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ABSTRACT
The purpose of this paper is to present the development of

a simple multibody dynamic model matching the observed move-
ments of the center of mass of a skier performing the skating
technique in cross-country skiing. The formulation of the equa-
tion of motion was made using the Euler - Lagrange equations
applied to a multibody tree-type system in three dimensions. The
description of the lower limb of the skier and the ski was com-
pleted by employing three bodies, one representing the ski, and
two representing the natural movements of the leg of the skier.
This simple model is able to show an approximation of the move-
ment of the center of mass of the skier and its velocity behavior
allowing to study the effect of the key parameters used to build
the model.

INTRODUCTION
Since the year 1890, skiing has developed as a sport activity

and assumed its current modern shape. Different skiing tech-
niques have evolved from the traditional Nordic style practiced
between 1890 and 1940. These techniques are currently known

∗Address all correspondence to this author.

as alpine, ski jumping, free ride, free style, and cross country
Skiing [1].

Among those performed in cross country skiing, the ski-
skating technique may be considered a relatively new technique
taking into account that the skiing activity can be trace back in
time at least 6000 years [2].

The ski-skating technique has been studied extensively from
the perspective of physiology, medicine, and training [3]. Nev-
ertheless, as shown in the systematic literature review presented
by [4], studies related to the multibody modeling of the skier
movement and skiing mechanics of this particular technique have
not been developed, and they are still in the phase of being mod-
eled as a point mass body effected by the external forces charac-
teristic of the activity.

Although it is true that these point mass models can provide
a relevant amount of information, it is also a fact that known
variables that can be practically measured and controlled such as
ski leaning angle and, leg extension and angular movement are
not possible to study in order to observe their influence on the
models.

The number of opportunities that the multibody dynamics
field can offer and develop for athletes and teams participating in
this discipline is vast.
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Much can be done to achieve optimal performance in the
training requirements of elite or high-level competitive skiers
with a multibody dynamics model. It is possible to 1) determine
in advance all the resultant kinematic parameters associated with
the technique, such as velocities and accelerations of the skier or
of different parts of the skier’s body; 2) describe the complete
geometry of the movements of skis, legs, and arms of the athlete;
and 3) use these data to adjust the execution of the activity to
obtain the maximum output with the least possible effort.

The objective of this paper is to develop a simple multi-
body dynamic model that reproduces the movement of the center
of mass (CM) of a skier performing the ski-skating technique
without poles. The model takes as input data not only the mea-
sured forces exerted during the skiing phases, but also the ski-
skating angle and physiological variables. These include mass,
leg length, and its extension.

At the level of simplicity of the present model, it is possible
to reproduce the characteristic movement shape of the CM of the
skier to achieve close resultant travel velocities and evaluate the
influence of the ski-skating angle and the mass of the skier.

The authors of this research work consider that the use of
multibody dynamics to simulate the skating technique will open
new doors to a better understanding of the occurring phenomena
in the execution of the technique. If developed consistently, the
model can support athletes in obtaining maximum performance
from individual capabilities.

METHODS
Studying the ski-skating technique of cross-country skiing

through the lens of simple models is a useful approach to de-
scribing and evaluating general questions, ideas, and the specific
phenomena under investigation. Also, they can be used as means
of evaluating the different paths to follow when the decision of
increasing the complexity of the model has become a reality [5].

One of the key aspects of this simplification is to include
in the analysis the features that are relevant at the moment for
the study. At this stage of the implementation, the following key
points have been addressed in order to build and limit the skier
model:

-Selection of the multibody dynamic theory to develop the
equations of motion of the skier model
-Assumptions to simplify the skier’s movements
-Skier’s resistance forces: Friction and air drag
-Form of the input of the prescribed motion to represent the
movement of the lower limb of the skier

Equation of Motion of the Skier Model
In developing a model of the ski-skating technique, it is nec-

essary to know and depict the coordination pattern of the charac-
teristic movement that an athlete performs during the execution

of the physical activity. This description can be made by taking
into account that this technique is similar to the one used in ice
skating, in which the skater generates the forces by pushing in a
sidewards direction [6]. Additionally, in order to begin the for-
mulation of the model, it is necessary to postulate some assump-
tions which simplify the number of variables and phenomena to
be taken into account.

To generate the equations of motion of the skier model, the
Euler-Lagrange equations with multipliers [7] are used and, to
minimize the effect of the constraint violations that occur dur-
ing the differentiation of the constraint equations, the Baumgarte
stabilization process is applied.

The simplification of the model starts with the selection of
the number of bodies used to represent the leg of the skier. The
model of the skier can be seen in figure 1.

FIGURE 1. DESCRIPTION OF THE MODEL OF THE SKIER [4].

First, as observed in the study made to model the speed
skater, it can be considered that the relative motions of the upper
body with respect to lower extremities, such as the arm move-
ments and orientation of the trunk, are irrelevant in this first mod-
eling stage. It has been said that the upper body helps to balance
the body of the athlete; however, its influence on the kinematical
parameters of the movement is not yet clear. What is important
to keep in mind is the effect of the position of the upper body
when the air drag increases or when it has to be considered as an
opposing force to the movement of the skier. The inclusion of
the upper body in the model is described next.

Second, the model has to include the natural movement that
the leg performs during the execution of the technique without
modeling it exactly. To accomplish this, the leg of the skier is
modeled as a system formed by three bodies: one that represents
the ski, a another that represents the lower part of the leg, and a
third that represents the upper leg and upper body.

Third, the joint between the bodies are modeled as follows.
The knee joint is modeled as a prismatic joint in order to reduce
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the input parameters needed to describe it without losing the gen-
erality of the movement. The joint between the lower leg and the
ski is modeled as a spherical joint resembling the movement of
the human ankle. The joint between the ski and the ground will
have five restrictions, allowing only the displacement of the ski
on a straight path. This is observed on the data taken from the
motion capture system.

This last assumed condition of the ski traveling on a straight
path is represented by a holonomic constraint. As opposed to the
ice skater model where non-holonomic constraints are needed
to describe the zero lateral slip, in the case of the skier, it can
be observed that the ski has very little steering and will always
move in a nearly straight path.

Vector of Generalized Coordinates Because of the
fact that the movement of the bodies is represented in a three-
dimensional coordinate system, the following generalized coor-
dinates are selected to define completely the location and orien-
tation of the bodies

q =
[

q1 q2 q3
]T (1)

where qi =
[

Ri
1 Ri

2 Ri
3 ϕ i θ i ψ i ]T in which i = 1,2,3 repre-

sents the bodies of the model, Ri
1...3 are the translational coordi-

nate of the origin of the body reference system and ϕ i, θ i and, ψ i

are the Euler angles used to represent the orientation of the body
reference system.

The applied sequence of Euler angles is the Z1X2Z3. This
Euler angle sequence allows to introduce some similar leg angu-
lar movements during the performance of the active phase of the
skier in accordance with the data obtained from the Vicon mo-
tion capture system. Figure 2 presents how the body reference
systems are oriented.

Then, the second derivative of the vector of generalized co-
ordinates can be written in the same form as in equation (1).
Equation (2) presents the final form of the vector of generalized
accelerations.

q̈ =
[

q̈1 q̈2 q̈3
]T (2)

Constraint Equations of the System As it can be
seen also in figure 1, it is also necessary to dictate the interaction
between the bodies and the environment by the use of constraints.

The first joint to be analyzed will be the ski - ground joint.
The ski is considered as the first body of the system. The follow-
ing facts will be taken into account during the formulation of the
geometric restrictions:

FIGURE 2. BODY REFERENCE SYSTEMS ORIENTATION [4].

FIGURE 3. DESCRIPTION OF ACTIVE PHASE SIMPLE GEOM-
ETRY [4].

- The ski may travel on a level or inclined plane.
- The direction of the travel of the ski does not change with
respect to time.
- The orientation of the body reference system does not
change during the active phase of the ski.

In order to understand the development of this first set of
constraint equations, figure 3 presents the typical representation
of the origin of the body coordinate system attached to the ski.
This type of representation is also used for the rest of the bodies.

To constrain the movement to a level or incline plane, the
relationship presented in equation (3) is imposed. This constraint
guarantees the position level of the ski on the z axis.

C1 = R1
3− f 1

3 (t) = 0 (3)

where f 1
3 (t), is the time-dependent function that the body

reference system has to follow on the z axis.
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The assumed fact that the ski travels following a line orien-
tated ϕ1 degrees from the global X axis provides the necessary
information to formulate the second constraint. This constraint
is expressed in equation (4).

C2 = R1
1 sinϕ

1−R1
2 cosϕ

1 = 0 (4)

To represent the constant orientation of the body one refer-
ence system, the approach used to formulate the constraint equa-
tion C1 is used.

As the Euler angles representing the orientation at any mo-
ment of the body reference system do not change during the ac-
tive phase of the ski, it may be said that the difference of the
value of these angles with respect to a set of constant values
(cϕ1 , cθ 1 , cψ1) does not change. These constraints are presented
in equations (5) to (7).

C3 = ϕ
1− cϕ1 = 0 (5)

C4 = θ
1− cθ 1 = 0 (6)

C5 = ψ
1− cψ1 = 0 (7)

In constraint equations C4 and C5, the value of the constants
used for this model is zero. In the remaining C3 equation, the
angle ϕ1 describes one of the most important parameters in the
execution of the technique.

The second joint to be described is the spherical joint formed
by the ski and the second body. When one analyzes the relative
degrees of freedom that the spherical constraint allows between
the two bodies, it can be concluded that because of the config-
uration of the joint, only the relative translation is constrained,
leaving only three degrees of freedom of relative rotation.

The necessary condition to be fulfilled in the spherical joint
is that two points, P1 and P2 on bodies 1 and 2, respectively,
coincide throughout the whole motion. This condition may be
written as

C6
C7
C8

= R1 +A1r̄1
P−R2−A2r̄2

P (8)

In equation (8), A1 and A2 are the rotation matrices of bodies
one and two, respectively, and r̄1

P and r̄2
P are the local position

vectors of the point P.
The last joint to be described is the prismatic joint present

between the second and third body. Figure 4 shows the configu-
ration used to formulate the constraint equations.

FIGURE 4. PRISMATIC JOINT CONSTRUCTION VECTORS.

A prismatic joint in three dimensions has one DOF and five
relative movement restrictions comprised of two translations and
three rotations. The use of this joint in the model is convenient
for describing the vertical motion of the center of mass of the
skier. Indeed, this effect has not been considered in an analogous
research project carried out for the speed skater [6], but it is a
very important consideration because of the close relationship
with the force exerted by the skier during the push-off phase.

The five constraint equations that arise from this joint are
based on the following assumptions:

- The vectors r2
3 and r3

3 are parallel and they are aligned.
- There is no relative orientation change between the two
bodies.

Equations (9) and (10) represent the parallelism condition of
the two body vectors positioned in the second and third body.

C9 = r2T
1 r3

3 (9)

C10 = r2T
2 r3

3 (10)
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Constraints 11 and 12, represent the condition of alignment
of the vectors r2

3 and r3
3.

C11 = r2T
1 rAlig (11)

C12 = r2T
2 rAlig (12)

The non-relative rotation condition is guaranteed if the vec-
tor r3

1 stays perpendicular to the vector r2
2 of the second body. In

mathematical notation, this condition may be written in the form
presented in equation (13).

C13 = r2T
2 r3

1 (13)

Up to this point, the model contains 18 (generalized coordi-
nates) −13 (constraints) = 5 degrees of freedom. It is necessary
to specify additional constraints controlling the physiological pa-
rameters of leg extension and range of angles.

To restrict the extension of the leg during the active phase,
the following length constraint is imposed. See figure 5 for an
adequate interpretation of this constraint.

This geometric constraint may be written in terms of the po-
sition of the origin of the local reference system located in the
third and first bodies (see equation (14) ).

FIGURE 5. CONSTRAINT OF THE LEG EXTENSION IMPOSED
IN THE MODEL [4].

lex(t) = |R3−R1| (14)

The next constraints to be imposed are those related to the
angles that the leg covers while performing the movement during
the active phase. This task can be achieved by using different
approaches, one of which is constraining the relative orientation
of the second and first body with respect to each other.

In this particular case, one can impose the constraints by for-
mulating the trajectory of the origin of the local reference system
of the second body with the introduction of an assumed move-
ment. Figure (6) shows the description of this constraint.

FIGURE 6. CONSTRAINED MOVEMENT OF THE ORIGIN OF
THE LOCAL REFERENCE SYSTEM OF THE SECOND BODY [4].

This condition imposes three additional constraints to the
model. These are shown in the following equations.

C15 = R2
1− f 2

1 (t) (15)

C16 = R2
2− f 2

2 (t) (16)

C17 = R2
3− f 2

3 (t) (17)

in which f 2
1 (t), f 2

2 (t) and f 2
3 (t) are, respectively, the X(t),

Y (t) and Z(t) components of the trajectory f2 (t) that follows this
point.

Vector of Generalized Forces The forces originating
from the work performed by the leg during the push-off phase
are shown in figure 7. The push-off and the air-drag forces are
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FIGURE 7. EXTERNAL FORCES APPLIED TO THE MODEL [4].

considered to be applied to the CM of the skier and, in the case
of the friction force, this is applied to the CM of the first body.

The total vector of generalized forces consists of the follow-
ing form:

Qe =
[

Q1
e Q2

e Q3
e
]T (18)

where the terms Qi
e, with i= 1 . . .3 being the number of bod-

ies, represent the individual vector of generalized forces applied
to each one of the bodies.

In this specific case, vector Q2
e is equal to zero because no

forces are applied to this body.
To be able to define the push-off and friction forces on the

model, it is necessary to describe the ski-snow interaction, which
can be a fairly complex process. [8, 9].

Although many studies have been made in order to describe
this phenomenon properly, there is still much to be done and dis-
covered regarding the acting mechanisms in connection with the
intervening variables.

One of the most general forms to formulate the ski-snow in-
teraction is to consider the resistive force as a combination of the
penetration forces and the friction force [10] produced. However,
on the other hand, it is possible to include more complex formu-
lations such as those presented in [8,11,12]. For the present case,
no theoretical formulation will be used to model the ski-snow in-
teraction; instead, these resistive forces and push-off forces will
be taken from the force measurement system attached to the ski
bindings that are used on the trial runs.

The specifications of the equipment used to obtain these data
can be summarized as follows:

- Two custom-made small and lightweight (1070 g) force
plate pairs built by the Neuromuscular Research Center,
University of Jyväskylä

FIGURE 8. FORCE PLATES ON THE SKI BINDINGS.

0 1 2 3 4 5 6 7
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1500
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ce
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FIGURE 9. TOTAL FORCE EXERTED BY THE SKIER DURING
THE ACTIVE PHASE [4].

- 12- channel ski force amplifier built by the Neuromuscular
Research Center, University of Jyväskylä
- A/D converter with sampling rate of 1 kHz, model NI 9205;
National Instruments; Austin, Texas, USA
- Wireless transmitter WLS-9163; National Instruments;
Austin, Texas, USA. PC laptop with wireless receiver card
and data collection software LabVIEW 8.5; National Instru-
ments; Austin, Texas, USA.

The total weight of the measurement system was 2030g, be-
ing the data capturing and transmitting equipment the most rep-
resentative part of this weight with 1050g.

In figure 8, the physical aspect of the ski binding system is
shown. The output of the discrete force data to be handled is
presented later in figure 9.

In order to use the discrete data generated from the measure-
ment instruments, it is first necessary to transform the data into
continuous functions, with the purpose of making them smooth
(up to the second derivative). Because of the periodic character-
istic of the force generation during the actives phases, the pro-
cedure employed to achieve this fitting is based on the use of
the Fourier series. The set of data is fitted by the application of
equation (19).
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y(i) = a0 +
m

∑
k=1

(ak sin(k i)+bkcos(k i)) (19)

In the Fourier expansion, m is the total number of Fourier
coefficients employed to perform the fitting; a0, ak, and bk are
the Fourier series coefficients; y is the expected value of the un-
known; and i is the known variable usually referred to as the time
step size of the capture process. These last two terms are com-
bined to form the set (y1, i1), (y2, i2), . . . , (yn, in).

To have an idea of how good the fitted function is, the Pear-
son correlation coefficient rxy is calculated in the way specified
in equation (20). If the result of this coefficient is closer to the
value of one, it indicates that the function used to calculate the
expected values might be used to explain the behavior of the cap-
tured data.

rxy =
n∑xiyi−∑xi ∑yi√

n∑x2
i − (∑xi)

2
√

n∑y2
i − (∑yi)

2
(20)

The air friction or air drag will be accounted as presented
in [6, 10]. The mathematical representation is given as

Fair =−
1
2

CdAρv2 (21)

where Cd is the air drag coefficient. The value adopted for
this simulation is 0.5 taking as a reference the modeling done
by [10]. A is the projected area of the skier normal to the wind,
ρ is air density, and v is the velocity of the air with respect to the
skier. In this model, the air drag forces are assumed to be acting
on the CM of the skier.

The projected area used for the inclusion of the air drag force
was taken as a constant value similar to the rectangular dimen-
sions of the upper body of the skier which was also considered
to be facing the main axis of displacement at all times.

As in this simplified model, the forces are considered to be
applied to the CM of the bodies, then the components of the gen-
eralized force vector acquire the form presented in equations (22)
and (23).

(
Q1

e
)

R = A1F̄1
f riction (22)

(
Q3

e
)

R = A3
(

F̄3
push + F̄3

air

)
(23)

Form of the Equation of Motion The equation of mo-
tion is presented then as a set of DAE’s index-1 system that can
be integrated using the built-in MATLAB (Math Works, Inc.,
Natick, MA, USA) function ODE45 to obtain the velocities and
positions of the interested points of the model during the simu-
lation time. Equation (24) presents the matrix configuration of
the equation of motions including the terms of the Baumgarte
stabilization method.

[
M CT

q
Cq 0

] [
q̈
λ

]
=

[
Qe +Qv

Qd−2α (Cqq̇+Ct)− (β )2C

]
(24)

In equation (24), M is the mass matrix of the system, Cq
is the constraint Jacobian matrix, q̈ is the vector of generalized
accelerations, λ is the set of Lagrange multipliers, Qe and Qv
are, respectively, the vector of external forces and the quadratic
velocity vector, Qd is the vector that arises after taking the second
differentiation of the vector of constraints and, finally, α and β

are the Baumgarte stabilization parameters.
In order to select a convenient value for these stabilization

parameters, the method proposed in [14] is used.

EXPERIMENTAL PROCEDURE
In order to validate the simple model proposed, it is neces-

sary to utilize the force and motion capture data. The specific
purposes for which these data are used are, first, to provide the
model with the real force data (push-off force and snow friction
force) and, second, to know the other key input parameters such
as ski orientation, leg extension and, leg rotation about the axis
representing the travel direction.

The motion capture data equipment set used is the Vicon
System MX manufactured by Vicon Motion Systems, consisting
of 16 cameras to acquire the positions of the different interested
points marked on the body of the skier.

The arrangement of the marker set attached to the test sub-
ject is presented in figure 10, and figure 11 illustrates the general
location of cameras on test site.

Another important parameter to monitor while performing
the trial runs is the travel velocity of the skier. This variable
is controlled by using a set of light indicators which show the
prescribed pace at which the skier has to perform these trials.

All the gathered information is then processed by using the
Vicon Nexus software from which the data is exported as open
source .c3d files to finish the post-processing on the own devel-
oped MATLAB code created for this purpose.

The main outputs of this own application are the resultant
simulated position of the CM of the skier, its average travel
velocity and the comparison of these previous parameters with
those obtained from the motion capture data and, the post-
processing of the representative push-off and friction forces. This
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Markers

FIGURE 10. ARRANGEMENT OF THE MARKER SET [4].

FIGURE 11. ARRANGEMENT OF THE CAMERA SET.

own application also has the capability of post-processing the in-
formation from the .c3d files obtained from the motion capture
system.

RESULTS
In order to test the skier model, the following physiological

parameters are needed to provide all the necessary data to run the
simulation. These basic physiological input data are presented in
table 1.

TABLE 1. MASS AND LEG DIMENSION OF THE SKATE SKIER

Variable Value

Mass (Kg) 80

Upper leg (m) 0.6

Lower leg (m) 0.5

For the case of the parameters related to performing the tech-

nique, table 2 presents the basic parameters selected to perform
the simulation.

TABLE 2. DEFINITION OF THE TECHNIQUE PARAMETERS

Variable Value

Phase Time (sec) 0.59

Skating angle (deg) ± 15

Initial velocity (m/s) 0

Number of strides 30

As the simulation is based on several strokes and changing
the active leg (right or left) on every stroke, the skating angle can
take a positive or negative value.

After simulating the simplified model with the aforemen-
tioned assumptions, the following results can be presented and
discussed. Figure 12 illustrates the representative segment of the
force chosen to act as a push-off force. This force is presented
together with its equivalent fitted continuous function.

It is possible to see how the fitted curve seems to represent
satisfactorily the behavior of the discrete data. The Pearson cor-
relation coefficient found for this process was 0.9813.
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1000
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ce
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Data

FIGURE 12. FORCE SEGMENT FITTED.

The same procedure was used to fit the representative fric-
tion forces and the discrete data from the motion capture system.
The results of these fitting processes were similarly satisfactory
as in the case of the push-off force.

Figure 13 presents the comparison of the skier’s CM position
with the data obtained from the motion capture system (dotted
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line) and the results of the simulation after the velocity of the
skier model remained constant (continuous line).
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FIGURE 13. CM POSITION COMPARISON.

Table 3 shows the differences found between the trial run,
motion capture, and simulated velocity.

TABLE 3. RESULTANT AVERAGE TRAVEL VELOCITY

Velocity (m/s) Value Diff. (Rel.)

Trial run set up velocity 5 –

Motion capture system travel velocity 4.83 3.52%

Simulation travel velocity 4.36 10.78%

CONCLUSIONS
The use of multibody dynamic models in real-life applica-

tions has been undoubtedly useful for enhancing the processes
in which they are involved. The ski-skating technique does not
escape from this trend.

When developing this research, it became evident during the
literature review about ski-skating multibody models [4] that the
amount of studies related to multibody dynamic models of this
technique, and even more so in the case of forward dynamic mod-
eling. This leaves an interesting open area to be addressed in the
near future.

One of the most interesting results is the reproduction of the
skier’s CM position achieved after performing the simulation. As
the movement of the legs is introduced as a combination of data

derived from the motion capture system and the capabilities of
the constraints imposed on the model, it is possible to refine the
study even further in order to get much closer results without
converting the model into an inverse dynamic model.

In the case of velocity, the selection of the active forces act-
ing on the model have proven to be of importance. In the case of
the present model and the environment where the trial runs were
performed, more precise values of air drag coefficient should be
considered. It is also important to expand this model to re-create
closer ski-snow interactions.

The form of comparison of the results was limited by the
physical capacity of the Vicon Motion Capture System. This sys-
tem is well recommended to perform studies such as gait analysis
in closed spaces. However, due to the characteristics of the skiing
technique, only a capture of 12 to 14 meters of trial-run length
was achieved.

The authors consider that this model can be used as step to-
wards understanding the ski-skating technique and its integration
with the multibody dynamics.

Further development of multibody dynamic models may
support the research on muscle actuation, energy consumption,
and stresses affecting bones. Also, the possible impact of the
ski-skating technique on atheletes’ lower limb joints can be as-
sessed, and common injuries that top competitive athletes may
develop with the continued practice of this sport discipline can
be studied better.
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