyroscopic terms. This matrix is the sum of three contributions,

Clm = Cd
lm + Cg

lm + Ch
lm. (A.68)

The first term, Cd
lm, is the damping due to the visco-elastic material behaviour

of the degrees of freedom and of the redundant strains,

Cd
lm = Sd

lm + Fj,lDr,jS
d
rsDs,pFp,m, sym. (A.69)

The second term Cg
lm finds its origin in the quadratic velocity dependent con-

tributions to g from (A.32),

Cg
lm = Fj,lMjk∆gk

= −2Fj,lMjk(Di,k)
−1Di,pqFp,mẋq.

(A.70)

The third term Ch
lm comes from the convective inertia terms hj ,

Ch
lm = Fj,l

∂hj
∂ẋk

Fk,m. (A.71)

The third matrix in the linearized equations of motion (A.65) is the stiffness
matrix Klm, holding terms like material and geometric stiffness. In general, six
contributions can be distinguished,

Klm = Ks
lm +Kf

lm +Kd
lm +Kh

lm +Km
lm +Kg

lm. (A.72)
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The first term Ks
lm originates from the material stiffness, the stiffness due to

the constitutive material behaviour, of the degree of freedom stresses and the
redundant stresses,

Ks
lm = Slm + Fj,lDr,jSrsDs,pFp,m, sym. (A.73)

The second term Kf
lm is the geometric stiffness matrix, having its origin in

Di,jkσi, and is well known from the finite element method. At first sight the
term,

Kf
lm = −∆Fj,l(fj −Dr,jσr − hj −Mjkgk)

= (Di,j)
−1Di,pqFp,lFq,m(fj −Dr,jσr − hj −Mjkgk),

(A.74)

looks more complicated but after substitution of the constraint forces (A.38) as
calculated in the nominal reference state and repeated here as

σ̄i = (Di,j)
−1(fj −Dr,jσr − hj −Mjkgk),

this contribution gets the well known form,

Kf
lm = σiDi,pqFp,lFq,m, sym. (A.75)

Note the extra transformations Fp,l, Fq,m which is necessary to transform from
coordinate variations ∆xq to degree of freedom variations ∆εm. The third
term, Kd

lm, is the stiffness due to the geometry change caused by the velocity
dependent part of the redundant stresses. This contribution will be split into
two parts as

Kd
lm = Kd1

lm +Kd2
lm, (A.76)

with
Kd1

lm = Fj,lDr,jS
d
rsDs,pqẋpFq,m, (A.77)

and
Kd2

lm = −Fj,lDr,jS
d
rsDs,k(Di,k)

−1Di,pqẋpFq,m. (A.78)

The fourth term, Kh
lm, is the stiffness due to the change of the convective inertia

terms hj , and originates from

Kh
lm = Fj,l∆hj = Fj,l

(

∂hj
∂xk

Fk,m −
∂hj
∂ẋk

(Di,k)
−1Di,pqẋpFq,m

)

. (A.79)

In these expressions we can distinguish two parts, the first part due to changes
in the coordinates and the second part due to changes in the velocities, as

Kh
lm = Kh1

lm +Kh2
lm, (A.80)
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with

Kh1
lm = Fj,l

∂hj
∂xk

Fk,m, (A.81)

and

Kh2
lm = −Fj,l

∂hj
∂ẋk

(Di,k)
−1Di,pqẋpFq,m. (A.82)

The fifth term, Km
lm, is the stiffness due to the change of the consistent mass

matrix,

Km
lm = Fj,l∆Mjkgk = Fj,lMjk,pFp,mgk. (A.83)

The sixth and last term, Kg
lm is the stiffness due to the changes in the convective

acceleration terms g,

Kg
lm = Fj,lMjk∆gk. (A.84)

This contribution is the most complex one and shall be split into three parts

Kg
lm = Kg1

lm +Kg2
lm +Kg3

lm. (A.85)

The first part Kg1
lm, is due to the change in the first order geometry, ∆Di,p, and

reads

Kg1
lm = −Fj,lMjk(Di,k)

−1Di,pqgpFq,m. (A.86)

The second part Kg2
lm, finds it origin in the velocity changes ∆ẋp, and reads

Kg2
lm = 2Fj,lMjk(Di,k)

−1Di,pqẋp[(Dt,q)
−1Dt,uvẋuFv,m]. (A.87)

The third and last contribution, Kg3
lm, originates from the third order partial

derivatives of the generalized deformation functions, Di,pqt, and yields

Kg3
lm = −Fj,lMjk(Di,k)

−1Di,pqtẋpẋqFt,m. (A.88)

The contributions to the mass matrix Mlm, the velocity sensitivity matrix
Clm, and the stiffness matrix Klm of the linearized equations of motion (A.65),
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are summarized as

Mr
lm = Fj,lMjkFk,m sym.

Cd
lm = Sd

lm + Fj,lDr,jS
d
rsDs,pFp,m sym.

Cg
lm = −2Fj,lMjk(Di,k)

−1Di,pqFp,mẋq

Ch
lm = Fj,l

∂hj

∂ẋk
Fk,m

Ks
lm = Slm + Fj,lDr,jSrsDs,pFp,m sym.

Kf
lm = σiDi,pqFp,lFq,m sym.

Kd1
lm = Fj,lDr,jS

d
rsDs,pqẋpFq,m

Kd2
lm = −Fj,lDr,jS

d
rsDs,k(Di,k)

−1Di,pqẋpFq,m

Kh1
lm = Fj,l

∂hj

∂xk
Fk,m

Kh2
lm = −Fj,l

∂hj

∂ẋk
(Di,k)

−1Di,pqẋpFq,m

Km
lm = Fj,lMjk,pFp,mgk

Kg1
lm = −Fj,lMjk(Di,k)

−1Di,pqgpFq,m

Kg2
lm = 2Fj,lMjk(Di,k)

−1Di,pqẋp[(Dt,q)
−1Dt,uvẋuFv,m]

Kg3
lm = −Fj,lMjk(Di,k)

−1Di,pqtẋpẋqFt,m

A.4 Extensions to Non-Holonomic Systems

In addition to the holonomic constraints (A.22) we assume that there are non-
holonomic constraints, or non-integrable velocity constraints, present in the sys-
tem. Furthermore we assume that these non-holonomic constraints originate
from idealized rolling contact or perfect knife edge contact. Such a constraint
can then be expressed in terms of some zero relative velocity or zero slip func-
tion between the two bodies in the contact area, and is therefore linear in the
velocities. For instance, if element e has non-slipping components, it has to
satisfy the constraints

sei = V e
ij(xk)

eẋej = 0. (A.89)

Assembly of all slip functions for the system results in

si = Vij(xk)ẋj , i = ι(s), j, k = ι(x). (A.90)

The slips si can be interpreted as non-integrable generalized strain rates ε̇i (A.3).
To make the connection with such strain rates we rewrite the slip functions in
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terms of partial quasi-derivatives Di,j as in

si = Di,j(xk)ẋj , i = ι(s), j, k = ι(x). (A.91)

The integral of these strain rates have no physical meaning, therefore the prefix
‘quasi’. The slips and the strain rates are physically the same and to unify the
finite element approach, we will use from now on the partial quasi-derivatives
defined by

Di,j = Vij , i = ι(s), j = ι(x). (A.92)

All element slips can be assembled in a slip space s which, by the boundary
conditions, is divided into two parts

s = {so, sc}, (A.93)

with so the zero prescribed slips and sc the free or to be calculated slips. Ac-
cordingly the non-holonomic constraints imposed on the system are

Di,j(xk)ẋj = 0, i = ι(so), j = ι(xc), k = ι(x). (A.94)

The remaining free slips can be used to impose forces on the system via a
constitutive behaviour. For instance with a rolling tyre model, the vertical
aligning torque or spin torque which originates from the finite contact area.

For holonomic systems the number of generalized independent coordinates
describing the configuration are the same as the number of generalized inde-
pendent velocities. This is not the case for non-holonomic systems. The non-
holonomic constraints reduce the number of independent velocities by the num-
ber of these constraints to the number of degrees of freedom. For the degrees of
freedom we will be using the dynamic degrees of freedom εd from the previous
section. For the additional generalized coordinates we introduce the generalized
kinematic coordinates expressed by the generalized kinematic deformations εk,
defined by

εi = Di(xj), i = ι(εk), j = ι(x). (A.95)

Again we make use of generalized deformations instead of generalized coordi-
nates since the first can be looked upon as relative coordinates and have therefore
a wider field of application. The state of the system is now defined by

(ε̇d, εd, εk, t) (A.96)

Compare this with the state of a holonomic constraint system (A.20).
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A.4.1 State Equations

The dynamics of the system is described by the time derivatives of the state or
the state equations. The first set, dε̇d/dt, are the equations of motion for the
dynamic degrees of freedom. The second part, dεd/dt, is apparently the first
part of the state self. The last set, dεk/dt, are the non-holonomic constraints
expressed as the time derivatives of the kinematic coordinates in terms of the
state variables. We will start with the derivation of the equations of motion.

The configuration of the system can be described by means of a zero order
transfer function F as in

xj = Fj(εi), j = ι(xc), i = ι(εm, εd, εk). (A.97)

The prescribed motions, or rheonomic constraints, are represented by the gen-
eralized deformations εm, which are explicit functions of time. The zero order
transfer function is implicitly known through the holonomic constraints (A.22)
and can be determined by a Newton iteration scheme as in (A.43) but with
different indices. Starting from a predicted nearby configuration at time t+∆t
with coordinates xpj , which in general do not fulfil the constraints, the iteration
scheme reads

∆εi = Di(x
p
j )− εi(t+∆t)

while |∆εi| > tolerance
xpj = xpj − (Di,j(x

p
k))

−1∆εi
∆εi = Di(x

p
j )− εi(t+∆t)

do

xj(t+∆t) = xpj , i = ι(εo, εm, εd, εk), j, k = ι(xc)

(A.98)

If the Jacobian Di,j is regular, the correct coordinates which fulfil all holonomic
constraints at time t+∆t, can usually be found within a small number of steps
at a given tolerance. If after a maximum number of steps the iteration fails,
the system is usually in a near to singular configuration, and the choice of the
degrees of freedom has to be reconsidered.

The velocities of the system can be described by means of a first order
transfer function Hjk as in

ẋj = Hjkε̇k, j = ι(xc), k = ι(εm, εd). (A.99)

This first order transfer function, which is not a partial derivative of the zero or-
der transfer function, can be found in the following manner. The partial deriva-
tives of the generalized deformation functions and the partial quasi-derivatives
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originating from the non-holonomic constraints are combined into

ε̇i = Di,j ẋj , i = ι(εo, εm, εd, so), j = ι(xc), (A.100)

where Di,j is a square matrix. Substitution of the velocities from (A.99) in
(A.100) leads to the identities

Di,jHjk = δik, (A.101)

from which the first order transfer function Hjk can be found as

Hjk = (Di,j)
−1δik, i = ι(εo, εm, εd, so), j = ι(xc), k = ι(εm, εd). (A.102)

Note that the Jacobian Di,j used here, which must be regular, is not the same
as the one used in the zero order iteration scheme (A.98). The difference lies
within the i index, εk for the zero order iteration scheme and so for the first
order transfer function.

The nodal accelerations can be found in the same manner. We first differen-
tiate the strain rates and slips from (A.100) with respect to time and with the
same implicit substitution come up for the nodal accelerations in terms of the
independent state variables as

ẍj = Hjmε̈m + gj , j = ι(xc), m = ι(εd), (A.103)

with the convective and prescribed accelerations gj given by

gj = Hjnε̈n − (Di,j)
−1Di,klẋkẋl,

i = ι(εo, εm, εd, so), j, k, l = ι(xc), n = ι(εm). (A.104)

Note that the second order derivatives Di,kl for i = ι(so) are not symmetric in k
and l since they originate from the quasi partial derivatives (A.92). The depen-
dent strains and their first and second order time derivatives can be expressed
in terms of the independent state variables as

εi = Di(Fj(εk)),
ε̇i = Di,jHjlε̇l,
ε̈i = Di,jHjmε̈m +Di,jgj +Di,jnẋj ẋn,

i = ι(εc), j, n = ι(xc), k = ι(εm, εd, εk), l = ι(εm, εd), m = ι(εd).
(A.105)
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The equations of motion for the degrees of freedom εd are found by application
of the virtual power principle from (A.14) for all virtual velocities satisfying the
first order transfer functions (A.99), as in

δẋi = Hikδε̇k, i = ι(xc), k = ι(εd). (A.106)

Taking arbitrary variations for δε̇k and substitution of the accelerations ẍj ac-
cording to (A.103) in (A.14) leads to the reduced equation of motion with respect
to the dynamic degrees of freedom as

(HjlMjkHkm)ε̈m = −σl +Hjl(fj −Dr,jσr − hj −Mjkgk),

j, k = ι(xc), l,m = ι(εd), r = ι(εc). (A.107)

The main difference with the holonomic case (A.35) is the presence of the first
order transfer function Hjl instead of Fj,l. Where Fj,l stands for partial deriva-
tives, this is not the case with Hjl, due to the non-holonomic constraints. These
equations (A.107) can be compared to (2.31) in the main body of the text.

Having solved (A.107) for the accelerations of the dynamic degrees of free-
dom ε̈m, the nodal coordinate accelerations follow directly from (A.103). The
dependent deformation mode accelerations can be calculated from (A.105). Fi-
nally, the constraint forces, holonomic, non-holonomic and rheonomic, can be
derived from (A.15) as

σi = (Di,j)
−1(fj −Dr,jσr − hj −Mjkẍk),

i = ι(εo, εm, εd, so), j, k = ι(xc), r = ι(εc). (A.108)

Note the use of the transposed inverse of the Jacobian Di,j opposed to the non-
transposed one in the expressions for the first order transfer function (A.102).

The last set of state equations are the time derivatives of the kinematic
coordinates, ε̇k, in terms of the state variables, which are the non-holonomic
constraints in an explicit form. They can be found by substitution of the nodal
velocities expressed in terms of the velocities of the independent degrees of free-
dom and the prescribed motion (A.99) in the time derivatives of the kinematic
coordinates (A.95) yielding

ε̇p = Dp,jHjq ε̇q, p = ι(εk), j = ι(xc), q = ι(εm, εd). (A.109)
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We summarize the state equations with the results from (A.107) and (A.109) as

d

dt





ε̇dl
εdl
εkp



 =





(HjlMjkHkm)−1{−σl +Hjl(fj −Dr,jσr − hj −Mjkgk)}
ε̇dl
Dp,jHjq ε̇q





(A.110)
These equations can be compared to (2.36) in the main body of the text.

A.4.2 Linearized State Equations

In order to describe the behaviour of the small vibrations or small motions
superimposed on a nominal motion we have to linearize the state equations
(A.110) with respect to the state variables (ε̇d, εd, εk). The nominal motion is
characterized by the undeformed state εd = 0 and εk = 0, and can be determined
from the equations as presented in the previous section. We start by adding
small changes, denoted by the prefix symbol ∆, to all terms in the reduced
equation of motion, after which we expand up to the first order of ∆, resulting
in

(HjlMjkHkm)ε̈m +∆(HjlMjkHkm)ε̈m + (HjlMjkHkm)∆ε̈m =

− σl −∆σl +Hjl(fj −Dr,jσr − hj −Mjkgk)

+ ∆Hjl(fj −Dr,jσr − hj −Mjkgk)

+Hjl(∆fj −∆Dr,jσr −Dr,j∆σr −∆hj −∆Mjkgk −Mjk∆gk),

j, k = ι(xc), l,m = ι(εd), r = ι(εc). (A.111)

Every single ∆ term must be expanded into small variations of the state variables

∆ε̇d,∆εd,∆εk,

and terms related to the nominal solution. Assembly of all the contributions
and reordering them with respect to these variations leads to the linearized
equations of motion as

Mlm∆ε̈m + Clm∆ε̇m +Kln∆εn = σ̄l, l,m = ι(εd), n = ι(εd, εk). (A.112)

The forcing on the right-hand side are the constraint forces (A.108) which arise
from the nominal rigid body solution. These equations (A.112) can be compared
to (2.37) in the main body of the text. The contributions to the mass matrix
Mlm, the velocity sensitivity matrix Clm, and the stiffness matrix Kln, note that
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this is now a non-square matrix due to the additional kinematic coordinates,
are closely related to those from the holonomic case.

There are two general rules to derive the non-holonomic contributions from
the holonomic ones. First, replace all occurrences of Fi,j by Hij , except for the
second index related derivatives in the stiffness matrices. These are the real
partial derivatives of the zero order transfer function F , and can be determined
from the holonomic constraints (A.22), and the deformation functions for the
prescribed motions εm, the degrees of freedom εd, and the additional kinematic
coordinates εk, as in

Fm,n = (Dk,m)−1δkn, k = ι(εo, εm, εd, εk), m = ι(xc), n = ι(εd, εk).
(A.113)

Second, replace all occurrences of 2Di,jk by Di,jk+Di,kj , since some of these are
quasi second order derivatives which are non-symmetric in j and k. Application
of these rules yields the mass matrix as

Mlm = HjlMjkHkm, sym., (A.114)

the velocity sensitivity matrix Clm as the sum of the three contributions

Cd
lm = Sd

lm +HjlDr,jS
d
rsDs,pHpm, sym.

Cg
lm = −HjlMjk(Di,k)

−1{Di,pq +Di,qp}Hpmẋq

Ch
lm = Hjl

∂hj

∂ẋk
Hkm,

(A.115)

and the stiffness matrix Klm as the sum of the ten terms

Ks
ln = Slmδmn +HjlDr,jS

d
rsDs,pFp,n

Kf
ln = σiDi,pqHplFq,n

Kd1
ln = HjlDr,jS

d
rsDs,pqẋpFq,n

Kd2
ln = −HjlDr,jS

d
rsDs,k(Di,k)

−1Di,pqẋpFq,n

Kh1
ln = Hjl

∂hj

∂xk
Fk,n

Kh2
ln = −Hjl

∂hj

∂ẋk
(Di,k)

−1Di,pqẋpFq,n

Km
ln = HjlMjk,pFp,ngk

Kg1
ln = −HjlMjk(Di,k)

−1Di,pqgpFq,n

Kg2
ln = Fj,lMjk(Di,k)

−1{Di,pq +Di,qp}ẋp[(Dt,q)
−1Dt,uvẋuFv,n]

Kg3
ln = −HjlMjk(Di,k)

−1Di,pqvẋpẋqFv,n.

(A.116)

The indices used are given by

l,m = ι(εd), n = ι(εd, εk), i, t = ι(εo, εm, εd, so), j, k, p, q, u, v = ι(xc),
r, s = ι(εr).
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The linearization of the second part of the state equations, dεd/dt = ε̇d, is
trivial.

The last part, is the linearization of the velocities of the kinematic coordi-
nates (A.109), or the non-holonomic constraints explicitly written in terms of
the state variables, yielding

∆ε̇p = Apm∆ε̇m +Bpn∆εn, p = ι(εk), m = ι(εd), n = ι(εd, εk), (A.117)

The A and B matrix can be derived in a similar procedure as in (A.49) yielding

Apm = Dp,jHjm

Bpn = Dp,jkHjq ε̇qFk,n −Dp,j(Di,j)
−1Di,uvHuq ε̇qFv,n, q = ι(εm).

(A.118)
These equations (A.117) can be compared to (2.41) in the main body of the
text. Note that in the case of zero nominal motion, ε̇m = 0, the B matrix is
zero.



Appendix B

Quaternions, Finite Rotation,
and Euler Parameters

Son: Well, Papa, can you multiply triplets?
Father: No [sadly shaking his head], I can only add and subtract them.

(William Rowan Hamilton, Conversation with his sons (1843))

A quaternion is a collection of four real parameters, of which the first is con-
sidered as a scalar and the other three as a vector in three-dimensional space.
In addition, the following operations are defined. If q = (q0,q) = (q0, q1, q2, q3)
and p = (p0,p) = (p0, p1, p2, p3) are two quaternions, their sum is defined as

q + p = (q0 + p0,q + p), (B.1)

and their product (non-commutative) as

q ◦ p = (q0p0 − q · p, q0p + p0q + q× p). (B.2)

The adjoint quaternion of q is defined as q = (q0,−q) and the length or norm as
|q| =

√

(q ◦ q)0 =
√

q20 + q · q. Note that |q ◦ p| = |q||p|. There are two special
quaternions, the unit element 1 = (1,0) and the zero element 0 = (0,0). The
reciprocal of a quaternion q 6= 0 is q−1 = q/|q|2. The quaternion with a norm
of one, |q| = 1, is a unit quaternion.

If a quaternion is looked upon as a four-dimensional vector, the quaternion
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product can be described by a matrix-vector product as

q ◦ p =
(

q0 −qT

q q0I3 + q̃

)(

p0

p

)

= Q

(

p0

p

)

,

p ◦ q =
(

q0 −qT

q q0I3 − q̃

)(

p0

p

)

= Q

(

p0

p

)

.

(B.3)

Here we have used the tilde notation for the antisymmetric matrix q̃ from the
vector q, which is defined by the matrix-vector notation for the vector cross
product q× x = q̃x. This skew-symmetric matrix is

q̃ =





0 −q3 q2
q3 0 −q1
−q2 q1 0



 . (B.4)

The quaternion matrices Q and P commute, QP = PQ. The matrices of the

adjoint quaternion q are QT and Q
T
.

If we associate the quaternion x′ = (0,x′) with the three-dimensional vector
x′ and define the operation, with the unit quaternion q, as

x = q ◦ x′ ◦ q−1 = q ◦ x′ ◦ q, (B.5)

then this transformation, from x′ to x, represents a rotation. The resulting
quaternion x is a vectorial quaternion with the same length as x′. The case
of reflection, the other possibility, can be excluded. The rotation matrix R in
terms of the unit quaternions q can be derived from equation (B.5) as

x = (q20 − q · q)x′ + 2q0(q× x′) + 2(q · x′)q = Rx′ (B.6)

with

R =





q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q3q1 − q0q2) 2(q3q2 + q0q1) q20 − q21 − q22 + q23



 . (B.7)

This rotation matrix can also be written with the help of the quaternion matrix
representation according to

(

1 0T

0 R

)

= QQ
T
= Q

T
Q. (B.8)
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The quaternion q in the rotation matrix R according to equation (B.7), is iden-
tified as the set of Euler parameters for the description of finite rotation. Ac-
cording to Euler’s theorem on finite rotation, a rotation in space can always
be described by a rotation along a certain axis over a certain angle. With the
unit vector eµ representing the axis and the angle of rotation µ, right-handed
positive, the Euler parameters q can be interpreted as

q0 = cos(µ/2) and q = sin(µ/2)eµ. (B.9)

Since the Euler parameters are unit quaternions the subsidiary condition,

q20 + q21 + q22 + q23 = 1, (B.10)

must always be satisfied. The quaternion x′ in (B.5) can now be associated with
the algebraic components of a vector in a body fixed frame and the quaternion
x as the corresponding components expressed in a space fixed frame.

The Euler parameters for successive rotation are given by the quaternion
product of the Euler parameters describing the individual rotations. This prop-
erty is successfully used in the formulation of the relative rotation of the spatial
hinge element from Section 3.4.

Before we derive the rotational equations of motion for a spatial rigid body
in terms of Euler parameters we have to express the angular velocities and
accelerations in terms of the Euler parameters and its time derivatives. By
differentiation of the rotational transformation (B.5) as in

ẋ = q̇ ◦ x′ ◦ q + q ◦ x′ ◦ q̇, (B.11)

and substitution of the body fixed coordinates according to x′ = q◦x◦q, realizing
that q ◦ q is the unit element (1,0), the velocity reads

ẋ = q̇ ◦ q ◦ x+ x ◦ q ◦ q̇. (B.12)

The scalar part of the products q̇◦q and q◦q̇ are zero, since q is a unit quaternion,
and the vector parts are opposite so we may write: q̇ ◦ q = (0,w) and q ◦ q̇ =
(0,−w). The velocity ẋ now has a zero scalar part, as expected, and a vectorial
part, ẋ = 2w × x, so ω = 2w. We conclude that the angular velocity ω

expressed in the space fixed reference in terms of the Euler parameters q and
its time derivatives is given by

ω = 2q̇ ◦ q or

(

0
ω

)

= 2Q
T
(

q̇0
q̇

)

. (B.13)
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The inverse, the time derivatives q̇ of the Euler parameters for given q and ω,
can be found as

q̇ =
1

2
ω ◦ q or

(

q̇0
q̇

)

=
1

2
Q

(

0
ω

)

. (B.14)

Note that these time derivatives are always uniquely defined, opposed to the
classical combination of 3 parameters for describing spatial rotation as in for
example Euler angles, Rodrigues parameters or Cardan angles. The angular
velocities ω′ expressed in a body fixed reference frame can be derived in the
same manner, or by application of the rotational transformation (B.8), as

ω′ = 2q ◦ q̇ or

(

0
ω′

)

= 2QT

(

q̇0
q̇

)

, (B.15)

and with the inverse

q̇ =
1

2
q ◦ ω′ or

(

q̇0
q̇

)

=
1

2
Q

(

0
ω′

)

. (B.16)

The angular accelarations are found by differentiation of the expressions for ω
and ω′, resulting in

(

0
ω̇

)

= 2Q
T
(

q̈0
q̈

)

+ 2

(

|q̇|2
0

)

, (B.17)

and expressed in the body fixed reference frame
(

0
ω̇′

)

= 2QT

(

q̈0
q̈

)

+ 2

(

|q̇|2
0

)

. (B.18)

The inverse, the second order time derivatives q̈ of the Euler parameters in terms
of q, q̇ and ω̇, goes without saying. The equations of motion for the rotation of
a rigid body in a space with the components of the inertia tensor as matrix J′

and the vector of applied torques M′, all at the centre of mass expressed in the
body fixed frame, are

J′ω̇′ = M′ − ω′ × (J′ω′), (B.19)

They can be expressed in terms of Euler parameters and its time derivatives by
application of the principle of virtual power and introduction of the Lagrangian
multiplier λ for the norm constraint (B.10) written as

εq = q20 + q21 + q22 + q23 − 1 = 0, (B.20)
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resulting in the virtual power equation for a rigid body as

(M′ − J′ω̇′ − ω′ × (J′ω′))T δω′ = λδε̇q. (B.21)

The virtual constraint rate can be derived from (B.20) as

δε̇q = 2q0δq̇0 + 2qT δq̇. (B.22)

Substitution of these expressions and the expressions for the angular velocities
(B.15) and the angular accelerations (B.18) in the virtual power equation (B.21)
and taking arbitrary virtual Euler parameter velocities yields after adding the
constraints on the accelerations of the Euler parameters as in (B.17) or (B.18),
the equations of motion for a rigid body expressed in terms of Euler parameters
as
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The multiplier λ can for this single body be obtained by premultiplying the
first four equations by (q0,q)

T and is indentified as twice the rotational kinetic
energy of the body
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The transformations of an applied torque, body fixed M′ or space fixed M,
to the torque parameters (f0, f), which are dual to the Euler parameters, are
apparently

(

f0
f

)

= 2Q

(

0
M′

)

, and

(

f0
f

)

= 2Q

(

0
M

)

. (B.25)



136 Quaternions, Finite Rotation, and Euler Parameters



Appendix C

An Algorithm for Hydrodynamic
Journal Bearing Forces

Another circumstance brought out by the theory, and remarked on both
by Lord Rayleigh and the author at Montreal, but not before expected,
is that the point of nearest approach of the journal to the brass is not
by any means in the line of the load, and, what is still more contrary to
common supposition, is on the off side of the line of load.

(Osborne Reynolds, On the theory of lubrication and its application to

Mr. Beauchamp tower’s experiments, including an experimental

determination of the viscosity of olive oil)

This appendix gives an algorithmic interpretation of the closed form analytical
expressions for the approximate load bearing properties of a fluid film lubricated
full journal bearing given by Moes et al. [51]. Their solution is based on the
Reynolds equation for a thin film. Incorporated is the finite length of the bearing
and the effect of cavitation in the fluid film. A good reference to the theory of
hydrodynamic lubrication is the book by Pinkus and Sternlicht [60].

Let us consider a full journal bearing with journal radius r, radial clearance c,
bearing length l, and lubricant dynamic viscosity µ. Attached to the sleeve is a
Cartesian reference frame Oxy with O in the centre of the sleeve. The position
and velocities of the journal centre with respect to the reference frame Oxy of
the sleeve are denoted by x, y and ẋ, ẏ. Let ω be the angular velocity of the
journal with respect to the reference frame Oxy, and ω̄ and λ be defined by

ω̄ = ω/2,
λ = l/(2r).

(C.1)
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Then the algorithm is as follows. Calculate the components of the pure-squeeze
velocity v as

[

vx
vy

]

=

[

ẋ
ẏ

]

−
[

0 −ω̄
ω̄ 0

] [

x
y

]

(C.2)

Let ϕ be the angle of this vector with the x-axis , and vs the magnitude,

tanϕ = vy/vx,

vs =
√

v2
x + v2

y.
(C.3)

Express the scaled journal positions x/c and y/c in the coordinate system ro-
tated over the angle ϕ,

[

ξ
η

]

=

[

cosϕ sinϕ
− sinϕ cosϕ

] [

x/c
y/c

]

(C.4)

Define the eccentricity as the length of this vector,

ε =
√

ξ2 + η2. (C.5)

Calculate the dimensionless damping coefficients Ws or impedance vector for
the short bearing (Ocvirk [60]) with ruptured or cavitating fluid film, with

Gs = ( λ
1−ε2 )

2
,

Js = 2√
1−ε2

arccos(− ξ√
1−η2

),
(C.6)

as:
Wsx = Gs((1− ε2 + 3ξ2)Js + 6ξ),

Wsy = Gsη(3ξJs + 4 + 2 ξ2

1−η2 ).
(C.7)

Calculate the damping coefficients Wl for the long bearing (Sommerfeld [60])
with ruptured fluid film, with

Gl = 3
2(1−ε2)(1+ 1

2
ε2)
,

Kl =
√

(1 + 1
2ε

2)2 − (1 + 1
4ε

2)η2,

Jl = 2√
1−ε2

arccos(− (1+ 1
2
ε2)ξ√

K2
l
−η2

),

(C.8)

as:
Wlx = Gl((2 + ε2 − 3η2)Jl + 4ξKl),
Wly = Glη(3ξJl + 4Kl).

(C.9)
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The damping coefficients of the finite length bearing are approximated by the
value as if the short- and long bearing damper were connected in series,

Wx = 1/(1/Wsx + 1/Wlx),
Wy = 1/(1/Wsy + 1/Wly).

(C.10)

The components of the bearing force F, being the force exerted by the fluid film
on the sleeve expressed in the Cartesian reference frame Oxy of the sleeve, are

[

Fx

Fy

]

= 2µl
(r

c

)3

vs

[

cosϕ − sinϕ
sinϕ cosϕ

] [

Wx

Wy

]

. (C.11)
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Summary

Dynamic simulation of flexible multibody systems is a time consuming task.
It is not that the current computers are too slow, rather that the simulation
timestep gets to be so small that the total simulation time runs out of hand.
Furthermore, the enormous amount of data produced in this way hinders the
interpretation of the results. Fortunately, it now appears that linear vibration
analysis can be applied to solve the problem.

In this thesis the complex motion of the flexible multibody system is ap-
proximated by superimposing small linear vibrations on a non-linear rigid body
motion. This idea has been inspired by the computational results from simu-
lations of flexible multibody systems where one often recognizes the motion to
be the sum of a gross rigid body motion and small-amplitude, nearly harmonic
vibrations.

For a periodic rigid body motion, the method of superimposition as presented
in this thesis systematically leads to a system of linear differential equations with
periodic coefficients and periodic forcing. Periodic solutions of these equations
are assumed to be truncated Fourier series with the same fundamental frequency
as the nominal rigid body motion. These series have the advantage that they are
a compact frequency-amplitude representation of the solution as opposed to the
lengthy time responses. The stability of these periodic solutions is determined
by a method which is directly based on the Floquet theory. Transient solutions,
which may be added in order to satisfy the initial conditions, are constructed
by a method of slowly varying coefficients and averaging.

The equations of motion for the flexible multibody system and their lin-
earization, which describe the small vibrations, are derived by a finite element
method. With the help of a limited number of element types, the truss, the
beam and the hinge, it is possible to model a variety of flexible multibody sys-
tems. The field of application is enlarged by the introduction in this work of
new element types, being: the planar cylindrical bearing, the planar belt and
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pulley pair, the planar gear pair, and the spatial hinge. Every element type is
illustrated by a suitable example problem.

The method of superimposition as presented in this work is also applied to
systems having rolling contact, as in road vehicles and track-guided vehicles.
If these contacts are ideal, they impose, in addition to some holonomic con-
straints, also non-holonomic constraints on the system, which can be expressed
as constraints of special finite elements like the wheel on a surface. These
new element types and a procedure for formulating the equations of motion
for such non-holonomic flexible multibody systems and their linearization are
an important part of this thesis. The application of these new element types
and techniques is illustrated by the stability analysis of a rolling disk and a
benchmark problem on a road vehicle.

Finally, a comparative study on the effect of joint clearance modelling in a
flexible multibody system illustrates yet another application of the presented
superimposition method.



Samenvatting

Dynamische simulatie van vervormbare meerlichaamsystemen is een tijdrovende
bezigheid. Het is niet zo dat de huidige computers te traag zijn maar dat de
benodigde rekentijdstap zo klein wordt dat de totale rekentijd uit de hand loopt.
Daarbij komt nog dat de enorme hoeveelheid gegevens die zo geproduceerd wordt
de interpretatie van de resultaten in de weg staat. Gelukkig kan dit probleem
opgelost worden door het toepassen van eenvoudige trillingsleer.

In dit proefschrift wordt voorgesteld de complexe beweging van een ver-
vormbaar meerlichaamsysteem te benaderen door de superpositie van kleine
trillingen op een beweging met starre lichamen. Dit idee is ingegeven door de
berekeningsresultaten van vervormbare meerlichaamsystemen waarbij men vaak
in de beweging de som herkent van een starre lichaamsbeweging en een kleine
nagenoeg harmonische trilling.

De methode van superpositie zoals hier gepresenteerd leidt bij een perio-
dieke starre lichaamsbeweging tot een stelsel lineaire differentiaal vergelijkingen
met periodieke coëfficiënten en een periodiek rechterlid welke de kleine trillingen
beschrijven. Als periodieke oplossing wordt een eindige reeks van Fourier veron-
dersteld waarbij de grondfrequentie gelijk is aan die van de starre lichaamsbewe-
ging. Deze reeksen hebben het voordeel van een compacte frequentie-amplitude
vorm tegenover de langdurige tijdresponsies. De stabiliteit van de periodieke
oplossingen wordt bepaald met behulp van een methode die direct gebaseerd is
op de theorie van Floquet. Het inschakelverschijnsel, wat eventueel kan worden
toegevoegd aan de periodieke oplossing om aan de beginvoorwaarden te voldoen,
wordt bepaald met behulp van de methode van langzaam veranderende fase en
amplitude en die van middeling.

De bewegingsvergelijkingen voor het vervormbare meerlichaamsysteem en
de linearisatie welke de kleine trillingen beschrijft, worden bepaald met behulp
van de eindige-elementenmethode. Door middel van een beperkt aantal typen
elementen zoals de staaf, de balk en het scharnier, kan een grote groep van ver-
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vormbare meerlichaamsystemen gemodelleerd worden. De in dit werk beschre-
ven nieuwe elementtypen zoals het vlakke cilindrische lager, de vlakke riem met
riemschijven, het vlakke tandwiel en het ruimtelijke scharnier vergroten dit toe-
passingsgebied nog meer. Al deze nieuwe elementtypen zijn gëıllustreerd met
een toepasselijk voorbeeld.

De methode van superpositie zoals hier gepresenteerd, kan ook worden toe-
gepast bij systemen met rollende contacten zoals bij weg- en railvoertuigen.
De niet-holonome verbindingsvoorwaarden die ontstaan bij het beschrijven van
zuiver rollend contact worden beschreven met behulp van speciale eindige ele-
menten zoals het wiel op een vlak. Deze bijzondere eindige elementen en de for-
mulering van de bewegingsvergelijkingen voor zulke niet-holonome vervormbare
meerlichaamsystemen en de linearisatie hiervan zijn een belangrijk onderdeel
van dit proefschrift. De nieuwe elementen en technieken worden onder andere
gëıllustreerd aan de hand van de stabiliteitsanalyse van een rollende schijf en
een standaardtest op een simulatiemodel van een wegvoertuig.

Tot slot is een vergelijkende studie naar het modelleren van speling in ver-
vormbare meerlichaamsystemen gedaan. Dit onderzoek illustreert tevens een
geheel ander toepassingsgebied van de hier gepresenteerde methode van super-
positie.
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Kassel, 1971. [103]
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[38] Kortüm, W., and Sharp, R. S. (eds), Multibody Computer Codes in Vehicle

System Dynamics, Supplement to Vehicle System Dynamics 22, 1993. [49,
51, 52]

[39] Lagrange, J. L., Analytical Mechanics, Kluwer, Dordrecht, 1997. (Original
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