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ABSTRACT
Three formulations for a flexible 3-D thin plate element for

dynamic analysis within a multibody dynamics environment are
compared: a classical Discrete Kirchhoff Triangle (DKT) with
large displacements and large rotations, a fully parametrized rect-
angular element according to the absolute nodal coordinate for-
mulation (ANCF) and a rectangular element according to the
ANCF with an elastic midplane approach. The comparison is
made by means of a small deformation static test and extensive
eigenfrequency analyses on a stylized problem. It is shown that
the DKT element can describe arbitrary rigid body motions and
that both the DKT element and the thin plate ANCF element
show good convergence to analytic solutions by increasing num-
ber of elements, and suppress shear locking which is present in
the fully parametrized ANCF element.

1 Introduction
The purpose of this paper is to make a comparison of some

results obtained by two different formulations for describing the
motion of three-dimensional flexible plates in a multibody dy-
namics context. A common approach found in the literature is
to use a small displacement formulation with respect to a refer-
ence frame that describes the overall rigid-body motion of the
plate [1] or to use a geometrically exact shell model [2, 3]. In-
cluding a limited set of assumed modes for the deformations can
1

reduce the number of degrees of freedom.
A different way to describe the motion of the elements is

by using nodal coordinates that describe the configuration of the
element with respect to an inertial reference frame. This ap-
proach is more in line with traditional non-linear finite element
formulations used in statics. A convenient element formulation
was given by Van der Werff and Jonker [4], which was imple-
mented in the program SPACAR [5] and extended further there-
after [6,7]. In this formulation, for each type of element a number
of generalized deformations are defined that are invariant under
rigid body motions, so arbitrary rigid body motions can exactly
be described.

More recently, another approach using nodal coordinates,
the absolute nodal coordinate formulation (ANCF), was pro-
posed by Shabana [8]. This finite element formulation describes
the position of a material point within the element by interpo-
lations based on the Cartesian absolute coordinates of the nodal
points and on gradients of these positions with respect to a refer-
ence configuration. The use of gradients allows the exact repre-
sentation of inertia parameters of a rigid body and avoids redun-
dancy of rotational parameters for arbitrary large rotations. The
resulting element mass matrix is constant, at the cost of a more
complicated description for the stiffness. This allows an efficient
formulation of the equations of motion for implicit time integra-
tion without repeated factorizations of element matrices [9].

The basic concept of so-called fully parametrized beam
Copyright c© 2007 by ASME



[10, 11] and plate [12] elements is using the position and three
slope vectors as the nodal coordinates to interpolate the displace-
ment field of the element. The three slope vectors form the com-
ponents of the deformation gradient at a node which can repre-
sent arbitrary deformation states. However, the full parametriza-
tion leads to very high stiffness coefficients for the transverse
normal deformations and cross-sectional distortion, which can
cause ill-conditioned equations of motion, resulting in slow con-
vergence and large simulation times [13]. The first paper to men-
tion convergence problems in the ANCF has been presented by
Sopanen and Mikkola [14]. They state that the convergence can
be improved if the constitutive model is modified by setting the
Poisson ratio to zero, however, they thought that the beam ele-
ment would not suffer from shear locking. Later on, Gerstmayr
and Shabana [15, 16] found coupled shear and thickness lock-
ing for the case of zero Poisson ratio, interpreted the locking ef-
fect as a result of the incompatible interpolation of bending and
thickness deformation, and introduced alternative formulations
in order to correct this effect. Independently, Schwab and Meij-
aard [17] came to the same conclusions and introduced an elastic
line model for the absolute nodal coordinate beam element that
relaxes the constraints for the cross-section deformation, elimi-
nates shear locking by means of the Hellinger-Reissner principle
and corrects shear and torsional stiffness by means of classical
shear factors. Recently, Dmitrochenko and Pogorelov [18] de-
veloped an ANCF thin plate formulation which neglects the de-
formation of the cross-section and thus leads to a better compu-
tational performance with a reduced number of coordinates. Sur-
prisingly, available contributions concerning the derivation of the
fully parametrized ANCF plate element [12] and the thin plate el-
ement [13, 18], do not investigate the convergence properties for
small plate thickness or locking effects.

All three discussed plate elements are considered to be used
in multibody system problems where large rigid body motions
and small or large elastic vibrations need to be modelled. How-
ever, for the sake of comparison of the element formulation
with each other and analytic solutions, small deformation static
problems and eigenvalue analyses are used. The accuracy and
convergence properties are assessed. All computations for the
ANCF elements are performed with the flexible multibody code
HOTINT [19, 20] and the eigenvalue problems are solved with
MATLAB.

The organization of the paper is as follows. After this intro-
duction, a classical Discrete Kirchhoff Triangle with large dis-
placements and large rotations is described and subsequently the
ANCF fully parametrized and thin plate elements are described.
Then results of a small deformation statics test and an extensive
eigenfrequency analysis on stylized problems is presented and
discussed. The paper ends with some conclusions.

2

2 SPACAR plate element

The SPACAR plate element is a classical 3-D triangular thin
plate element embedded in a multibody dynamics environment.
Its characteristics are large displacements and large rotations but
small, but finite, deformations. The element can be compared to
a classical Discrete Kirchhoff Triangle (DKT) [21].
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Figure 1. Three-dimensional triangular thin plate element with 3 nodes
and 6 degrees of freedom in every node together with the triangular coor-
dinates (L1,L2,L3).

The configuration of the element (see Figure 1) is deter-
mined by the position and orientation of the three nodes, by
which it can be coupled to and interact with other elements. The
positions of the nodes 1, 2, and 3 are given by their coordinates
r1, r2, and r3 in a global inertial system Oxyz, whereas the orien-
tations in the nodes are determined by orthogonal triads of unit
vectors (ex1,ey1,ez1), (ex2,ey2,ez2), and (ex3,ey3,ez3) which are
rigidly attached to the material in the direct vicinity of the nodes.
The unit vector ez is perpendicular to the midplane of the plate
and the unit vectors ex and ey are in-plane. In the absence of
shear deformation, ex and ey are tangent to the elastic midplane
of the plate. The change in orientation of the triads at the nodes
is determined by an orthogonal rotation matrix R. This matrix
can be parametrized by a choice of parameters, denoted by ϑϑϑ,
such as Euler angles, Rodrigues parameters or Euler parame-
ters. In the SPACAR software system [5], Euler parameters are
used, but this choice is immaterial to the description of the ele-
ment. For instance, the rotated unit z-vector in node 2 is given
by ez2 = R(ϑϑϑ2)e0

z2, where e0
z2 is the unit vector in the initial un-

deformed configuration.

Copyright c© 2007 by ASME



2.1 Elastic Forces
The elastic forces are derived from the elastic midplane con-

cept where transverse shear deformation is not taken into ac-
count, the so-called thin plate approach. The Kirchhoff-Love
plate theory [22] is used.

The element has 6 degrees of freedom as a rigid body, while
the nodes have 3× 6 = 18 degrees of freedom. Hence the de-
formation of the element determined by the position and orien-
tation of the nodes can be described by 12 independent gener-
alized strains. These strains are usually non-linear functions of
the position and orientation of the nodes and the initial unde-
formed geometry. They can be compared to what Argyris [23]
called natural modes, and will be invariant under arbitrary rigid
body motions and thus truly measure the amount of strain in the
element.

The edges are identified by indices corresponding to nodes
at the opposite vertex and then the edge vectors are given by
l1 = r3−r2, l2 = r1−r3, and l3 = r2−r1. The length of the edges
in the initial undeformed geometry are `1, `2, and `3. Then the
in-plane deformation can be described by the following 3 gener-
alized strains,

εi = (lTi li− `2
i )/(2`i), i = 1,2,3, (1)

which are the elongations of the edges to first order. This
quadratic expression simplifies the description considerably with
respect to expressions using the true change in length.

This still leaves 3 in-plane degrees of freedom which we
identify as the rotation of the triads in every node about the
local z-axis (‘drilling’). Since these 3 are not sufficient to in-
crease the order of the in-plane deformation in a uniform way
(4 are needed), and no additional generalized strains are defined,
this spurious motion without associated deformation will be con-
strained at each node.

For the transverse bending deformation we define the fol-
lowing 6 generalized strains,

ε4 =−eT
z2l1, ε5 = eT

z3l1,
ε6 =−eT

z3l2, ε7 = eT
z1l2,

ε8 =−eT
z1l3, ε9 = eT

z2l3.
(2)

Here, eT
zil j can be identified as the approximate slope angle at

node i of edge j times the length of edge j with respect to the
initial plane configuration. The transverse displacement w̄ with
respect to the plane through the three nodal points can be con-
structed. Instead of using the usual (x̄, ȳ) in-plane coordinates,
the description is simplified by using natural or triangular coor-
dinates (L1,L2,L3), where each Li is zero along edge i and takes
the values 1 at the opposite node i. Obviously, these coordinates,
0≤ Li ≤ 1 inside the triangle, fulfil the relation L1 +L2 +L3 = 1.
For a full quadratic transverse displacement field w̄ in (L1,L2,L3)
3

a total of 10 coefficients is needed, which could be provided by
the 3 transverse rigid body motions and 7 independent deforma-
tion modes. However, there are only 6 generalized transverse
strains (2) and therefore an extra condition is needed to obtain
a unique interpolation. This condition is the ability to describe
constant curvature and a symmetry requirement [24]. The result-
ing transverse displacement field w̄ is then given by

w̄ = ε4(L2
2L3 +L1L2L3/2)+ ε5(L2

3L2 +L1L2L3/2)
+ε6(L2

3L1 +L1L2L3/2)+ ε7(L2
1L3 +L1L2L3/2)

+ε8(L2
1L2 +L1L2L3/2)+ ε9(L2

2L1 +L1L2L3/2).
(3)

Indeed, taking directional derivatives of w̄ in the nodes along the
edges results in the small angles corresponding to (2).

The generalized stress–strain relations can be derived as fol-
lows. If we group the positions and orientations of the nodes in a
vector x = (r1,ϑϑϑ1,r2,ϑϑϑ2,r3,ϑϑϑ3) and denote the vector of gener-
alized deformations by εεε, then we can write for the generalized
strains (1) and (2) symbolically

εi = Di(xk), i = 1, . . . ,9, k = 1, . . . ,18. (4)

The dual quantities of the generalized strains εεε are the general-
ized stresses σσσ. The physical meaning of these stresses is found
by equating the internal virtual power of the elastic forces σσσT δε̇εε
to the external virtual power fT δẋ of the nodal forces. Substi-
tution of the virtual generalized strains derived from (4) results
in

σiδε̇i = σiDi,kδẋk = fkδẋk ∀ δẋk, (5)

where the Einstein summation convention over repeated indices
is applied and a subscript after a comma denotes a partial deriva-
tive. From this we derive the equilibrium conditions for the ele-
ment as

fk = Di,kσi, (6)

Next we tie the generalized stresses σi to the generalized
strains εi by the linearly elastic material behaviour. For the (x̄, ȳ)
in-plane behaviour we start from the plane stress–strain equa-
tions




ε̄x
ε̄y
γ̄xy


 =

1
E




1 −ν 0
−ν 1 0
0 0 2(1+ν)







σ̄x
σ̄y
τ̄xy


 (7)

Here, E is the modulus of elasticity (Young’s modulus) and ν
Poisson’s ratio. The generalized in-plane strains (1) can be ex-
pressed in terms of the physical strains ε̄εε by the transformation

εi = (ε̄x cos2 φi + ε̄y sin2 φi + γ̄xy sinφi cosφi)li, i = 1,2,3, (8)

where φi is the angle of edge i with respect to the in-plane x-
Copyright c© 2007 by ASME



axis, considered positive for a rotation towards the y-axis. The
generalized stresses correspond to uniaxial stresses in directions
parallel to the sides of the triangle, σ̄i = σili/(Ah), where A is
the in-plane area of the triangular plate element and h the trans-
verse plate thickness. Transforming the physical strains and ap-
plying the dual transformation to the physical stresses results in
the generalized stress–strain expressions εi = Fi jσ j with the in-
plane flexibility matrix

Fi j =
1

EAh
`i` j[(1+ν)cos2

i j−ν], i, j = 1,2,3, (9)

with cosi j = lTi l j/(`i` j). By inverting the matrix Fi j we can write
the in-plane generalized stresses in terms of the strains as

σi = Si jε j, with Si j = (Fi j)−1. (10)

For the transverse stiffness we start from elastic bending
energy expressed in terms of the curvatures κκκ = (κx,κy,2κxy)T

which we equate to the transverse bending energy expressed in
terms of the generalized strains as in

Wb =
1
2

∫

A
κκκT ĒκκκdA =

1
2

εiSi jε j, i, j = 4, . . . ,9, (11)

where we used the transverse stiffness matrix

Ē =
Eh3

12(1−ν2)




1 ν 0
ν 1 0
0 0 (1−ν)/2


 . (12)

The curvatures are derived in the usual manner from the trans-
verse displacement w̄ (3) by κx = ∂2w̄/∂x̄2, κy = ∂2w̄/∂ȳ2, and
κxy = ∂2w̄/∂x̄∂ȳ. Again, natural coordinates Li will be used and
with the help of the well-known transformation from natural co-
ordinates to in-plane coordinates




1
x̄
ȳ


 =




1 1 1
x̄1 x̄2 x̄3
ȳ1 ȳ2 ȳ3







L1
L2
L3


 , (13)

the curvatures κκκ can be written as linear functions of generalized
transverse strains εi as in

κi = Bi jε j, k = 1, . . . ,3, j = 4, . . . ,9. (14)

The matrix Bi j holds constants from the initial geometry of the
element and, with w̄ cubic, describes a curvature which is linear
in Li over the element. Substitution of these curvatures in the
transverse bending energy and integrating over the area, using
4

the natural coordinate integral expressions

∫

A
Lp

1 Lq
2Lr

3dA = 2
p!q!r!

(p+q+ r +2)!
A, (15)

leads to the transverse stiffness matrix

Si j =
∫

A
BkiĒklBl jdA, k, l = 1, . . . ,3, i, j = 4, . . . ,9. (16)

This, together with the in-plane stiffness matrix (10) gives the
expressions for the nodal elastic forces

fk = Di,kSi jε j, i, j = 1, . . . ,9, k = 1, . . . ,18, (17)

where the coupling terms between the in-plane and transverse
deformation, Smn and Snm for m = 1, . . . ,3 and n = 4, . . . ,9, are
equal to zero.

Finally, the element stiffness matrix is obtained by taking
partial derivatives of the nodal elastic forces (17) with respect to
the nodal coordinates x, resulting in a tangent stiffness matrix

K̄kl = Di,kSi jD j,l +Di,klσi, l = 1, . . . ,18. (18)

The second part is the geometric stiffness matrix, which, evalu-
ated in the undeformed and unstressed geometry, is equal to zero,
whereas the first part is the linear stiffness matrix

Kkl = Di,kSi jD j,l . (19)

The rank of this stiffness matrix is 9 and the three constraints on
the rotation of a triad in every node about the z-axis have to be
added.

2.2 Mass Matrix
The derivation of the consistent mass matrix for the flexi-

ble thin plate element is based on the elastic midplane concept,
where rotary inertia of the cross-section will be neglected. The
cubic interpolation for the position of a point r = (xr,yr,zr) on
the elastic midplane in terms of triangular coordinates Li is taken
as

r =




(L3
1 +3L2

1(L2 +L3)+2L1L2L3)I3
(L2

1L2 +L1L2L3/2)I3
(L2

1L3 +L1L2L3/2)I3
(L3

2 +3L2
2(L3 +L1)+2L1L2L3)I3

(L2
2L3 +L1L2L3/2)I3

(L2
2L1 +L1L2L3/2)I3

(L3
3 +3L2

3(L1 +L2)+2L1L2L3)I3
(L2

3L1 +L1L2L3/2)I3
(L2

3L2 +L1L2L3/2)I3




T 


x1
t13
t12
x2
t21
t23
x3
t32
t31




= Nq, (20)
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where we have introduced the tangent vector ti j at node i along
edge j. They are defined as

t13 = a3ex1 +b3ey1, t12 = −(a2ex1 +b2ey1)
t21 = a1ex2 +b1ey2, t23 = −(a3ex2 +b3ey2)
t32 = a2ex3 +b2ey3, t31 = −(a1ex3 +b1ey3),

(21)

where we used the (x̄, ȳ) in-plane dimensions

a1 = x̄3− x̄2, a2 = x̄1− x̄3, a3 = x̄2− x̄1
b1 = ȳ3− ȳ2, b2 = ȳ1− ȳ3, b3 = ȳ2− ȳ1

(22)

In the initial geometry these tangents are simply plus or minus
the corresponding edges. The mass matrix M is obtained from
the kinetic energy integral

T =
1
2

ρh
∫

A
ṙT ṙdA =

1
2

ẋT Mẋ, (23)

where ρ is the volumetric mass density. Before evaluating the
integral we need to express the time derivatives of the tangent
vector ṫi j in terms of time derivatives of the nodal coordinates ẋ
as in

q̇ =




C1 0 0
0 C2 0
0 0 C3


 ẋ = Cẋ, with Ci =




I3 0
0 Ai
0 Bi


 , (24)

where the Ai and Bi matrices are the partial derivatives of the
tangents ti j with respect to the angular parameters ϑϑϑi and are
given by

A1 = ∂t13/∂ϑϑϑ1, B1 = ∂t12/∂ϑϑϑ1,
A2 = ∂t21/∂ϑϑϑ2, B2 = ∂t23/∂ϑϑϑ2,
A3 = ∂t32/∂ϑϑϑ3, B3 = ∂t31/∂ϑϑϑ3.

(25)

Substitution of the above expressions in the kinetic energy inte-
gral leads to the mass matrix

M = ρh
∫

A
CT NT NCdA = CT WC, (26)

where we introduced the mass coefficient matrix

W =
ρhA

10080




1936 208 208 712 76 136 712 136 76
31 19 136 13 25 76 13 11

31 76 11 13 136 25 13
1936 208 208 712 76 136

31 19 136 13 25
31 76 11 13

1936 208 208
31 19

sym 31




,

(27)
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elastic midplane
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Figure 2. Nodal coordinates in the ANCF plate elements.

and every bold entry d stands for the matrix d ∗ I3. This mass
matrix is not constant, but depends on on the rotational param-
eters ϑϑϑi via matrix C. Therefore, the inertia forces take on the
form fin =−(Mẍ+h), with the convective forces given by

hi =
(

∂Mi j

∂xk
− 1

2
∂M jk

∂xi

)
ẋ j ẋk. (28)

3 ANCF plate elements
In the following, the mass and tangent stiffness matrices are

derived for two large deformation plate elements based on the ab-
solute nodal coordinate formulation. The first plate formulation
concerns a fully parametrized (fp) 4-noded, rectangular, shear
deformable plate element, where the position and three slopes
are used as nodal degrees of freedom [12], see Figure 2. The
second plate element is an improved formulation for 4-noded
rectangular thin plates using only position and in-plane slopes
as nodal coordinates. The strain energy depends on the defor-
mation of the midplane only, not taking into account transverse
shear effects, see Dmitrochenko and Pogorelov [18] and Dufva
and Shabana [13]. The two elements have been implemented in
the flexible multibody system code HOTINT [20].

Both formulations are derived at the same time, where the
differences are marked with subindices fp and tp for the fully
parametrized and the thin plate, respectively. For further details
the referred papers should be consulted.

The position vector of the plate in normalized element coor-
dinates ξ ∈ [−1 . . .1], η ∈ [−1 . . .1], ζ ∈ [−1 . . .1] is interpolated
with shape functions S and nodal displacements,

rfp = Sfp(ξ,η,ζ)efp and rtp = Stp(ξ,η)etp. (29)

The shape functions are not unique for the 4-noded element;
however, suitable third order interpolation functions with slope
continuity at adjacent element edges are provided in the litera-
ture [12, 13]. The shape functions are incomplete up to cubic
polynomials for the in-plane element coordinates ξ and η and lin-
ear with respect to the transverse coordinate ζ which is only used
in the fully parametrized element. The nodal coordinates for a
5 Copyright c© 2007 by ASME



node i according to Figure 2 are given for the fully parametrized,

e(i)
fp =

[
r(i)T

fp r(i)T

fp,x r(i)T

fp,y r(i)T

fp,z

]T
, (30)

and the thin plate element,

e(i)
tp =

[
r(i)T

tp r(i)T

tp,x r(i)T

tp,y

]T
, (31)

while the nodal coordinates of an element are denoted as

e =
[
e(1)T

e(2)T
e(3)T

e(4)T
]T

. (32)

It should be noted that the formulation can be equally trans-
formed to nodal displacements and displacement gradients,
which is more common in finite elements but not considered in
the original investigations of the ANCF. The derivative of the
nodal coordinate r with respect to a coordinate α is defined by
∂r/∂α = r,α The relation of element coordinates ξξξ = [ξ η ζ]T

and global coordinates x = [x y z]T is provided by the coordinate
interpolation according to isoparametric elements

xfp = Sfp(ξ,η,ζ)e0fp and xtp = Stp(ξ,η)e0tp , (33)

where e0 is the vector of nodal coordinates in the undeformed
reference configuration. The element transformation matrix J
and the derivative with respect to global coordinates are given by

J =
∂x
∂ξξξ

and
∂r
∂x

=
∂r
∂ξξξ

J−1. (34)

The mass matrix is computed by integration of the density and
the shape functions over the element volume,

M =
∫

V
ρST S|J|dV, (35)

which gives a constant matrix. This is a specific feature of the
ANCF which is usually not possible in large deformation struc-
tural elements.

The virtual work of internal forces is based on the nonlinear
Green strain tensor

E =
1
2

((
∂r
∂x

)T ∂r
∂x
− I

)
, (36)

taking into account the element transformation Eq. (33) and the
identity matrix I. In order to keep the notation simple, the engi-
neering strains εεε = [Exx Eyy Ezz 2Eyz 2Exz 2Exy]T are used.

In the fully parametrized element, the work of internal forces
for a linear elastic material is given as

WIfp =
1
2

∫

V
εεεT Dεεε|J|dV, (37)

for the matrix of material coefficients D see the referred litera-
ture.

In the thin plate element, the work of internal forces is solely
based on the deformation of the element midplane, ζ = 0, and
thus only 3 components of the strain tensor are used that are eval-
uated at the midplane,

εεεm =
[
Exx|ζ=0 Eyy|ζ=0 2Exy|ζ=0

]T
. (38)

The bending deformation of the plate is based on the curvatures
κκκ = [κxx κyy 2κxy]T which are defined by

κxx =
nT

||n||3
∂2r
∂x2 , κyy =

nT

||n||3
∂2r
∂y2 and κxy =

nT

||n||3
∂2r

∂x∂y
,

(39)
where the normal to the deformed plate surface is defined as
n = r,x× r,y. In the case of the thin plate element, the work of
internal forces depends on the deformation of the element mid-
plane (which leads to very similar in-plane deformation as in the
fully parametrized element) and the bending deformation based
on the curvatures,

WItp =
1
2

∫

V

(
εεεT

mD2εεεm + z2κκκT D2κκκ
) |Jtp|dV. (40)

Note that in the thin plate element, the element transformation Jtp
only depends on the ξ and η coordinates. The integration over the
volume is therefore performed for the ξ and η-coordinate in local
element coordinates and for the z-coordinate over the thickness,
−h/2 ≤ z ≤ h/2. The matrix of elastic material coefficients for
the plane stress condition is given by

D2 =
E

1−ν2




1 ν 0
ν 1 0
0 0 (1−ν)/2


 (41)

For both elements, the tangent stiffness matrix is computed
by means of twice differentiation with respect to the element co-
ordinates e,

K =
∂
∂e

(
∂
∂e

WI

)T

. (42)

The first derivative of the work of internal forces is performed an-
alytically and leads to the elastic forces, while the second deriva-
tive is computed by means of numerical differentiation in the
program code HOTINT.
6 Copyright c© 2007 by ASME



3.1 Boundary conditions for the ANCF plate elements
In the ANCF element, specific nodal coordinates need to be

fixed in order to approximate the boundary conditions of the ex-
act plate. The boundary conditions of the simply supported case
with free rotation about the x-axis and free moving along the
x-axis is approximated by fixing the nodal coordinates

r(i)
y = 0, r(i)

z = 0, r(i)
y,x = 0 and r(i)

z,x = 0, (43)

at each node i of the edge, compare Figure 2. The condition
r(i)

j,k = 0 means that the component j ∈ {x,y,z} of the derivative
of the nodal position, ∂r/∂k, k ∈ {x,y,z}, is fixed. Alternatively,
but not examined in the examples, one could think about fix-
ing the component r(i)

x,y, meaning to enforce inplane y-fibers to
be perpendicular to the axis of rotation at the boundary node.
For the simply supported case, the same boundary conditions are
used for the thin plate element and the shear deformable fully
parametrized element. However, one could also constrain the
plate normal components r(i)

x,z and r(i)
y,z, which is not performed in

the examples. It turns out that for the present case of thin plates
the influence of the alternative choice of constraints is negligible.
The boundary conditions with respect to another axis of rotation
follow by analogy to the above mentioned boundary conditions.

For a boundary condition that represents the clamped case
along an edge parallel to the x-axis, all nodal coordinates are
fixed except the deformation perpendicular to the x-axis, which
is r(i)

y,y and, for the fully parametrized plate, r(i)
z,z. Constraining

components such as r(i)
y,y at the boundary would mean to constrain

the inplane deformation at the boundary which would result in
very slow convergence. The component r(i)

z,z could be constrained
in principle for the fully parametrized element, but it does neither
seem to be a realistic boundary condition nor would it lead to
good convergence because of additional Poisson locking at the
boundary.

For the computation of inplane eigenmodes, the nodal coor-
dinates r(i)

z , r(i)
x,z and r(i)

y,z are fixed for the thin plate and r(i)
z,x and

r(i)
z,y are additionally fixed for the fully parametrized plate.

4 Results and Discussion
To investigate the performance of the different element types

a number of tests has been performed.
The first test is a simple static test of a cantilevered plate

under two loading conditions. The first loading case is a dis-
tributed moment along the free edge opposite the clamped edge.
This should result in a constant bending moment in the plate.
The second loading case is a distributed transverse force at this
free edge. For an infinitely long plate of width l and constant
thickness h (h/l ¿ 1) made out of isotropic homogenous linearly
elastic material with modulus of elasticity E and Poisson ratio ν,
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ϕn = 0

ϕn = 0

w = 0

ϕn = 0

F M

(a) (b)

Figure 3. (a): Loading, boundary conditions and unform 4×4 meshing
pattern of a square cantilevered plate with triangular elements. (b): Uni-
form doubly symmetric 4×4 meshing pattern of a square plate with trian-
gular elements as used in dynamics tests.

the analytical exact solutions for the transverse displacement and
normal rotation along the loaded edge are,

wexact =
Ml2

2D
+

Fl3

3D
, and ϕexact =

Ml
D

+
Fl2

2D
, (44)

where we used the elastic plate constant D = Eh3/(12(1−ν2)).
The test problem is modelled by a square plate with in-plane
dimensions of l by l and a constant plate thickness h. For the
ANCFfp element a value of h/l = 0.01 is used. The loading,
boundary conditions, and uniform 4×4 meshing for the triangu-
lar element type are illustrated in figure 3.a. For the rectangular
element types the same boundary conditions and uniform mesh-
ing grid but now without the diagonals is used. A Poisson ratio of
ν = 0.3 has been used, unless otherwise stated. The static results
for the three different element types are presented in Tables 1 and
2, where the displacements and rotations are normalized by the
exact solutions according to (44). The two thin plate element for-
mulations, SPACAR and ANCFtp, pass the static test. The AN-
CFtp is exact, whereas the convergence of the SPACAR results
with refined mesh is good. Even the solutions for a 1×1 element
mesh are already pretty accurate. The fully parametrized ANCF
element shows Poisson locking, which was expected since the
solution approaches the case for plane strain and the stiffness is
too large by a factor of approximately (1−ν)2/(1−2ν).

The second set of tests are eigenfrequency analyses on the
free vibration of a thin square plate with three different sets of
boundary conditions. The square plate has length l, thickness
h and the material is isotropic linearly elastic with modulus of
elasticity E, Poisson’s ratio ν and volumetric mass density ρ.
The solutions depend on the value of Poisson’s ratio, and for all
cases ν = 0.3 is used.

The literature on the transverse vibration of plates is very
rich. An in-depth survey on this subject was made in the 1970s
by Leissa [25]. Some publications which are closely related to
the test problem, a thin rectangular plate, will be discussed here.
The first publication on this topic is the experimental work by
Copyright c© 2007 by ASME



Table 1. Average normalized transverse displacements w̄ and rotations
ϕ̄ for a square cantilevered plate loaded by a distributed moment at the
free edge for a number of mesh refinements and three different element
types: SPACAR, ANCF thin plate, and ANCF fully parametrized.

Mesh SPACAR ANCFtp ANCFfp ANCFfp
ν = 0.3 ν = 0.0

w̄ w̄ w̄ w̄
1×1 1.021820 1.000000 0.816836 1.000360
2×2 1.006890 1.000000 0.817157 1.000479
4×4 1.002276 1.000000 0.818173 1.001113
8×8 1.000799 1.000000 0.820056 1.002221

16×16 1.000313 1.000000 0.823846 1.004478
ϕ̄ ϕ̄ ϕ̄ ϕ̄

1×1 1.021328 1.000000 0.816634 1.000218
2×2 1.012147 1.000000 0.816826 1.000221
4×4 1.006495 1.000000 0.817485 1.000580
8×8 1.003253 1.000000 0.818583 1.001123

16×16 1.001605 1.000000 0.820741 1.002249

Table 2. Average normalized transverse displacements w̄ and rotations
ϕ̄ as in Table 1 but now loaded by a distributed transverse force at the
free edge.

Mesh SPACAR ANCFtp ANCFfp ANCFfp
ν = 0.3 ν = 0.0

w̄ w̄ w̄ w̄
1×1 1.026332 1.000000 0.612860 0.750425
2×2 1.007233 1.000000 0.766434 0.938193
4×4 1.002362 1.000000 0.806117 0.985977
8×8 1.000844 1.000000 0.818371 0.999369

16×16 1.000332 1.000000 0.826169 1.005687
ϕ̄ ϕ̄ ϕ̄ ϕ̄

1×1 1.021820 1.000000 0.816788 1.000326
2×2 1.006542 1.000000 0.817184 1.000479
4×4 1.001975 1.000000 0.818214 1.001128
8×8 1.000733 1.000000 0.820099 1.002238

16×16 1.000303 1.000000 0.823887 1.004495

Chladni [26], who showed the vibration modes by means of the
lines of nodes, now called Chladni figures. Then, around 1900,
both Rayleigh [27] and Ritz [28] start calculating the modes
and frequencies by means of assumed modes, the now called
Rayleigh-Ritz method. One could say that in the work of Ritz
lays the foundation of the Finite Element Method. After that
a great many of people worked on the problem of which we
mention here the following. Iguchi [29] shows eigenmodes and
eigenfrequencies for a square plate, while Young [30] also in-
cludes other boundary conditions such as fully clamped. In a
PhD thesis, Ödman [31] calculates modes and frequencies for
various boundary conditions and compares his results with those
of others. Finally, Bartell et al. [32] and Gorman [33] are among
the few that calculate the in-plane vibration modes and frequen-
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cies of rectangular plates. As a basis for comparison, we use ‘an-
alytic’ results obtained by the Rayleigh-Ritz method with poly-
nomial functions of the form xiy j as trial functions, as in [34],
with the exponents i and j up to 15. The symmetry about axes
parallel to the sides of the plate is used, but not the symmetry
about the diagonals.

The first case we consider here is the free transverse vibra-
tion of a completely free plate. Although somewhat idealized,
this case has a number of advantages: there are no kinematic
boundary conditions and it demonstrates the possibility of the el-
ement to describe the three transverse rigid bodies motions. The
first ten dimensionless eigenfrequencies for an increasing num-
ber of elements are shown in three tables: Table 3 shows the
results obtained with the SPACAR DKT element, Table 4 those
with the ANCF thin plate element, Table 5 those with the ANCF
fully parametrized element. The nodal lines, or contours of sta-
tionary points, for the first 32 vibration modes are drawn in Fig-
ure 4, the so-called Chladni figures. The three transverse rigid
body motions are found within calculation precision for all three
element types and are not mentioned in the tables.

Both the SPACAR and the ANCF thin plate results con-
verge rapidly, with increased mesh refinement, to the analytic
results. The fully parametrized ANCF element slowly con-
verges to values close to the analytic solutions. This is due
to the Poisson locking; also the effect of shear locking can
be seen in the high frequencies at a coarse mesh. For com-
parison, the results of the three elements with a 16×16 mesh
are combined in Table 6. The results in literature do not al-
ways comply with the results as presented here. For instance
Iguchi [29] reports a mode with frequency Ω = 6.62316 which
is not found in the SPACAR nor in the ANCF analysis. Iguchi
finds this mode in search of all modes which are symmetric
with respect to the middle lines and antisymmetric with re-
spect to the diagonals. Hence, the diagonals are always lines
of nodes. For the first five of these modes Iguchi reports Ω =
(1.98550,6.62316,11.86565,16.36387,29.75996), whereas the
SPACAR analysis on a refined 20×20 mesh gives, by inspection
of the Chladni figures for these modes (Figure 4), the following
frequencies: Ω = (1.98168,11.85936,16.29010,29.78484).

The second case is the free transverse vibration of a com-
pletely simply supported (SSSS) square plate. The analytical
results are straightforward and take the form of Ω = n2 + m2

where n and m are the number of half-wave modes in the x and
y direction. For the finite element model the simply supported
boundary conditions at the edges are imposed by setting all trans-
verse displacements w to zero and all rotations normal the edges
ϕn to zero. The first ten frequencies from an analysis with all
three element types for a 16×16 mesh are shown in Table 7.
The SPACAR DKT element and the ANCF thin plate element
compare well with the analytical results. The fully parametrized
ANCF element shows an offset of about 10%, which is due to the
Poisson locking. Note that for (n,m) = (1,3) and (n,m) = (3,1)

Copyright c© 2007 by ASME
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Table 3. First ten dimensionless eigenfrequencies Ω = ω/ω0 of the
free transverse vibration a completely free (FFFF) square plate modelled
by the SPACAR triangular elements for a number of mesh refinements.
The eigenfrequencies are nondimensionalized by the frequency ω0 =
π2

√
D/(ρhl4) and a Poisson ratio ν = 0.3 was used. Numbers in

brackets are the number of degrees of freedom.
No. 1×1 2×2 4×4 8×8 16×16 Analytic

(12) (27) (75) (243) (867) –
1 1.3087 1.3693 1.3672 1.3657 1.3647 1.3646
2 2.1842 1.9657 1.9893 1.9873 1.9860 1.9855
3 2.7075 2.4022 2.4693 2.4632 2.4602 2.4591
4 4.1124 3.2989 3.4782 3.5142 3.5226 3.5261
5 4.9627 3.5963 3.5779 3.5413 3.5298 3.5261
6 8.0368 6.1316 6.2010 6.2011 6.1937 6.1900
7 9.3307 6.7889 6.2709 6.2136 6.1961 6.1900
8 11.3150 7.0339 6.3842 6.4265 6.4454 6.4528
9 13.2777 8.1738 7.1818 7.0642 7.0294 7.0181
10 – 8.6570 7.5753 7.7709 7.8076 7.8191

Table 4. First ten dimensionless eigenfrequencies Ω = ω/ω0 as in Ta-
ble 3 but now modelled with rectangular ANCF thin plate elements.

No. 1×1 2×2 4×4 8×8 16×16 Analytic
(36) (81) (225) (729) (2601) –

1 1.3895 1.3809 1.3700 1.3664 1.3651 1.3646
2 2.2747 1.9819 1.9922 1.9876 1.9861 1.9855
3 3.0998 2.4436 2.4741 2.4636 2.4602 2.4591
4 4.1124 3.4167 3.5158 3.5251 3.5261 3.5261
5 4.1124 3.4167 3.5158 3.5251 3.5261 3.5261
6 9.1929 6.4302 6.2594 6.2138 6.1964 6.1900
7 9.3307 7.0588 6.2594 6.2138 6.1964 6.1900
8 9.3307 7.0588 6.3489 6.4188 6.4444 6.4528
9 12.0850 7.6616 7.0543 7.0372 7.0239 7.0181
10 – 8.9273 7.6272 7.7839 7.8117 7.8191

Table 5. First ten dimensionless eigenfrequencies Ω = ω/ω0 as in Ta-
ble 3 but now modelled with rectangular ANCF fully parametrized plate
elements. A relative plate thickness of h/l = 0.01 was used.

No. 1×1 2×2 4×4 8×8 16×16 Analytic
(48) (108) (300) (972) (3468) –

1 1.4383 1.4381 1.4245 1.3870 1.3739 1.3646
2 2.2738 2.2737 2.0761 2.0396 2.0268 1.9855
3 3.5946 3.5943 2.9252 2.8183 2.7867 2.4591
4 71.9937 7.9943 5.5712 3.8033 3.6448 3.5261
5 71.9937 7.9943 5.5712 3.8033 3.6448 3.5261
6 85.2672 18.0359 7.8876 7.0251 6.7585 6.1900
7 93.5137 18.0359 7.8876 7.0251 6.8120 6.1900
8 93.5144 54.6686 14.9195 7.4395 6.8120 6.4528
9 93.7379 72.2273 16.6870 7.9821 7.2925 7.0181
10 124.9953 72.5239 17.6652 9.3389 8.6230 7.8191
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Table 6. First ten dimensionless eigenfrequencies Ω = ω/ω0 of the
free transverse vibration a completely free (FFFF) square plate with a
16×16 mesh and three different element types: SPACAR, ANCF thin
plate, and ANCF fully parametrized together with the analytic results. For
the ANCF fully parametrized a relative plate thickness h/l = 0.01 was
used. The eigenfrequencies are nondimensionalized by the frequency
ω0 = π2

√
D/(ρhl4) and a Poisson ratio ν = 0.3 was used. Numbers

in brackets are the number of degrees of freedom.
No. SPACAR ANCFtp ANCFfp Analytic

(867) (2601) (3468)
1 1.364689 1.365120 1.373880 1.364614
2 1.986028 1.986060 2.026803 1.985504
3 2.460221 2.460272 2.786670 2.459086
4 3.522614 3.526086 3.644811 3.526068
5 3.529784 3.526086 3.644811 3.526068
6 6.193704 6.196423 6.758548 6.190039
7 6.196105 6.196423 6.812017 6.190039
8 6.445354 6.444354 6.812017 6.452757
9 7.029428 7.023856 7.292538 7.018053

10 7.807619 7.811720 8.622965 7.819129

Table 7. First ten dimensionless eigenfrequencies Ω = ω/ω0 as in Ta-
ble 6 but now for a completely simply supported (SSSS) plate.

No. SPACAR ANCFtp ANCFfp Analytic
(867) (2601) (3468)

1 1.989598 1.995853 2.219168 2
2 4.976733 4.983621 5.571218 5
3 4.976733 4.983621 5.571218 5
4 7.922142 7.935062 8.948634 8
5 9.905330 9.964255 11.224278 10
6 9.932462 9.964255 11.224278 10
7 12.811470 12.856629 14.650959 13
8 12.811470 12.856629 14.650959 13
9 16.905377 16.940498 19.279694 17

10 16.905377 16.940498 19.279694 17

Table 8. First ten dimensionless eigenfrequencies Ω = ω/ω0 as in Ta-
ble 6 but now for a a completely clamped (CCCC) plate.

No. SPACAR ANCFtp ANCFfp Analytic
(867) (2601) (3468)

1 3.624213 3.631785 4.088801 3.646062
2 7.392791 7.397881 8.414502 7.436351
3 7.392791 7.397881 8.414502 7.436351
4 10.816637 10.833617 12.549341 10.964625
5 13.215627 13.262707 15.271349 13.331920
6 13.272338 13.331566 15.319996 13.395148
7 16.412131 16.467135 19.387085 16.718040
8 16.412131 16.467135 19.387085 16.718040
9 21.205957 21.235469 24.775537 21.330322

10 21.205957 21.235469 24.775537 21.330322
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Figure 4. First 32 transverse vibration modes together with their dimen-
sionless frequencies Ω = ω/ω0 for a free (FFFF) square plate as calcu-
lated by the SPACAR triangular element with a mesh of 20×20. These
are the so-called Chladni figures where the solid black lines within the
square are the lines of nodes (contours of stationary points).

the analytical modes, with frequency 10, show up as distinct fre-
quencies (i.e. 9.905330 and 9.932462) in the SPACAR analy-
sis. The corresponding SPACAR modes have as lines of nodes
respectively a diagonal cross and a centred circle. The centred
circle can be constructed by a linear combination of the ”13” and
”31” mode, the diagonal cross can not. This is probably due to
the meshing pattern.

The third case for the free transverse vibration of a square
plate is with all edges clamped (CCCC). The boundary condi-
1

Table 9. First ten dimensionless eigenfrequencies Ω = ω/ωn of the
in-plane vibration a free (FFFF) square plate modelled by the SPACAR
triangular elements for a number of mesh refinements together with the
analytic results. The eigenfrequencies are nondimensionalized by the fre-
quency ωn =

√
E/(ρl2(1−ν2)). Numbers in brackets are the number

of degrees of freedom.
No. 1×1 2×2 4×4 8×8 16×16 Analytic

(8) (18) (50) (162) (578) –
1 2.5180 2.6219 2.4751 2.3709 2.3347 2.3206
2 2.5548 2.7702 2.6669 2.5725 2.4997 2.4716
3 2.9406 3.0959 2.7938 2.5725 2.4997 2.4716
4 3.5083 3.0959 2.7938 2.6540 2.6388 2.6284
5 4.9705 3.7230 3.5635 3.2023 3.0473 2.9874
6 – 4.0718 3.6141 3.4905 3.4638 3.4522
7 – 4.8375 4.3794 3.9905 3.8068 3.7231
8 – 4.8375 4.3794 3.9905 3.8068 3.7231
9 – 5.4041 5.0060 4.6859 4.4464 4.3031

10 – 6.3450 6.1167 5.4577 5.1293 4.9686

tions for the SPACAR DKT element are straightforward, all de-
grees of freedom along the four edges are set to zero. Table 8
shows the first ten dimensionless eigenfrequencies as calculated
with the three element types for a 16×16 mesh together with
the analytical results. Again, these are in good agreement for
the SPACAR DKT element and the ANCF thin plate element
with the analytic results, and an offset for the fully parametrized
ANCF element, due to Poisson locking. The frequency 5 and 6
are distinct and belong to different modes whereas Ödman [31]
reports equal frequencies. Young [30] does find a distinct fre-
quency 6 and the mode resembles the SPACAR as well as the
ANCF solutions closely.

Finally the in-plane vibration of a free (FFFF) square plate
is considered. The results of the analysis with the SPACAR tri-
angular element for increasing mesh refinements are presented in
Table 9. There is a fairly good agreement. The SPACAR solu-
tion loses digits with increased frequency. This is probably due to
low order of the element: the in-plane deformations are constant
within one element. The corresponding eigenmodes are shown in
Figure 5 and they compare well with the six modes presented by
Bardell et al. [32]. The first eigenmode is a shear mode whereas
the combination of the second and identical third eigenmode re-
semble a kind of in-plane bending mode. The results for all three
element types for a 16×16 mesh are shown in Table 10. Both
the ANCF thin plate element and the ANCF fully parametrized
element give very accurate, nearly identical results. This is be-
cause of the higher order of interpolation, for one element the
in-plane strains are interpolated up to second order opposed to
constant for the SPACAR DKT element. This is also expressed
in the number of degrees of freedom used.
0 Copyright c© 2007 by ASME



Table 10. First ten dimensionless eigenfrequencies Ω = ω/ωn of the
in-plane vibration a free (FFFF) square plate with a 16×16 mesh and
three different element types: SPACAR, ANCF thin plate, and ANCF
fully parametrized together with the analytic result. For the ANCF
fully parametrized a relative plate thickness h/l = 0.01 was used.
The eigenfrequencies are nondimensionalized by the frequency ωn =√

E/(ρl2(1−ν2)) and a Poisson ratio ν = 0.3 was used. Numbers in
brackets are the number of degrees of freedom.

No. SPACAR ANCFtp ANCFfp Analytic
(578) (1734) (2023)

1 2.334659 2.320595 2.320599 2.320597
2 2.499734 2.471608 2.471620 2.471618
3 2.499734 2.471625 2.471630 2.471618
4 2.638791 2.628441 2.628445 2.628445
5 3.047349 2.987382 2.987398 2.987385
6 3.463758 3.452238 3.452212 3.452242
7 3.806820 3.723111 3.723124 3.723115
8 3.806820 3.723116 3.723124 3.723115
9 4.446408 4.303086 4.303137 4.303079
10 5.129318 4.968649 4.968699 4.968626

5 Conclusion
The comparison between the three types of plate element

formulations, the discrete Kirchhoff triangle (DKT) developed
for SPACAR, a rectangular element according to the fully
parametrized absolute nodal coordinate formulation (ANCFfp)
and the thin plate version of the latter (ANCFtp), shows their
convergence characteristics and accuracy for small displacement
problems. For in-plane problems, all elements show satisfactory
results, where the convergence rate of the DKT is the least, which
is due to its linear approximation of the displacements. For out-
of-plane problems, the DKT and ANCFtp elements show good
accuracy and convergence, where the ANCFtp element gives a
larger rate of convergence, which can be attributed to its ability
to describe a full cubic displacement field. The ANCFfp ele-
ment, however, suffers from locking and shows a very low rate
of convergence, or no convergence at all, for thin plates in the
general case. The locking can be of the Poisson type, where the
contraction in the normal direction is hindered, or of the shear
type, where transverse shear and bending are coupled.
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