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Capital 
Letters Meaning Unit

A State matrix -

B Input matrix -

C Output matrix -

CLα,s Linear lift coefficient slope, struts rad−1

CLα,w Linear lift coefficient slope, wings rad−1

F Force N

Ixx Mass moment of inertia about X-axis kg · m2

Ixz Mass moment of inertia about XZ-plane kg · m2

Izz Mass moment of inertia about Z-axis kg · m2

K Inertia factor, see eqs. 16 to 18 kg−1m−2

Lnom,wf Nominal lift force of front wing N

Lnom,wr Nominal lift force of rear wing N

L Total hydrodynamic moment about Xb axis N · m

M Total hydrodynamic moment about Yb axis N · m

M̃cm External moments about the center of mass N · m

N Total hydrodynamic moment about Zb axis N · m

Ssf Submerged surface area of front strut m2

Ssr Submerged surface area of rear strut m2

Swf Surface area of front wing m2

Swr Surface area of rear wing m2

V Constant body velocity m/s

Xb X-axis of body reference frame -

Yb Y-axis of body reference frame -

Y Total hydrodynamic force along Yb -

Zb Z-axis of body reference frame -

Lowercase 
Letters Meaning Unit

bwf Front wing span m

bwr Rear wing span m

c Wing chord m

c0 Root chord m

csf Front strut chord m

csr Rear strut chord m

dxsf Front strut Xb-distance CoP to CoM m

dxsr Rear strut Xb-distance CoP to CoM m

dzfly CoM flight height above idealized waterline m

dzid Offset between idealized and true waterline m

dzm CoM flight height above true waterline m

dzs CoM to end of strut m

f Frequency Hz

g Gravitational acceleration m/s2

ℓ Local lift load per unit wing span N/m

m Total mass of boat and pilot kg

p Roll rate rad/s

q Pitch rate rad/s

r Yaw rate rad/s

s Semi-span of wing m

t Time s
u State-space input rad

u Velocity component in Xb direction m/s

v Velocity component in Yb direction m/s

w Velocity component in Zb direction m/s

x State vector of boat Multiple

y Coordinate along wing-span axis m

Greek 
Letters Meaning Unit

γ Steer angle rad

δf Front wing deflection rad

δr Rear wing deflection rad

θ Pitch angle rad

ρ Water density kg/m3

Roll angle rad

Yaw angle rad

Ω Rotation vector of the boat body rad/s

Below, all symbols used in the paper are listed and 

named. Note that CoM stands for Center of Mass, 

while CoP stands for Center of pressure.

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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Abstract

3 http://www.dutchsolarchallenge.nl
4 http://www.nkzonnebootrace.nl
5 http://www.yacht-club-monaco.mc/en/regattas-events/2016-uk/monaco-solar-boat-challenge
6 http://www.solarboatteam.nl/en/history

A single-track hydrofoil boat has two upside-down 
T-shaped hydrofoils that are placed behind each other on 
the centerline of the hull. To keep a single track hydrofoil 
boat upright during flight, the vertical front support 
strut is used as a rudder which the pilot steers into the 
direction of the fall. This is comparable to how a bicycle 
maintains lateral stability. A generalized dynamical 
model for single-track hydrofoil boats was developed 
to predict the roll and yaw motions under a steer input 
of the front strut. These motions were approximated 
analytically with conventional aircraft flight dynamics 
theory. The derivative coefficients that determine the 
coupling between state variables were derived from 
basic design parameters of the single-track hydrofoil 
boat. Validation of the model was done by experiments 
with the TU Delft Solar Boat 2016. The steer input, roll 
rate, yaw rate, roll angle, boat velocity and flight height 
were measured while the pilot generated a sinusoidal 
steer input at different frequencies and flight velocities. 
This data was compared with model predictions in 
the time and frequency domain. It was found that the 
model predictions are sufficiently accurate for model 
validation at steer input frequencies of 1 Hz and less. 
Therefore, the model can be used to design single-track 
hydrofoil boats and to simulate the dynamics in nominal 
flight conditions.

Introduction
The TU Delft Solar Boat Team competes every year in differ-
ent championships for solar powered boats.3,4,5 These boats 
are built to convert a limited amount of solar power into 
maximum forward race velocity. To reduce hydrodynamic 
drag, the team has been using hydrofoils since 2010.6 In 
2014 and 2016, the team based its solar boat concept on 
two fully submerged hydrofoils, each with an upside down 
T-shape and placed one behind another on the longitudinal 
axis of the boat. The front hydrofoil is used for steering. This 
concept is called a single-track hydrofoil boat and is compa-
rable to single-track land vehicles such as the bicycle.

The single-track hydrofoil boat has several advantages: 
a fully submerged hydrofoil is more efficient than a sur-
face piercing hydrofoil, because water surface effects are 
reduced.[1] Furthermore, the use of only two hydrofoils 

requires less supporting struts, which reduces mass and 
drag when compared to other hydrofoil concepts. This has 
resulted in a boat with a mass of 98 kg that is able to sail 
30 km/h (16 knots) on solar power only and more than 50 
km/h (27 knots) when battery power is also used. Typical 
maneuvers of take-off, straight flight and turning can be seen 
in Figure 3.

Single track hydrofoil boats are not commonly used, 
although some notable examples exist, such as the Yamaha 
OU32 in Figure 1. It was developed by Kotaro Horiuchi, who 
designed and built single track hydrofoils at Yamaha. How-
ever, in his book,[2] he calls this type of boat a single strut 
hydrofoil, because when vie- wing the boat from straight 
ahead, one can only see a single strut.[2, p. 119] He states that 
besides being more efficient, single track hydrofoils can be 
more agile, more comfortable and more exciting to sail than 
multiple track hydrofoils.[2, ch. 4]

It is a challenge to make such a single-track hydrofoil 
boat laterally stable. Just like an inverted pendulum, it 
would tip over if no mechanism stabilizes it. The bicycle, 
an example of a single-track land vehicle, faces the same 
problem, but most bicycles can very well be ridden. The 
basic condition for stability is that the bicycle steers into the 
direction of the undesired fall.[3] When the dynamics of the 
single-track hydrofoil boat are sufficiently slow, this can be 
achieved by the pilot. To support the pilot in this task, gyro-
scope-based stabilization devices were proposed by Yokoya-
ma and Horiuchi in a patent.[4]

FIGURE 1. Kotaro Horiuchi has been designing and 
building single-track hydrofoil boats since the 1960’s. 
Shown here is the OU32 single-track hydrofoil boat 
from 1988.[2]
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FIGURE 2. Design of the TU Delft Solar Boat 2016.

FIGURE 3. Four typical maneuvers of a single-track hydrofoil boat: the TU Delft Solar Boat 2016.

(a) Take-off

(c) Turn to port side

(b) Steady, straight and symmetric flight

(d) Turn to starboard side
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Whether the single-track hydrofoil dynamics are suf-
ficiently slow for control by a human pilot, depends on 
the boat flight dynamics. To predict the dynamics of a 
 single-track hydrofoil boat design, a model has been devel-
oped. In this paper, we first present a novel model to sim-
ulate the dynamic behavior of pilot controlled single-track 
hydrofoil boats. Also, we describe how this model was 
validated by experiment.

This paper is structured as follows. After this introduc-
tion, the dynamical model is derived for the roll and yaw 
motions of single-track hydrofoils. Next, the experimental 
validation is described and results are shown. The paper ends 
with a discussion, conclusions and some recommendations 
for future research and applications of the model.

Single-track Hydrofoil Dynamics Model
The dynamical model was designed with the TU Delft Solar 
Boat 2016 in mind.7 This single-track hydrofoil boat is shown 
in Figure 2 and typical maneuvers are displayed in Figure 3. 
The front and rear hydrofoil consist of a vertical strut and a 
horizontal wing. Both the struts and wings are considered as 
stiff aluminum structures.

Model parameters
As will be shown in this section, the only model parameters 
that are required those shown in Table 2. This table lists the 
parameter values and units for the TU Delft Solar Boat 2016. 
They are visualized in Figure 5. Note that it is assumed that 
the linear lift coefficient slopes are equal on both struts and 
on both wings. So, there is no distinction between CLα,w for 
both wings and for CLα,s for both struts.

Surface effects, such as described in [1], cause a lower 
lift force than expected for wings and struts near the water 
surface. In practice, this means that the top few centimeters 
of the struts generate waves and water spray, reducing the 
energy available for the generation of a lift force.[5, p. 197] 
This effect virtually increases the flight height. In the model, 
this is taken into account by taking the flight hight with 
respect to an idealized waterline that is a distance dzid below 
the actual waterline. So, with a measured flight height dzm, 
we obtain:

dzfly = dzm + dzid (1)

Currently, a fixed offset of 0.2 m in flight height is used, 
since this is slightly more than one rear strut chord length.[1] 
This leads to a typical idealized flight height of dzfly = 0.7 
m. In the Results, Section 4, the sensitivity of this setting 
is addressed.

7 From here on, with “the boat” we refer to the TU Delft Solar Boat 2016

The submerged strut areas can be found from the chord 
length and flight height. Since the submerged struts have 
no taper:

Ssf = csf (dzs − dzfly) (2)

Ssr = csr (dzs − dzfly) (3)

All variables used throughout this paper can also be 
found in the List of Symbols, see page 135*.

Derivation of a Dynamical Model for  
the TU Delft Solar Boat
To find the generalized dynamic behavior of the sin-
gle-track hydrofoil boat, a simplified model of the boat 
dynamics was developed. The TU Delft Solar Boat 2016 
was modeled as a system of four rigid bodies, inter-
connected by idealized joints, as shown in Figure 4. The 

Input Symbol
Value 
(Average) Unit

Water density ρ 1000 kg/m3

Gravitational acceleration g 9.81 m/s2

Constant body velocity V 10 m/s

Total mass of boat and pilot m 167 kg

Linear lift coefficient slope, 
wings

CLα,w 5.7 rad−1

Linear lift coefficient slope, 
struts

CLα,s 6.67 rad−1

Front strut chord csf 0.089 m

Rear strut chord csr 0.177 m

CoM to effective end of strut dzs 0.9 m

CoM flight height above true 
waterline

dzm 0.5 m

Offset between idealized and 
true waterline

dzid 0.2 m

Surface area of front wing Swf 0.0319 m2

Surface area of rear wing Swr 0.0681 m2

Front strut Xb-distance CoP to 
CoM

dxsf 2.53 m

Rear strut Xb-distance CoP to 
CoM

dxsr 1.38 m

Front wing span bwf 0.708 m

Rear wing span bwr 0.997 m

Mass moment of inertia about 
X-axis

Ixx 18.3 kg · m2 

Mass moment of inertia about 
Z-axis

Izz 219.1 kg · m2 

Mass moment of inertia about 
XZ-plane

Ixz -2.9 kg · m2

TABLE 2. Model parameters and values for the TU Delft 
Solar Boat 2016. Note that CoM stands for Center of Mass 
and CoP for Center of Pressure.

*Page number is pink because it’s subject to change
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model conventions are based on 
those used in conventional aircraft 
flight dynamics.[6]

■■ The first or “primary” body consists 
of the boat hull, deck, internal 
parts, pilot and rear strut. It can 
rotate and translate freely in all 
three dimensions, resulting in a six 
degree of freedom (DoF) system. 
Since the pilot is part of this body, 
it is assumed that he or she does 
not move relative to other parts.

■■ The second body is the front strut. 
It is only able to rotate along its 
vertical axis. The angle of rotation 
of the strut chord with respect to 
the Xb-axis is the steer angle γ. See 
Figure 4.

■■ The third body is the front wing. 
It is fixed in position to the front 
strut. With respect to this strut, it 
can only rotate about the Yb-axis. 
The front wing has its own actuator 
to set a control deflection δf along 
this Yb-axis, which is used to actively 
control the flight height of the boat. 
See Figure 4 and Appendix A.

■■ The fourth body is the rear wing. 
It is fixed in position and in Xb-axis 
and Zb-axis rotation, relative to 
the first body via the rear strut. A 
Yb-axis control deflection δr can 
be performed by an actuator. It is 
controlled by the pilot as a sort of 
feed-forward control for the boat 
pitch angle, θ. To prevent the large 
solar deck from causing significant 
drag due to air resistance, the rear 
wing is set to a deflection angle 
which corresponds to near-zero 
boat pitch at the expected flight 
speed. See also Figure 4 and 
 Appendix A.
From the above, we can conclude 

that the system has nine degrees of 
freedom: three primary body trans-
lations with velocity components 
[u, v, w], three rotations with angular 
rates [p, q, r] and three control deflec-
tions [γ, δf , δr].

FIGURE 4: Illustration of the four body model. The first, primary body includes 
the hull, rear strut and pilot. The second body is the front strut with control input 
γ. The third body is the front wing, with deflection δf. Finally, body four has rear 
wing deflection δr. The body frame is located on the Center of Mass of the boat 
and aligned with the primary body. The boat velocity is given in the body frame by 
[u,v,w] and the rotation rates by [p,q,r].

FIGURE 5: Dimensions and conventions used in the dynamical model of the 
hydrofoil boat. Body axes are indicated X, Y, Z. Weight vector W = mg is located at 
the center of mass (CoM). Total hydrodynamic side force is given by Y. Relevant 
hydrodynamic moments are L about the Xb-axis and N about the Zb-axis. Roll rate 
is indicated by p, yaw rate by r. Surface areas of the struts and wings are indicated 
by S. Parameters dxsf and dxsr denote the distance between CoM and the front/
rear strut center of pressure, while dzfly = dzm + dzid gives the distance between 
CoM and idealized waterline. Strut length is denoted by dzs. Front and rear wing 
have a span bf and br, with a nominal lift of these wings indicated by Lf and Lr. 
Steer input angle is given by γ. All variables are shown in positive direction.

*Page number is pink because it’s subject to change
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The primary body orientation with respect to the inertial 
frame can be described as is done for aircraft, by the Euler 
angles of roll, pitch and yaw: [

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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]. For transformations 
between the inertial and body fixed reference frames, the 
order in which the Euler angles are applied is important, see 
Figure 16 in Appendix C. The body reference frame used in 
this paper is fixed and aligned to the primary body and has its 
origin at the center of mass of the boat, see Figures 4 and 5.

Translational motion
Newton’s second law can be expressed in the body frame as:

Figure 5: Dimensions and conventions used in the dynamical model of the hydrofoil boat. Body axes are indicated
X, Y, Z. Weight vector W = mg is located at the center of mass (CoM). Total hydrodynamic side force is given
by Y . Relevant hydrodynamic moments are L about the Xb-axis and N about the Zb-axis. Roll rate is indicated
by p, yaw rate by r. Surface areas of the struts and wings are indicated by S. Parameters dxsf and dxsr denote
the distance between CoM and the front/rear strut center of pressure, while dzfly = dzm + dzid gives the distance
between CoM and idealized waterline. Strut length is denoted by dzs. Front and rear wing have a span bf and br,
with a nominal lift of these wings indicated by Lf and Lr. Steer input angle is given by γ. All variables are shown
in positive direction.

Translational motion

Newton’s second law can be expressed in the body frame as:
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Rotational motion

The angular acceleration of the boat is of interest for our analysis of the roll rate, pitch rate and
yaw rate. Dynamical analysis of the Euler equation of motion yields:
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b
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(8)

where we have introduced:
M̃

b
cm, which denotes the external moments about the center of mass of the boat, expressed in

body reference frame components: (Mx,My,Mz)
T .

I, the mass moment of inertia tensor: I =



Ixx,−Ixy,−Ixz
−Ixy, Iyy,−Iyz
−Ixz,−Iyz, Izz




Kinematic attitude relations

The relations between the rate of change of the Euler angles (roll, pitch and yaw) and the body
reference frame angular rates are given by the kinematic attitude equations [6]:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (9)

θ̇ = q cosφ− r sinφ (10)

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
(11)

2.3 Reduction of the Full Model for State Space Representation

To make the model suitable for state-space representation, the equations of motion and kinematic
equations are linearized by applying a Taylor expansion and ignoring higher-order terms. Due to
symmetry of the boat about the XZ-plane, the first order hydrodynamic effects cancel each other:
a change in the orientation and motion of the body XZ-plane does not affect the XY- and YZ-
planes and vice versa [6, p. 110]. So, as is common in conventional aircraft flight dynamics, the
resulting equations can be split into symmetric and asymmetric equations of motion [6, 7]. The
symmetric equations describe the dynamics in the XZ-plane, whereas the asymmetric equations
describe the dynamics in the XY and YZ-planes. We focus on asymmetric motions here, which
are related to sway, roll and yaw motions of the boat. This implies that we do not focus on pitch,
heave and surge. However, a qualitative description of the pitch and height control on the system
of the boat is given in appendix A for completeness.

The steer angle γ is the control variable of the system, and is considered as input. This means
that the state of the boat is defined by sideslip v, roll angle φ, roll rate p and yaw rate r.

Assumptions

The following assumptions were made to reduce the model to a simpler form:

There are no external disturbances acting on the boat, such as waves, wind or currents. There
are no forces other than the linearized hydrodynamic forces. Hence, [u, v, w]T is both the body
velocity vector and the hydrodynamic velocity vector that determines the lift forces.
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u̇+ qw − rv
v̇ + ru− pw
ẇ + pv − qu


 = mg




− sin θ
sinφ cos θ
cosφ cos θ


+



Fx,dyn

Fy,dyn

Fz,dyn


 (7)

Rotational motion

The angular acceleration of the boat is of interest for our analysis of the roll rate, pitch rate and
yaw rate. Dynamical analysis of the Euler equation of motion yields:

Ω̇
b
bI = I−1

(
M̃

b
cm −Ωb

bI × IΩb
bI

)
(8)

where we have introduced:
M̃

b
cm, which denotes the external moments about the center of mass of the boat, expressed in

body reference frame components: (Mx,My,Mz)
T .

I, the mass moment of inertia tensor: I =



Ixx,−Ixy,−Ixz
−Ixy, Iyy,−Iyz
−Ixz,−Iyz, Izz




Kinematic attitude relations

The relations between the rate of change of the Euler angles (roll, pitch and yaw) and the body
reference frame angular rates are given by the kinematic attitude equations [6]:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (9)

θ̇ = q cosφ− r sinφ (10)

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
(11)

2.3 Reduction of the Full Model for State Space Representation

To make the model suitable for state-space representation, the equations of motion and kinematic
equations are linearized by applying a Taylor expansion and ignoring higher-order terms. Due to
symmetry of the boat about the XZ-plane, the first order hydrodynamic effects cancel each other:
a change in the orientation and motion of the body XZ-plane does not affect the XY- and YZ-
planes and vice versa [6, p. 110]. So, as is common in conventional aircraft flight dynamics, the
resulting equations can be split into symmetric and asymmetric equations of motion [6, 7]. The
symmetric equations describe the dynamics in the XZ-plane, whereas the asymmetric equations
describe the dynamics in the XY and YZ-planes. We focus on asymmetric motions here, which
are related to sway, roll and yaw motions of the boat. This implies that we do not focus on pitch,
heave and surge. However, a qualitative description of the pitch and height control on the system
of the boat is given in appendix A for completeness.

The steer angle γ is the control variable of the system, and is considered as input. This means
that the state of the boat is defined by sideslip v, roll angle φ, roll rate p and yaw rate r.

Assumptions

The following assumptions were made to reduce the model to a simpler form:

There are no external disturbances acting on the boat, such as waves, wind or currents. There
are no forces other than the linearized hydrodynamic forces. Hence, [u, v, w]T is both the body
velocity vector and the hydrodynamic velocity vector that determines the lift forces.
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The steer angle γ is the control variable of the system, and 
is considered as input. This means that the state of the boat is 
defined by sideslip v, roll angle 

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:
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Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ
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0 = 0, 
p0 = 0 and ṗ0 = 0.

■■ The height control system is perfect, so the pitch angle 
and derivative are always zero θ = 0, θ̇ = 0, q = 0 and 
q̇ = 0. This implies that the sum of moments about the 
 Y-axis is zero: M = 0. Also, Zb-axis velocity and its deriv-
ative are always zero, because the vertical forces add to 
zero: Fz = 0, Ḟz = 0, w = 0 and ẇ  = 0. Hence, the symmet-
ric equations of motion can be ignored. This also implies 
that the front and rear wing control angles δf and δr are 
not relevant for this simulation. This is a safe assumption, 
since in case of the TU Delft Solar Boat, the pitch angle 
and height above the waterline are kept constant by a 
control system that is independent of the roll and yaw mo-
tions. Furthermore, from real flight data, the flight height 
variation is found to be small. See Figure 6 in Section 4.

■■ The wings and struts are independently operating lifting 
surfaces that do not interfere with each other’s velocity 
fields or the water surface. This assumption greatly simpli-
fies the model, but is only partly valid: in reality there will 
be an influence,[1, 8] but it is expected to be small due to 
the relatively large distance between the hydrofoils. For 
roll angles above ca 30°, the wing tip can encounter sur-
face effects. This would reduce the roll moment.[1] These 
roll angles will not be reached.

■■ All lift inducing surfaces operate in the range where 
lift is assumed to be linear with the angle of attack, α. 
This linearity assumption is valid for two-dimensional 
airfoil shapes and small angles on three-dimensional 

wings.[8, p. 344] Also, CLα,w is assumed equal for both 
wings, and CLα,s is assumed equal for both struts.

■■ Three-dimensional flow effects are ignored and the lift 
coefficient is assumed constant over the entire wing. The 
wings have no sweep angle and no dihedral angle. They 
are of perfect elliptical planform shape, based on a single 
airfoil design along the span. The high aspect ratio and 
elliptical shape of the wings ensure that induced vortices 
at the wing tips are small.[8, p. 430] The Solar Boat 2016 
hydrofoils were designed with elliptical planforms, with-
out sweep or dihedral, making this a safe assumption.

■■ The Z-axis steering rotation of the front wing on the front 
strut is ignored. So, steering angle γ does only affect front 
strut lift. This assumption implies that steering with the 
front strut does not rotate the front wing with it, even 
though they are coupled in reality. Yb-direction lift forces 
caused by a steering angle on the front strut are estimated 
to be two orders of magnitude higher than changes in 
wing lift due to steering.

■■ Apart from the assumption that drag and thrust cancel 
out, other aerodynamic effects from all parts above the 
waterline are neglected. This can be assumed since water 
density is ca. 800 times higher than air density. Further-
more, the surfaces above the water are symmetric and 
were designed for zero lift and low drag. During testing, 
this assumption can be partly fulfilled if the tests are done 
with the boat sailing in downwind conditions at wind 
speed. Aerodynamic roll and yaw damping are still present 
in such a situation, but are considered negligible.

■■ The boat has a constant mass. Since no fuel is required for 
a solar boat, there is no change in mass during the tests.

■■ The mass distribution is symmetric with respect to the 
XZ-plane and constant in time. It is assumed that the pilot 
is positioned on the X-axis and does not move his/her 
mass. This enables us to ignore the inertia terms Ixy and 
Iyz. This assumption is valid when validation tests are per-
formed with a pilot that does not move. For example, the 
pilot does not lean during cornering.

■■ Hydrodynamic constants do not change with velocity. 
This means that the lift coefficients, CL, are assumed to 
be independent of the Reynolds number.[8] It means that 
the dynamical model may not be accurate for velocities 
far from the reference velocity that was used to find the 
coefficients, which was ca. 10 m/s.

■■ Hydrofoil drag acts in the XZ-plane only. This means that 
only lift forces contribute to yaw and roll moments. In 
reality, a roll motion will cause a higher lift on one side of 
the hydrofoil, leading to a higher local drag. Compared to 
lift force, this drag effect is negligible.
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With the above assumptions and linearization, we can re-
write the equations of motion and kinematic equations from 
Subsection 2.2. There are no disturbances, so the external 
forces and moments are only the hydrodynamic forces and 
moments. From here on, let (L, M, N )T denote the hydrody-
namic moments about the Xb, Yb and Zb axes respectively. 
Let the hydrodynamic force in Yb-direction Fy,dyn be denoted 
by Y. Also, linearized derivatives are written with notation
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Under our assumptions, the steering angle γ is the only 
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during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ
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From equation 12, the state matrix can be written as:[6]
From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)

9

(19)

The input matrix B determines the effect of a steering 
angle γ on the state derivative ẋ . It is given by:

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)

9

(20)

The linearized derivatives used in the matrices are de-
rived in the next Subsection.

Linearized State Couplings
The derivative coefficients that describe the coupling between 
the states are required for the state and input matrices. They 
were approximated under the model assumption stated 
before. These approximations are based on the linearized lift 
change:

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)
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(21)

For small changes in the angle of attack α, it can be ap-
proximated that sin α = α and cos α = 1. So, for an element 
in the XbZb-plane (such as the struts) moving with a relative 
sideslip velocity v, or an element in the XbYb-plane with 
local Z-velocity w (such as the wings), the angles of attack 
change as:

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)

9

(22)

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)

9

(23)
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Moment changes of the rigid body are calculated by mul-
tiplying the local lift change of an element with the distances 
to the principal axes. Next, with the stated assumptions 
and model parameters, the state derivative coefficients can 
be found.

Sideslip effects
A sideslip 

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)

9

 causes an angle of attack on the front and rear 
strut, see eq. 22. Using eq. 21 with parameters from Table 2, 
it can readily be found that the struts generate a lifting force 
Y . Under linearization conditions, the Y-direction component 
of this force can be assumed to equal the total lift force and 
work opposite to v. Hence, the coefficient Y

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)

9

 is negative. 
With Ssf and Ssr the submerged strut surface area, we get 
the total state derivative coefficient Y

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)
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:

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)
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(24)

This sideforce causes a rolling and yawing moment, de-
pending on distance of the CoP from the inertial axes:

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)

9

(25)

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)
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(26)

Roll angle effects
Under our assumptions, the only effect of a body roll angle 

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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. So we have:

From equations 12, the state matrix can be written as [6]:

A =




Yv
m

Yφ

m
Yp

m
Yr
m − V

0 0 1 0
LvKzz +NvKxz 0 LpKzz +NpKxz LrKzz +NrKxz

NvKxx + LvKxz 0 NpKxx + LpKxz NrKxx + LrKxz


 (19)

The input matrix B determines the effect of a steering angle γ on the state derivative ẋ. It is
given by:

B =

[
Yγ

m , 0, LγKzz +NγKxz, NγKxx + LγKxz

]T
(20)

The linearized derivatives used in the matrices are derived in the next Subsection.

2.5 Linearized State Couplings

The derivative coefficients that describe the coupling between the states are required for the state
and input matrices. They were approximated under the model assumption stated before. These
approximations are based on the linearized lift change:

∆L =
1

2
ρV 2SCLα∆α (21)

For small changes in the angle of attack α, it can be approximated that sinα = α and cosα = 1.
So, for an element in the XbZb-plane (such as the struts) moving with a relative sideslip velocity
v, or an element in the XbYb-plane with local Z-velocity w (such as the wings), the angles of
attack change as:

∆α =
∆v

V
(22) ∆α =

∆w

V
(23)

Moment changes of the rigid body are calculated by multiplying the local lift change of an element

with the distances to the principal axes. Next, with the stated assumptions and model parame-
ters, the state derivative coefficients can be found.

Sideslip effects

A sideslip v causes an angle of attack on the front and rear strut, see eq. 22. Using eq. 21 with
parameters from Table 2, it can readily be found that the struts generate a lifting force Y . Under
linearization conditions, the Y-direction component of this force can be assumed to equal the
total lift force and work opposite to v. Hence, the coefficient Yv is negative. With Ssf and Ssr

the submerged strut surface area, we get the total state derivative coefficient Yv:

Yv = −1

2
ρV CLα,s (Ssf + Ssr) (24)

This sideforce causes a rolling and yawing moment, depending on distance of the CoP from the
inertial axes:

Lv =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssf + Ssr) (25)

Nv =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (26)

Roll angle effects

Under our assumptions, the only effect of a body roll angle φ is a tilt in the weight vector, when
described in the body reference frame. The sideforce caused by the roll angle is approximated
with the small angle approximation: Yroll = mgφ. So we have:

Yφ = mg (27)
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(27)

Roll rate effects
The roll rate p around the body Xb-axis changes the angles of 
attack on both struts and along the wing.

Yp
A positive roll rate causes a positive side force. Consider a 
small strut element, submerged at distance z from the CoM, 
with chord cs and length dz. The angle of attack change is 

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)

10

. Inserting this in the lift equation gives:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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(28)

The total side force generated due to a roll rate is found 
from integrating the above equation from distance dzfly to dzs:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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Lp
The roll moment coefficient Lp originates from roll damping 
by the struts and hydrofoils. For the struts, we can write:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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For an element on the elliptical wing under a roll rate, 
the roll damping depends on the angle of attack:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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. 
Combining the integrand obtained from eq. 30 with the 
derivation from Appendix B.1, we obtain:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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(31)

Np
The generated side force from each strut in eq. 29 causes 
a Zb-axis moment N . With a positive side force, the front 
strut causes a positive moment contribution and the rear 
strut a negative moment contribution. A roll motion also 
causes a tilt of the lift vector on the wings, which generates 
a negative contribution to Np that depends on the nominal 
lift of the wing, Lnom. See Appendix B.2 for a derivation. 
Combined, we get:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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(32)

Yaw rate effects
The rigid body yaw rate causes an angle of attack change on 
the struts and an velocity along the wing spans. This results 
in a sideforce being generated by the struts and an asymmet-
ric lift distribution on the wings. The resulting coefficients 
are given here.
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Yr
The sideforce can easily be derived from the lift equation 
and angle of attack change:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)
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(33)

Lr
The sideforce generated by the struts found above contrib-
utes to the body roll moment. Furthermore, the velocity 
difference along the wing span generates a rolling moment as 
described in Appendix B.3. Combined, we obtain:

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)

(34)

10

Roll rate effects

The roll rate p around the body Xb-axis changes the angles of attack on both struts and along
the wing.

Yp

A positive roll rate causes a positive side force. Consider a small strut element, submerged at
distance z from the CoM, with chord cs and length dz. The angle of attack change is ∆α = pz

V .
Inserting this in the lift equation gives:

δYstrut−element =
1

2
ρV 2CLα,s

pz

V
csdz (28)

The total side force generated due to a roll rate is found from integrating the above equation
from distance dzfly to dzs:

Yp =
1

2
ρV CLα,s (csf + csr) ·

1

2

(
dzs

2 − dzfly
2
)

(29)

Lp

The roll moment coefficient Lp originates from roll damping by the struts and hydrofoils. For the
struts, we can write:

δLstrut−element = −δYstrut−element · z (30)

For an element on the elliptical wing under a roll rate, the roll damping depends on the angle
of attack: ∆α = py

V . Combining the integrand obtained from eq. 30 with the derivation from
Appendix B.1, we obtain:

Lp = −1

2
ρV

(
CLα,w · 1

16

(
Swfbwf

2 + Swrbwr
2
)
+ CLα,s (csf + csr) ·

1

3

(
dzs

3 − dzfly
3
))

(31)

Np

The generated side force from each strut in eq. 29 causes a Zb-axis moment N . With a positive
side force, the front strut causes a positive moment contribution and the rear strut a negative
moment contribution. A roll motion also causes a tilt of the lift vector on the wings, which
generates a negative contribution to Np that depends on the nominal lift of the wing, Lnom. See
Appendix B.2 for a derivation. Combined, we get:

Np =
1

2
ρV CLα,s (csfdxsf − csrdxsr)·

1

2

(
dzs

2 − dzfly
2
)
− 1

16

1

V

(
Lnom,wfbwf

2 + Lnom,wrbwr
2
)
(32)

Yaw rate effects

The rigid body yaw rate causes an angle of attack change on the struts and an velocity along
the wing spans. This results in a sideforce being generated by the struts and an asymmetric lift
distribution on the wings. The resulting coefficients are given here.

Yr

The sideforce can easily be derived from the lift equation and angle of attack change:

Yr =
1

2
ρV CLα,s (−Ssfdxsf + Ssrdxsr) (33)

Lr

The sideforce generated by the struts found above contributes to the body roll moment. Furt-
hermore, the velocity difference along the wing span generates a rolling moment as described in
Appendix B.3. Combined, we obtain:

Lr =
1

2
ρV CLα,s

dzs + dzfly
2

(Ssfdxsf − Ssrdxsr) +
1

8

1

V
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Lnom,wfbwf
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2
)
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(34)

Nr
Under our assumptions, the wings do not contribute to a 
Zb-axis moment under a yaw rate. The strut sideforces cause 
a damping moment:

Nr

Under our assumptions, the wings do not contribute to a Zb-axis moment under a yaw rate. The
strut sideforces cause a damping moment:

Nr = −1

2
ρV CLα,s

(
Ssfdxsf

2 + Ssrdxsr
2
)

(35)

Steer input effects

The pilot steering input γ has the effect of changing the angle of attack of the front strut, with
∆α = γ. From Figure 5, it can be seen that a positive steering angle causes a front strut lift in
positive Yb-direction. Hence, we write for the derivative of sideforce versus steering angle:

Yγ =
1

2
ρV 2SsfCLα,s (36)

The corresponding roll moment is negative and depends on the CoP location of the submerged
strut area:

Lγ = −1

2
ρV 2SsfCLα,s

dzs + dzfly
2

(37)

Finally, the corresponding yaw moment is positive and depends on the strut distance from the
CoM:

Nγ =
1

2
ρV 2SsfdxsfCLα,s (38)

All coefficients for the linearized state space derivatives are now determined. When these are put
into the equations 16 to 20, the state space model of the boat is complete and the dynamics can
be analyzed.

3 Experimental Set-Up For Model Validation

To validate the state space model, tests were done with the TU Delft solar boat 2016 and data
was gathered. This chapter explains what validation method was used and how the data was
obtained.

3.1 Design of Model Validation Experiment

Bode Plot Comparison

As a Bode plot shows the dynamic behavior of a system in the frequency domain, it contains
more information than a time-domain plot at one input frequency. Therefore, we have chosen
to use Bode plots to validate our model. With the state space model, Bode plots of the system
can be obtained. Such a plot is used to compare measured and calculated input/output relations
of the boat. This can be done as follows: the pilot has to steer with a sinusoidal motion at a
constant frequency (input). As a result, the boat will perform a roll, yaw and sideslip motion
with the same frequency (outputs). The gain and phase shift between the steer motion and the
output motions can be measured and drawn in a Bode plot. A measured signal always contains
a spectrum of frequencies. Therefore, the steering was done such that the desired frequency was
clearly the most prominent one in the signal. All other frequency content of the input signal is
ignored. So, the slow corrections to keep the average roll angle zero can be ignored.

The shape of a Bode plot depends on all the system input variables (these are stated in Table 2).
In Figures 9 - 11 the Bode plots of the roll angle (φ), the roll rate (p) and the yaw rate (r) are
shown respectively as a line in the figures. They are plotted for four different velocities.

During tests, we measured the boat state variables under a given steer input frequency. The phase
shift and magnitude of the experimental data at this frequency were plotted over the theoretical
Bode plot lines. Only three out of four output states of the system have been evaluated, because
the sideslip velocity (v) could not be measured with sufficient accuracy. This was due to the fact
that only the total velocity of the boat was measured. It is hard to distinguish the contribution
of the side slip component to the total velocity. Therefore, this state behavior is not presented in
the results.
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Steer input effects
The pilot steering input γ has the effect of changing the an-
gle of attack of the front strut, with ∆α = γ. From Figure 5, it 
can be seen that a positive steering angle causes a front strut 
lift in positive Yb-direction. Hence, we write for the deriva-
tive of sideforce versus steering angle:

Nr

Under our assumptions, the wings do not contribute to a Zb-axis moment under a yaw rate. The
strut sideforces cause a damping moment:

Nr = −1

2
ρV CLα,s

(
Ssfdxsf

2 + Ssrdxsr
2
)

(35)

Steer input effects

The pilot steering input γ has the effect of changing the angle of attack of the front strut, with
∆α = γ. From Figure 5, it can be seen that a positive steering angle causes a front strut lift in
positive Yb-direction. Hence, we write for the derivative of sideforce versus steering angle:

Yγ =
1

2
ρV 2SsfCLα,s (36)

The corresponding roll moment is negative and depends on the CoP location of the submerged
strut area:
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Finally, the corresponding yaw moment is positive and depends on the strut distance from the
CoM:

Nγ =
1

2
ρV 2SsfdxsfCLα,s (38)

All coefficients for the linearized state space derivatives are now determined. When these are put
into the equations 16 to 20, the state space model of the boat is complete and the dynamics can
be analyzed.

3 Experimental Set-Up For Model Validation

To validate the state space model, tests were done with the TU Delft solar boat 2016 and data
was gathered. This chapter explains what validation method was used and how the data was
obtained.

3.1 Design of Model Validation Experiment

Bode Plot Comparison

As a Bode plot shows the dynamic behavior of a system in the frequency domain, it contains
more information than a time-domain plot at one input frequency. Therefore, we have chosen
to use Bode plots to validate our model. With the state space model, Bode plots of the system
can be obtained. Such a plot is used to compare measured and calculated input/output relations
of the boat. This can be done as follows: the pilot has to steer with a sinusoidal motion at a
constant frequency (input). As a result, the boat will perform a roll, yaw and sideslip motion
with the same frequency (outputs). The gain and phase shift between the steer motion and the
output motions can be measured and drawn in a Bode plot. A measured signal always contains
a spectrum of frequencies. Therefore, the steering was done such that the desired frequency was
clearly the most prominent one in the signal. All other frequency content of the input signal is
ignored. So, the slow corrections to keep the average roll angle zero can be ignored.

The shape of a Bode plot depends on all the system input variables (these are stated in Table 2).
In Figures 9 - 11 the Bode plots of the roll angle (φ), the roll rate (p) and the yaw rate (r) are
shown respectively as a line in the figures. They are plotted for four different velocities.

During tests, we measured the boat state variables under a given steer input frequency. The phase
shift and magnitude of the experimental data at this frequency were plotted over the theoretical
Bode plot lines. Only three out of four output states of the system have been evaluated, because
the sideslip velocity (v) could not be measured with sufficient accuracy. This was due to the fact
that only the total velocity of the boat was measured. It is hard to distinguish the contribution
of the side slip component to the total velocity. Therefore, this state behavior is not presented in
the results.
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All coefficients for the linearized state space derivatives are now determined. When these are put
into the equations 16 to 20, the state space model of the boat is complete and the dynamics can
be analyzed.
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constant frequency (input). As a result, the boat will perform a roll, yaw and sideslip motion
with the same frequency (outputs). The gain and phase shift between the steer motion and the
output motions can be measured and drawn in a Bode plot. A measured signal always contains
a spectrum of frequencies. Therefore, the steering was done such that the desired frequency was
clearly the most prominent one in the signal. All other frequency content of the input signal is
ignored. So, the slow corrections to keep the average roll angle zero can be ignored.
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All coefficients for the linearized state space derivatives are 
now determined. When these are put into the equations 16 
to 20, the state space model of the boat is complete and the 
dynamics can be analyzed.

Experimental Set-Up For Model Validation
To validate the state space model, tests were done with the 
TU Delft solar boat 2016 and data was gathered. This chap-
ter explains what validation method was used and how the 
data was obtained.

Design of Model Validation Experiment
Bode Plot Comparison
As a Bode plot shows the dynamic behavior of a system in 
the frequency domain, it contains more information than a 
time-domain plot at one input frequency. Therefore, we have 
chosen to use Bode plots to validate our model. With the 
state space model, Bode plots of the system can be obtained. 
Such a plot is used to compare measured and calculated 
input/output relations of the boat. This can be done as 
follows: the pilot has to steer with a sinusoidal motion at a 
constant frequency (input). As a result, the boat will perform 
a roll, yaw and sideslip motion with the same frequency 
(outputs). The gain and phase shift between the steer mo-
tion and the output motions can be measured and drawn in 
a Bode plot. A measured signal always contains a spectrum 
of frequencies. Therefore, the steering was done such that 
the desired frequency was clearly the most prominent one 
in the signal. All other frequency content of the input signal 
is ignored. So, the slow corrections to keep the average roll 
angle zero can be ignored.

The shape of a Bode plot depends on all the system input 
variables (these are stated in Table 2). In Figures 9 - 11 the 
Bode plots of the roll angle (

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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), the roll rate (p) and the yaw 
rate (r) are shown respectively as a line in the figures. They 
are plotted for four different velocities.

During tests, we measured the boat state variables under a 
given steer input frequency. The phase shift and magnitude 
of the experimental data at this frequency were plotted 
over the theoretical Bode plot lines. Only three out of four 
output states of the system have been evaluated, because 
the sideslip velocity (v) could not be measured with suffi-
cient accuracy. This was due to the fact that only the total 
velocity of the boat was measured. It is hard to distinguish 
the contribution of the side slip component to the total 
velocity. Therefore, this state behavior is not presented in 
the results.
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Variation of Velocity and Frequency Parameters
The design parameters shown in Table 2 were kept con-
stant during testing, only the boat velocity (V) was varied 
between test runs. The boat flies stable at velocities greater 
than 7 m/s. The pilot was able to steer periodically up to 
9.5 m/s. Therefore, tests were performed at 7.5, 8.0, 9.0 
and 9.5 m/s respectively. Also the input frequency was var-
ied at every test run. With some practical tests, we found 
that the pilot could steer with a maximum frequency of ca. 
2 Hz. At low frequencies (less than 0.5 Hz) the pilot mainly 
corrects for the falling motion of the boat. A sine input at 
this frequency would create unsafe test conditions. Hence, 
the pilot was instructed to give a sinusoidal steer input 
of 0.5, 1.0 and 2 Hz respectively. These inputs had to be 
carried out for at least half a minute, to make at least five 
oscillations after settling of the dynamics. This results in 
twelve different test cases (i.e velocity - frequency combina-
tions). Each test case was carried out at least twice.

The measured flight height was kept as constant as possi-
ble, varying between ca. 0.15 and 0.20 m, see also Figure 6 
and Appendix A. Flying higher could have increased water 
surface effects on the wings, while a lower flight height 
would have caused the boat to hit wave crests. Both condi-
tions would have violated the model assumptions. To verify 
that the flight height and velocity were constant during 
tests, these parameters were measured at all times and stored 
in a log file. Finally, the steer input was measured and 
logged, so as to check the exact steering frequency.

Test Environment
The tests were carried out on a canal that is 25 m wide and 
more than 3 m deep. During all tests, the maximum wind 
condition was a gentle breeze (Beaufort scale number 3) 
with varying direction. Since this canal is used by commer-
cial freight ships, the water was disturbed a few times per 
hour. Therefore, some turbulence could not be avoided.

Experimental Setup for Data Collection
A sampling and saving frequency of 55 Hz for the input and 
output signals was used. All signals and their correspond-
ing time stamps were stored on a data logger (Type Kvaser 
Memorator R SemiPro[9]) via the CAN bus (Controller Area 
Network) of the boat.

Measurement Equipment
Output and Velocity: The roll angle (
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Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:
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), roll rate (p), yaw 
rate (r) and velocity (V ) of the boat were measured using 

an Xsens Motion Tracker of type MTi-G-710.[10]This device 
measures position, velocity and accelerations in all trans-
lational and rotational directions. The typical accuracies 
of the measured roll angle, angular velocities and transla-
tional velocity are respectively 0.3°, 0.01°/s and 0.05 m/s. 
The Xsens Motion Tracker is located above the front strut, 
inside the hull.

Input: Steer input γ was measured with a hall effect 
steer sensor of type MHR5200 Magni- Hall.[11] The sensor 
is placed on the steering wheel. The angle of the steering 
wheel must be multiplied by a ratio of 0.26 to calculate the 
steer angle of the rudder. The hall sensor is an analog sensor, 
therefore a system in the boat converts the signal to an 8-bit 
digital signal. The conversion and ratio together result in an 
accuracy for the measurement of the steer input of 0.36°. For 
reasons explained in Section 2, it is assumed that no external 
moments are applied on the front strut and therefore steer 
system flexibility plays no role.

Height: The flight height of the boat was obtained using 
an ultrasonic water level sensor of the type Senix ToughSon-
ic REMOTE 14[12] located just before the stem (front) of the 
boat. The influences of little waves on the water surface are 
of a higher order than the accuracy of this sensor. Therefore, 
we assume that the accuracy of this sensor does not influence 
our results.

Selection
The data of all test runs was evaluated with an algorithm 
that finds and isolates valid intervals of test data in the time 
domain. The algorithm searches for intervals that contain 
five periods of a target frequency. Next, it checks if the veloc-
ity and height of the boat are within target limits during the 
entire interval. The resulting intervals are checked manually 
to ensure no corrupted data was selected and that a clear 
sinusoidal input signal was measured. Finally, the gain and 
phase shift between the steer input and the state outputs 
are calculated. In this way, five successive oscillations in the 
time-domain data result in one point on the Bode plots.

Results
During the tests, the pilot experienced that steering with a 
frequency of 2 Hz was difficult. Therefore, he was instructed 
to try other frequencies between 1 Hz and 2 Hz. Using the 
defined selection criteria stated in Subsection 3.2, 179 time 
intervals were found. Typical interval flight height measure-
ments are shown in Figure 6. As a result of the difficulty in 
steering at higher frequencies, much of the data of these tests 
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was not usable. Therefore, only 48 of the 179 selected inter-
vals have frequencies higher than 1 Hz. In this section, firstly 
two intervals will be shown in the time domain, subsequent-
ly all intervals will be presented in the frequency domain 
using Bode plots.

Time Domain
In the time domain, simulated responses can be plotted 
against measured states. Figures 7 and 8 show the dynamic 
behavior of the boat according to measurements and the 
model, for a measured steer input at two of the 179 time 
intervals. The model initial states had to be iteratively esti-
mated up to ten decimal places to prevent the modeled boat 
from falling over to infinite roll angle. This effect was caused 
by the blind feeding of measured steer input to the model, 
without any form of feedback control.

It can be seen in Figure 7 that the model and mea-
su- rements are almost identical, with only minor shifts in 
amplitude and phase of the response. Looking at e.g. the roll 
angle, the phase shift of the measurement is approximately 
10° less than in the model predictions. The gain for both 
model and measurement are practically identical. It must 
be noted that the ideal water line parameter dzid was kept at 
0.20 m, as this resulted in the smallest error between theory 
and measurement.

Figure 8, on the other hand, shows a high difference 
between the measurements and the model. Particularly in 
the yaw rate, a smooth curve with higher maximums can be 
seen, whereas the measurement is very noisy and has peaks 
that are ca. 3° lower. Furthermore, an offset in phase can be 
seen for the roll rate. From the figure it can be estimated that 
the offset is about 36°. Note that the gain and phase differ-
ences were extracted from all 179 measurement intervals and 
subsequently plotted in the Bode plots.

Frequency Domain
Here we present the results in three Bode plots: one for the 
roll angle, roll rate and yaw rate respectively. In these figures 
we plotted the theoretical Bode plots generated by the model 
for four different speeds and average flight height. Further-
more, all 179 selected time intervals correspond to a point in 
the Bode plots. If multiple intervals were measured in a given 
frequency and velocity range, the mean value of the magni-
tudes and phase shifts of the signals was calculated. This mean 
value is drawn as a dot in the Bode plots. The size of a dot 
indicates the number of averaged measurements. The time 
domain measurements shown in Figures 7 and 8 were used 
to generate the red dots in the Bode plots (8 m/s) at 0.5 and 

2.5 Hz respectively. From this, it can be seen that the 10° 
phase and almost zero gain offsets in Figure 7 is representa-
tive for the average offset at 0.5 Hz in Figure 9.

As for the time domain plots, the ideal water line parame-
ter dzid was kept at 0.20 m for maximum correlation between 
theory and results.

Analysis and Discussion of Results
In the previous section, we have seen the results. In this 
section, these results are analyzed and discussed. Both the 
phase and amplitude of the modeled and measured boat 
dynamics are very similar at frequencies below 1 Hz. This 
means that the predictions of the model are sufficiently ac-
curate for practical use. However, in the frequency range of 
1 Hz to 2.5 Hz, this similarity decreases and the results are 
less clear. The Bode plots show that the model most accu-
rately predicts the dynamic behavior of the boat at 9.5 m/s 
and 0.5 Hz.

The predicted output gains increase with increasing 
velocity at all frequencies. This relation is confirmed by the 
measured data for all frequencies below 1.1 Hz. At higher 
frequencies, reliable and consistent measurements are scarce 
and hardly any conclusion can be drawn in this part of the 
spectrum. A very interesting feature in all Bode gain plots 
is found at 1.5 Hz. There, we observe a measured gain peak 
at all velocities, relative to the surrounding measurements. It 
looks as if a resonance occurs, but this is not predicted by 
the model.

In the Bode phase plots, it is predicted that there is a ca. 
8° offset in phase with varying velocity. Note that roll rate 

Selection

The data of all test runs was evaluated with an algorithm that finds and isolates valid intervals
of test data in the time domain. The algorithm searches for intervals that contain five periods
of a target frequency. Next, it checks if the velocity and height of the boat are within target
limits during the entire interval. The resulting intervals are checked manually to ensure no
corrupted data was selected and that a clear sinusoidal input signal was measured. Finally, the
gain and phase shift between the steer input and the state outputs are calculated. In this way,
five successive oscillations in the time-domain data result in one point on the Bode plots.

4 Results

During the tests, the pilot experienced that steering with a frequency of 2 Hz was difficult.
Therefore, he was instructed to try other frequencies between 1 Hz and 2 Hz. Using the defined
selection criteria stated in Subsection 3.2, 179 time intervals were found. Typical interval flight
height measurements are shown in Figure 6. As a result of the difficulty in steering at higher
frequencies, much of the data of these tests was not usable. Therefore, only 48 of the 179 selected
intervals have frequencies higher than 1 Hz. In this section, firstly two intervals will be shown
in the time domain, subsequently all intervals will be presented in the frequency domain using
Bode plots.
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Figure 6: Typical output of the ultrasonic dis-
tance sensor during testing on canals. The
high-frequency variation in height is caused by
waves.

In the time domain, simulated responses can be plotted
against measured states. Figures 7 and 8 show the dy-
namic behavior of the boat according to measurements
and the model, for a measured steer input at two of the
179 time intervals. The model initial states had to be
iteratively estimated up to ten decimal places to prevent
the modeled boat from falling over to infinite roll angle.
This effect was caused by the blind feeding of measured
steer input to the model, without any form of feedback
control.

It can be seen in Figure 7 that the model and measu-
rements are almost identical, with only minor shifts in
amplitude and phase of the response. Looking at e.g.
the roll angle, the phase shift of the measurement is ap-
proximately 10 less than in the model predictions. The
gain for both model and measurement are practically
identical. It must be noted that the ideal water line parameter dzid was kept at 0.20 m, as this
resulted in the smallest error between theory and measurement.

Figure 8, on the other hand, shows a high difference between the measurements and the model.
Particularly in the yaw rate, a smooth curve with higher maximums can be seen, whereas the
measurement is very noisy and has peaks that are ca. 3 lower. Furthermore, an offset in phase
can be seen for the roll rate. From the figure it can be estimated that the offset is about 36 .
Note that the gain and phase differences were extracted from all 179 measurement intervals and
subsequently plotted in the Bode plots.
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FIGURE 6. Typical output of the ultrasonic distance sensor 
during testing on canals. The high-frequency variation in 
height is caused by waves.
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FIGURE 7. Modeled dynamics and 
measured dynamics in response to a 
given steer input γ for five periods of 
0.47 Hz steer input. Continuous lines 
indicate model response, while dash-
dot lines indicate the real measured 
response of the boat during testing. 
It can be seen that the model output 
is nearly identical to the measured 
output in both phase and amplitude. 
Velocity was 7.9 m/s and measured 
flight height ca. 0.15 m.

FIGURE 8. Modeled dynamics and 
measured dynamics in response to a 
given steer input γ for five periods of 
2.50 Hz steer input. Continuous lines 
indicate model response, while dash-
dot lines indicate the real measured 
response of the boat during testing. 
A small phase difference can be seen 
in the roll rate, while the yaw rate 
has an accurate phase prediction 
and erroneous amplitude prediction. 
Velocity was 8.0 m/s and measured 
flight height ca. 0.20 m. Note the 
scaling difference for the time and 
amplitude axes between this figure 
and Figure 7.

FIGURE 9. Bode plot that shows the 
frequency response of the input steer 
angle γ to output roll angle 

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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4.2 Frequency Domain

Here we present the results in three Bode plots: one for the roll angle, roll rate and yaw rate
respectively. In these figures we plotted the theoretical Bode plots generated by the model for four
different speeds and average flight height. Furthermore, all 179 selected time intervals correspond
to a point in the Bode plots. If multiple intervals were measured in a given frequency and velocity
range, the mean value of the magnitudes and phase shifts of the signals was calculated. This mean
value is drawn as a dot in the Bode plots. The size of a dot indicates the number of averaged
measurements. The time domain measurements shown in Figures 7 and 8 were used to generate
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the red dots in the Bode plots (8 m/s) at 0.5 and 2.5 Hz respectively. From this, it can be seen
that the 10 phase and almost zero gain offsets in Figure 7 is representative for the average offset
at 0.5 Hz in Figure 9.
As for the time-domain plots, the ideal water line parameter dzid was kept at 0.20 m for maximum
correlation between theory and results.
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respectively. In these figures we plotted the theoretical Bode plots generated by the model for four
different speeds and average flight height. Furthermore, all 179 selected time intervals correspond
to a point in the Bode plots. If multiple intervals were measured in a given frequency and velocity
range, the mean value of the magnitudes and phase shifts of the signals was calculated. This mean
value is drawn as a dot in the Bode plots. The size of a dot indicates the number of averaged
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includes. Every dot resembles a time span of five periods of the signal. The 
measured gain at 0.5 Hz shows little difference with the model. Above 0.5 Hz 
a clear downward trend can be noticed. This trend is predicted by the model, 
but at higher frequencies. The phase offset is no more than 20 below 1.3 Hz. 
Beyond this, it increases to a maximum error of 55.
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FIGURE 10. Bode plot that shows the frequency response of the input steer 
angle γ to output roll angle p. The lines are the Bode plots calculated with 
the theoretical model. Every dot is the mean value of all measurements on a 
specific frequency. The size of the dots shows how many measurements it 
includes. Every dot resembles a time span of five periods of the signal. We see 
that for 1 Hz and less, the gain difference is within 10% error margin. At ca. 1.5 
Hz, however, we see that all measured gains are considerably greater than 
expected, but this peak is not seen anymore above 2 Hz. The measured phase 
shift, differs within 20 margin up to 1 Hz. At higher frequencies, this offset 
increases to a maximum error of more than 55 below expected values.
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and roll angle always have a phase difference of exactly 
90°, both in theory and measurement. Figure 11 shows that 
the theoretical phase offset of the yaw rate is maximum for 
all states around 1.1 Hz. This cannot be confirmed by the 
measurements. Interestingly, the theoretical yaw rate phase 
plot for V = 7.5 and V = 9.0 m/s are identical, but the phase 
of V = 8.0 m/s is slightly lower. This cannot been confirmed 
with the data. As with the gain, the reliability of the mea-
surements decreases with increasing input frequency.

The major frequency content of the steer input of the TU 
Delft Solar Boat 2016 normally lies below 1 Hz. Hence, the 
model predictions are useful and valuable for the TU Delft Solar 
Boat Team when normal operations are considered. Maneuvers 
with a high frequency content above 1 Hz can also be encoun-
tered, e.g. when the pilot has to recover rapidly from a sudden 
roll motion due to crosswind. For these sorts of situations, the 
model predictions can only be taken as a coarse reference.

During the derivation of the equations of motion in Section 
2, some dynamical effects were ignored that may influence 
model accuracy. These are:

■■ Sensor noise was noticeable in the yaw rate and roll rate 
measurements, especially at high steer input frequen-
cies when the input amplitude was below 5°, see Figure 
8. The low signal-to-noise ratio may partly explain the 
large offsets in the Bode plot that can be seen in Sec-
tion 4: noise increases the measured output signal and 
hence the relative gain. This effect can be reduced by 
filtering techniques.

■■ Flow over the rear hydrofoil is not only determined by 
boat motions, but also by the propeller flow field and 
induced wake of the front hydrofoil. Since the propeller of 
the boat is in front of the strut, as shown in Figure 2, a ro-
tational flow field is generated. This violates the assump-
tion of uniform, linear flow fields over the entire wings 
and struts and create unpredicted lift force changes.

■■ The pilot experiences that the boat “feels more sensitive to 
steer input when a cargo ship has just passed”. Cargo ships 
and variable wind caused disturbances in the water and 
the air. This may explain some of the differences between 
theory and experimental data points.

■■ The TU Delft Solar Boat 2016 has a finite stiffness, causing 
possible resonance modes that change the relative angles 
between the wings and struts. For example, torsional 
vibration motion of the hull along the boat Xb-axis can 
cause a difference in angle of attack at both struts. Also, 
torsional vibration along the rudder Z-axis might be 
induced by the steer actions of the pilot. This would cause 
different angles of attack along the front strut. Thus, 

under high frequency steer inputs, the infinite stiffness 
assumption may be violated.

■■ The assumption that all lifting surfaces operate with a 
constant and linear relation between lift coefficient CL 
and angle of attack α may be violated at high steer input 
frequencies. For example, the more rapid the front strut is 
rotating about the steer axis, the lower the uniformity of the 
local velocity field. So, the assumption of a constant angle 
of attack does not hold.

Conclusions and Recommendations
This section explains the conclusions that are drawn from the 
experimental validation of the single-track hydrofoil boat mod-
el. Furthermore, recommendations are given on applications of 
the developed model and future research topics are suggested.

Conclusion
This paper presents a method from aircraft flight dynamics 
to establish a novel model for the dynamical behavior of a 
single-track hydrofoil boat. The boat was modeled as a sys-
tem of four bodies interconnected by idealized joints. Only 
the asymmetric motions were considered. The model state 
is therefore fully determined by sideslip v, roll angle 

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)
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, roll 
rate p and yaw rate r. The only model input on the system is 
the pilot steering action, leading to a rudder steer angle γ.

The inverted T-shaped hydrofoils were modeled as four 
lifting surfaces that operate in the range where lift coefficient 
and angle of attack are linear. These four lifting surfaces are 
the front strut, rear strut, front wing and rear wing. The lift 
forces that are generated depend on the magnitude of the 
state variables and steer input. These influence the sum of 
forces and sum of moments about the center of mass of the 
boat. Under the assumption of small changes in angles of 
attack, the linearized state derivatives have been successful-
ly calculated. With this, a linear time-invariant state space 
system has been created.

Flight tests have been performed under low-wind condi-
tions. Different steer input frequencies and flight velocities 
were given to the boat and its roll angle, roll rate and yaw 
rate were recorded. Model predictions and actual flight test 
data have been compared in both the frequency domain and 
time domain. From this, it was found that the model almost 
exactly predicts the state of the boat for input frequencies 
of 1 Hz and lower. For frequencies above 1 Hz, the number 
of reliable measurement data is low and is scattered on the 
Bode plot. Nevertheless, the model can be used for accurately 
predicting the dynamics of single-track hydrofoils under typi-
cal flight conditions, i.e. low wind and water disturbances.
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Therefore, it is concluded that the dynamical model of the 
TU Delft Solar Boat has been successfully validated by ex-
periment up to steer inputs of 1 Hz. This means that future 
single-track hydrofoil boat designs can be simulated with 
this model before they are built, so that stability and agility 
can be evaluated.

Recommendations
An example of an application of the validated dynamical mod-
el is to use it in a real-time hydrofoil flight simulator, compa-
rable with existing aircraft flight simulators. Teams such as 
the TU Delft Solar Boat Team could use these simulators to 
train pilots to fly the design before it will be built. See Figure 
12 for a screenshot of one of the simulators. This simulator 
has recently been extended with the dynamical model, and 
is currently in the software test phase.

Besides this, the model can be used to predict the per-
formance of a steer controller, should this be desired. Such 
a controller could be used to keep a single-track hydrofoil 
boat upright and on course. This would greatly reduce the 

control effort of the human pilot. It is expected that large 
single-track hydrofoil ships would need such a control-
ler.[2, p. 139] The steer controller could be implemented in 
reality by electronic or mechanical means, see for example the 
patent of Yokoyama and Horiuchi.[4]

To improve model accuracy even more than what has 
been achieved, an optimization can be done on the boat 
parameters. For example, the boat mass moments of inertia 
are not exactly known. An optimization algorithm can be 
used to minimize the error between model output and 
measurement output.

Different topics for future research are recommended. 
Firstly, the reasoning and methods that were applied to the 
modeling and validation of the asymmetric dynamics can 
also be used to validate models for the symmetric dynam-
ics. In this case, only two lifting surfaces and one inertia 
term will need to be taken into account, which should 
make such a model relatively easy to develop and validate. 
The derivations from Section 2 can be followed to obtain a 
state-space model, see also.[6, p. 112] Also, the same sensor 
setup can be used.

Secondly, research can be done to find higher order 
effects on the dynamics that were assumed negligible during 
this project. Some of these, such as the propeller flow or 
internal resonances of the structure, may have had an effect, 
see Section 5. 
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Appendix

A. Digital Height Control
To enable the boat to fly at a constant 
height above the water, a control 
system needs to be implemented that 
corrects the hydrofoil angle of attack. In 
this way, the wings always produce the 
right amount of lift. While most boats 
seem to use mechanical control systems 
to achieve this, the pitch and height 
control of the TU Delft Solar Boat 2016 
are electronics based. This removes the 
need for a mechanical height sensor, 
which has significant drag. Also, it 
allows for digital tuning of the boat 
height and pitch, based on multiple sensor inputs. In the 
control loop, the sensors described in Section 3 are all used.

With these sensors, the full motion and orientation of 
the boat can be reconstructed. Typical height measurement 
output of the ultrasonic height sensor can be seen in Figure 6 
in Section 3.

Five mbedTM development boards are used in the boat 
to collect data from the sensors and from the pilot input. 
The control error is defined as the difference between the 
measured height and the reference height. Because the 
ultrasonic sensor does measure distance between the boat 
and water in the Zb, the roll angle is measured as well and 
used to correct the height measurement. The error function 
is further influenced by the boat pitch angle and pitch rate. 
Based on this error, a simple digital control loop on the 
mbed calculates the required wing angle update and sends 
this command to the actuator.

The actuator is a maxon motor with linear positioning 
spindle and encoder. It is located in the front side of the 
hull, directly above the front strut. The encoder keeps track 
of the motor position, while the linear spindle transfers the 
rotational motion to a linear motion. A carbon fiber rod in 
the front strut transfers this motion to the front wing. The 
effect is a change in control angle δf , as shown in Figure 14. 
This process is repeated at a rate of ca. 10 Hz, such that any 
disturbances in height are quickly compensated. To minimize 
the required control energy and improve take-off capability, 
a canard configuration was chosen.[13]

The control loop and data acquisition software on the 
control boards can be updated during tests, to find the opti-
mum settings or “debug” the boat. See Figure 15. Also, the 
collected data and control system constants can be read and 
set by the crew remotely, using a laptop with mobile network 

communication. This enables the pilot to focus on operating 
the boat, while other crew members monitor performance. 
This is essential during long races, where changes in incom-
ing solar power, wind, battery state, etc. require constant 
updates in the race strategy.

B. Derivative Coefficients
B.1 Roll damping of elliptical wing
The wings cause a damping of the roll moment. The roll 
damping of the wings is denoted by Lp,damp. We derive an 
analytical expression for this damping here.

Let s denote the semi-span of an elliptical wing surface 
based on a single airfoil design. Let c0 denote the root chord 
of the hydrofoil. The wing is oriented with its span along the 
y-axis and travelling in x-direction. A roll motion causes a 
local change in lift along the span.

To find the roll damping moment induced by pure roll 
motion, Ldamp , we can ignore the steady-state symmetric 
lift distribution along the wing span and only consider the 
moment caused by the local lift change δℓ:
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δ� · y (39)

where the minus sign indicates a damping effect. The local lift change is assumed to be linear
with the change in local angle of attack. We use the lift equation for infinite segments along
y-direction:

Ldamp = −
∫ s

−s

1

2
ρV 2δS(y)CLα∆α(y) · y (40)

The local change in angle of attack is the ratio between the rotation induced speed in vertical
direction and the boat horizontal speed:

∆α(y) =
py

V
(41)

The local surface area of an element is:

δS(y) = c(y)dy (42)

with the local chord length c(y) given by the equation for an ellipsoid:

c(y) = c0

√
1−

(y
s

)2
(43)

where s is the semi-span of the wing. Combining the above:

Ldamp = −1

2
ρV c0CLαp
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y2
√

1−
(y
s

)2
dy (44)

The integral term can be solved analytically and yields:

∫ s

−s
y2
√

1−
(y
s

)2
dy =

π

8
s3 =

π

64
b3 (45)

where we have rewritten to incorporate the full wing span. Root chord c0 can be written in
terms of wing surface area and span using the equation for surface area of an ellipsoid:

c0 = 2
S

πs
=

4S

πb
(46)

Substitution of the above gives for the roll damping moment:

Ldamp = −1

2
ρV SCLα

b2

16
p (47)

The derivative dL/dp or Lp,damp is used in the state matrix:

Lp,damp = −1

2
ρV SCLα

b2

16
(48)

Note that the total coefficient Lp depends on roll damping of the two elliptical wings and the
submerged parts of the two struts.

23

(39)

where the minus sign indicates a damping effect. The local 
lift change is assumed to be linear with the change in local 
angle of attack. We use the lift equation for infinite segments 
along y-direction:
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The local change in angle of attack is the ratio between the 
rotation induced speed in vertical direction and the boat 
horizontal speed:

FIGURE 13. The Senix ToughSonic REMOTE 14[12] constantly measures the 
height of the boat.
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B Derivative Coefficients
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with the local chord length c(y) given by the equation for an 
ellipsoid:
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with the local chord length c(y) given by the equation for an ellipsoid:

c(y) = c0

√
1−

(y
s

)2
(43)

where s is the semi-span of the wing. Combining the above:

Ldamp = −1

2
ρV c0CLαp

∫ s

−s
y2
√

1−
(y
s

)2
dy (44)

The integral term can be solved analytically and yields:

∫ s

−s
y2
√

1−
(y
s

)2
dy =

π

8
s3 =

π
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b3 (45)

where we have rewritten to incorporate the full wing span. Root chord c0 can be written in
terms of wing surface area and span using the equation for surface area of an ellipsoid:

c0 = 2
S

πs
=

4S

πb
(46)

Substitution of the above gives for the roll damping moment:

Ldamp = −1

2
ρV SCLα

b2

16
p (47)

The derivative dL/dp or Lp,damp is used in the state matrix:

Lp,damp = −1

2
ρV SCLα

b2

16
(48)

Note that the total coefficient Lp depends on roll damping of the two elliptical wings and the
submerged parts of the two struts.

23

(46)

Substitution of the above gives for the roll damping moment:

B Derivative Coefficients

B.1 Roll damping of elliptical wing

The wings cause a damping of the roll moment. The roll damping of the wings is denoted by
Lp,damp. We derive an analytical expression for this damping here.

Let s denote the semi-span of an elliptical wing surface based on a single airfoil design. Let c0
denote the root chord of the hydrofoil. The wing is oriented with its span along the y-axis and
travelling in x-direction. A roll motion causes a local change in lift along the span.

To find the roll damping moment induced by pure roll motion, Ldamp , we can ignore the
steady-state symmetric lift distribution along the wing span and only consider the moment
caused by the local lift change δ�:

Ldamp = −
∫ s

−s
δ� · y (39)

where the minus sign indicates a damping effect. The local lift change is assumed to be linear
with the change in local angle of attack. We use the lift equation for infinite segments along
y-direction:

Ldamp = −
∫ s

−s

1

2
ρV 2δS(y)CLα∆α(y) · y (40)

The local change in angle of attack is the ratio between the rotation induced speed in vertical
direction and the boat horizontal speed:

∆α(y) =
py

V
(41)

The local surface area of an element is:

δS(y) = c(y)dy (42)

with the local chord length c(y) given by the equation for an ellipsoid:

c(y) = c0

√
1−

(y
s

)2
(43)

where s is the semi-span of the wing. Combining the above:

Ldamp = −1

2
ρV c0CLαp

∫ s

−s
y2
√

1−
(y
s

)2
dy (44)

The integral term can be solved analytically and yields:

∫ s
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y2
√
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(y
s

)2
dy =

π

8
s3 =

π
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where we have rewritten to incorporate the full wing span. Root chord c0 can be written in
terms of wing surface area and span using the equation for surface area of an ellipsoid:

c0 = 2
S

πs
=

4S

πb
(46)

Substitution of the above gives for the roll damping moment:

Ldamp = −1

2
ρV SCLα

b2

16
p (47)

The derivative dL/dp or Lp,damp is used in the state matrix:

Lp,damp = −1

2
ρV SCLα

b2

16
(48)

Note that the total coefficient Lp depends on roll damping of the two elliptical wings and the
submerged parts of the two struts.

23

(47)

The derivative dL/dp or Lp,damp is used in the state matrix:

B Derivative Coefficients

B.1 Roll damping of elliptical wing

The wings cause a damping of the roll moment. The roll damping of the wings is denoted by
Lp,damp. We derive an analytical expression for this damping here.

Let s denote the semi-span of an elliptical wing surface based on a single airfoil design. Let c0
denote the root chord of the hydrofoil. The wing is oriented with its span along the y-axis and
travelling in x-direction. A roll motion causes a local change in lift along the span.

To find the roll damping moment induced by pure roll motion, Ldamp , we can ignore the
steady-state symmetric lift distribution along the wing span and only consider the moment
caused by the local lift change δ�:

Ldamp = −
∫ s

−s
δ� · y (39)

where the minus sign indicates a damping effect. The local lift change is assumed to be linear
with the change in local angle of attack. We use the lift equation for infinite segments along
y-direction:

Ldamp = −
∫ s

−s

1

2
ρV 2δS(y)CLα∆α(y) · y (40)

The local change in angle of attack is the ratio between the rotation induced speed in vertical
direction and the boat horizontal speed:

∆α(y) =
py

V
(41)

The local surface area of an element is:

δS(y) = c(y)dy (42)

with the local chord length c(y) given by the equation for an ellipsoid:

c(y) = c0

√
1−

(y
s

)2
(43)

where s is the semi-span of the wing. Combining the above:

Ldamp = −1

2
ρV c0CLαp

∫ s

−s
y2
√

1−
(y
s

)2
dy (44)

The integral term can be solved analytically and yields:

∫ s

−s
y2
√

1−
(y
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)2
dy =

π

8
s3 =

π
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where we have rewritten to incorporate the full wing span. Root chord c0 can be written in
terms of wing surface area and span using the equation for surface area of an ellipsoid:

c0 = 2
S

πs
=

4S

πb
(46)

Substitution of the above gives for the roll damping moment:

Ldamp = −1

2
ρV SCLα

b2

16
p (47)

The derivative dL/dp or Lp,damp is used in the state matrix:

Lp,damp = −1

2
ρV SCLα

b2

16
(48)

Note that the total coefficient Lp depends on roll damping of the two elliptical wings and the
submerged parts of the two struts.
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(48)

Note that the total coefficient Lp depends on roll damping 
of the two elliptical wings and the submerged parts of the 
two struts.

B.2 Roll-induced yaw of elliptical wing
In addition to the damping motion described above, the 
rolling motion of a wing causes a tilt in the local velocity 
vector of a wing element. E.g. when rolling to the right, the 
angle of attack of the right wing part increases and the local 
lift vector tilts forward, causing a negative yawing moment 
N . Assuming small angles, we get for the total yaw moment 
contribution of all wing elements:

B.2 Roll-induced yaw of elliptical wing

In addition to the damping motion described above, the rolling motion of a wing causes a tilt in
the local velocity vector of a wing element. E.g. when rolling to the right, the angle of attack of
the right wing part increases and the local lift vector tilts forward, causing a negative yawing
moment N . Assuming small angles, we get for the total yaw moment contribution of all wing
elements:

Nroll,wing = −
∫ s

−s
L(y) ·∆α(y)y (49)

The local lift coefficient is approximated by:

CL(y) = CL,nom + CLα∆α(y) (50)

where CL,nom is the nominal lift coefficient in steady, symmetric flight. Substituting the general
lift equation to eq. 49

Nroll,wing = −
∫ s

−s

1

2
ρV 2c(y)dy (CL,nom + CLα∆α(y)) ·∆α(y)y (51)

Substituting eq. 41 and eq. 43:

Nroll,wing = −1

2
ρV 2 p

V
c0

∫ s

−s
y2
√

1−
(y
s

)2 (
CL,nom + CLα

py

V

)
dy (52)

Splitting the integral:

Nroll,wing = −1

2
ρV 2 p

V
c0CL,nom

∫ s

−s
y2
√

1−
(y
s

)2
dy + CLα

p

V

∫ s

−s
y3
√

1−
(y
s

)2
(53)

The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:

Nroll,wing = −1

2
ρV SCL,nom

b2

16
p (54)

which yields the state space coefficient Np for one elliptical wing:

Np,wing = −1

2
ρV SCL,nom

b2

16
(55)

or equivalently:

Np,wing = −Lnom

V

b2

16
(56)

where Lnom indicates nominal wing lift in steady, symmetric flight.

B.3 Yaw-induced roll of elliptical wing

In addition to the above state couplings, a yaw rate r will create a local x-velocity increase ∆u
over a wing element. The corresponding lift difference across the wing span causes a rolling
moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:

Lyaw,wing = −
∫ s

−s
δ� · y (57)

where the minus sign is required because a positive yaw rate will cause a negative δ� on a
positive (right-wing) element dy, causing a positive rolling moment. Note that during a pure
yaw motion, the angle of attack and lift coefficient are not expected to change. So we can write:

Lyaw,wing = −
∫ s

−s

1

2
ρ (V +∆u(y))2 δS(y)CL,nom · y (58)

24

(49)

The local lift coefficient is approximated by:

B.2 Roll-induced yaw of elliptical wing

In addition to the damping motion described above, the rolling motion of a wing causes a tilt in
the local velocity vector of a wing element. E.g. when rolling to the right, the angle of attack of
the right wing part increases and the local lift vector tilts forward, causing a negative yawing
moment N . Assuming small angles, we get for the total yaw moment contribution of all wing
elements:

Nroll,wing = −
∫ s

−s
L(y) ·∆α(y)y (49)

The local lift coefficient is approximated by:

CL(y) = CL,nom + CLα∆α(y) (50)

where CL,nom is the nominal lift coefficient in steady, symmetric flight. Substituting the general
lift equation to eq. 49

Nroll,wing = −
∫ s

−s

1

2
ρV 2c(y)dy (CL,nom + CLα∆α(y)) ·∆α(y)y (51)

Substituting eq. 41 and eq. 43:

Nroll,wing = −1

2
ρV 2 p

V
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∫ s
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V
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Splitting the integral:
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2
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∫ s
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)2
(53)

The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:

Nroll,wing = −1

2
ρV SCL,nom

b2

16
p (54)

which yields the state space coefficient Np for one elliptical wing:

Np,wing = −1

2
ρV SCL,nom

b2

16
(55)

or equivalently:

Np,wing = −Lnom

V

b2

16
(56)

where Lnom indicates nominal wing lift in steady, symmetric flight.

B.3 Yaw-induced roll of elliptical wing

In addition to the above state couplings, a yaw rate r will create a local x-velocity increase ∆u
over a wing element. The corresponding lift difference across the wing span causes a rolling
moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:

Lyaw,wing = −
∫ s

−s
δ� · y (57)

where the minus sign is required because a positive yaw rate will cause a negative δ� on a
positive (right-wing) element dy, causing a positive rolling moment. Note that during a pure
yaw motion, the angle of attack and lift coefficient are not expected to change. So we can write:

Lyaw,wing = −
∫ s

−s

1

2
ρ (V +∆u(y))2 δS(y)CL,nom · y (58)

24

(50)

where CL,nom is the nominal lift coefficient in steady, sym-
metric flight. Substituting the general lift equation to eq. 49

FIGURE 14. Maximum (left) and minimum (right) control 
deflection angle of the front wing (δf ) .

FIGURE 15. During tests, the crew is able to change 
the data-acquisition and height control software to find 
optimum settings. Data can be tracked live via a server and 
imported to software.
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B.2 Roll-induced yaw of elliptical wing

In addition to the damping motion described above, the rolling motion of a wing causes a tilt in
the local velocity vector of a wing element. E.g. when rolling to the right, the angle of attack of
the right wing part increases and the local lift vector tilts forward, causing a negative yawing
moment N . Assuming small angles, we get for the total yaw moment contribution of all wing
elements:

Nroll,wing = −
∫ s

−s
L(y) ·∆α(y)y (49)

The local lift coefficient is approximated by:

CL(y) = CL,nom + CLα∆α(y) (50)

where CL,nom is the nominal lift coefficient in steady, symmetric flight. Substituting the general
lift equation to eq. 49

Nroll,wing = −
∫ s

−s

1

2
ρV 2c(y)dy (CL,nom + CLα∆α(y)) ·∆α(y)y (51)

Substituting eq. 41 and eq. 43:

Nroll,wing = −1

2
ρV 2 p

V
c0

∫ s

−s
y2
√
1−

(y
s

)2 (
CL,nom + CLα

py

V

)
dy (52)

Splitting the integral:

Nroll,wing = −1

2
ρV 2 p

V
c0CL,nom

∫ s

−s
y2
√
1−

(y
s

)2
dy + CLα

p

V

∫ s

−s
y3
√
1−

(y
s

)2
(53)

The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:

Nroll,wing = −1

2
ρV SCL,nom

b2

16
p (54)

which yields the state space coefficient Np for one elliptical wing:

Np,wing = −1

2
ρV SCL,nom

b2

16
(55)

or equivalently:

Np,wing = −Lnom

V

b2

16
(56)

where Lnom indicates nominal wing lift in steady, symmetric flight.

B.3 Yaw-induced roll of elliptical wing

In addition to the above state couplings, a yaw rate r will create a local x-velocity increase ∆u
over a wing element. The corresponding lift difference across the wing span causes a rolling
moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:

Lyaw,wing = −
∫ s

−s
δ� · y (57)

where the minus sign is required because a positive yaw rate will cause a negative δ� on a
positive (right-wing) element dy, causing a positive rolling moment. Note that during a pure
yaw motion, the angle of attack and lift coefficient are not expected to change. So we can write:

Lyaw,wing = −
∫ s

−s

1

2
ρ (V +∆u(y))2 δS(y)CL,nom · y (58)

24

(51)

Substituting eq. 41 and eq. 43:

B.2 Roll-induced yaw of elliptical wing

In addition to the damping motion described above, the rolling motion of a wing causes a tilt in
the local velocity vector of a wing element. E.g. when rolling to the right, the angle of attack of
the right wing part increases and the local lift vector tilts forward, causing a negative yawing
moment N . Assuming small angles, we get for the total yaw moment contribution of all wing
elements:

Nroll,wing = −
∫ s

−s
L(y) ·∆α(y)y (49)

The local lift coefficient is approximated by:

CL(y) = CL,nom + CLα∆α(y) (50)

where CL,nom is the nominal lift coefficient in steady, symmetric flight. Substituting the general
lift equation to eq. 49

Nroll,wing = −
∫ s

−s

1

2
ρV 2c(y)dy (CL,nom + CLα∆α(y)) ·∆α(y)y (51)

Substituting eq. 41 and eq. 43:

Nroll,wing = −1

2
ρV 2 p

V
c0

∫ s
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1−
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V

)
dy (52)

Splitting the integral:

Nroll,wing = −1
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∫ s
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The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:

Nroll,wing = −1

2
ρV SCL,nom

b2

16
p (54)

which yields the state space coefficient Np for one elliptical wing:

Np,wing = −1

2
ρV SCL,nom

b2

16
(55)

or equivalently:

Np,wing = −Lnom

V

b2

16
(56)

where Lnom indicates nominal wing lift in steady, symmetric flight.

B.3 Yaw-induced roll of elliptical wing

In addition to the above state couplings, a yaw rate r will create a local x-velocity increase ∆u
over a wing element. The corresponding lift difference across the wing span causes a rolling
moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:

Lyaw,wing = −
∫ s

−s
δ� · y (57)

where the minus sign is required because a positive yaw rate will cause a negative δ� on a
positive (right-wing) element dy, causing a positive rolling moment. Note that during a pure
yaw motion, the angle of attack and lift coefficient are not expected to change. So we can write:

Lyaw,wing = −
∫ s

−s

1

2
ρ (V +∆u(y))2 δS(y)CL,nom · y (58)

24

(52)

Splitting the integral:

B.2 Roll-induced yaw of elliptical wing

In addition to the damping motion described above, the rolling motion of a wing causes a tilt in
the local velocity vector of a wing element. E.g. when rolling to the right, the angle of attack of
the right wing part increases and the local lift vector tilts forward, causing a negative yawing
moment N . Assuming small angles, we get for the total yaw moment contribution of all wing
elements:

Nroll,wing = −
∫ s

−s
L(y) ·∆α(y)y (49)

The local lift coefficient is approximated by:

CL(y) = CL,nom + CLα∆α(y) (50)

where CL,nom is the nominal lift coefficient in steady, symmetric flight. Substituting the general
lift equation to eq. 49

Nroll,wing = −
∫ s

−s

1

2
ρV 2c(y)dy (CL,nom + CLα∆α(y)) ·∆α(y)y (51)

Substituting eq. 41 and eq. 43:

Nroll,wing = −1

2
ρV 2 p

V
c0

∫ s
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y2
√

1−
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)2 (
CL,nom + CLα
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)
dy (52)

Splitting the integral:

Nroll,wing = −1
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∫ s
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The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:

Nroll,wing = −1

2
ρV SCL,nom

b2

16
p (54)

which yields the state space coefficient Np for one elliptical wing:

Np,wing = −1

2
ρV SCL,nom

b2

16
(55)

or equivalently:

Np,wing = −Lnom

V

b2

16
(56)

where Lnom indicates nominal wing lift in steady, symmetric flight.

B.3 Yaw-induced roll of elliptical wing

In addition to the above state couplings, a yaw rate r will create a local x-velocity increase ∆u
over a wing element. The corresponding lift difference across the wing span causes a rolling
moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:

Lyaw,wing = −
∫ s

−s
δ� · y (57)

where the minus sign is required because a positive yaw rate will cause a negative δ� on a
positive (right-wing) element dy, causing a positive rolling moment. Note that during a pure
yaw motion, the angle of attack and lift coefficient are not expected to change. So we can write:

Lyaw,wing = −
∫ s

−s

1

2
ρ (V +∆u(y))2 δS(y)CL,nom · y (58)

24

(53)

The first integral is equal to eq. 45 and can be substituted by 

B.2 Roll-induced yaw of elliptical wing

In addition to the damping motion described above, the rolling motion of a wing causes a tilt in
the local velocity vector of a wing element. E.g. when rolling to the right, the angle of attack of
the right wing part increases and the local lift vector tilts forward, causing a negative yawing
moment N . Assuming small angles, we get for the total yaw moment contribution of all wing
elements:

Nroll,wing = −
∫ s

−s
L(y) ·∆α(y)y (49)

The local lift coefficient is approximated by:

CL(y) = CL,nom + CLα∆α(y) (50)

where CL,nom is the nominal lift coefficient in steady, symmetric flight. Substituting the general
lift equation to eq. 49

Nroll,wing = −
∫ s

−s

1

2
ρV 2c(y)dy (CL,nom + CLα∆α(y)) ·∆α(y)y (51)

Substituting eq. 41 and eq. 43:
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Splitting the integral:
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The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:

Nroll,wing = −1

2
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16
p (54)

which yields the state space coefficient Np for one elliptical wing:

Np,wing = −1

2
ρV SCL,nom

b2

16
(55)

or equivalently:

Np,wing = −Lnom

V

b2
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(56)

where Lnom indicates nominal wing lift in steady, symmetric flight.

B.3 Yaw-induced roll of elliptical wing

In addition to the above state couplings, a yaw rate r will create a local x-velocity increase ∆u
over a wing element. The corresponding lift difference across the wing span causes a rolling
moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:

Lyaw,wing = −
∫ s

−s
δ� · y (57)

where the minus sign is required because a positive yaw rate will cause a negative δ� on a
positive (right-wing) element dy, causing a positive rolling moment. Note that during a pure
yaw motion, the angle of attack and lift coefficient are not expected to change. So we can write:

Lyaw,wing = −
∫ s

−s

1

2
ρ (V +∆u(y))2 δS(y)CL,nom · y (58)
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. The second integral term becomes zero due to symme-
try. Eq. 46 can be substituted as well. We obtain:

B.2 Roll-induced yaw of elliptical wing

In addition to the damping motion described above, the rolling motion of a wing causes a tilt in
the local velocity vector of a wing element. E.g. when rolling to the right, the angle of attack of
the right wing part increases and the local lift vector tilts forward, causing a negative yawing
moment N . Assuming small angles, we get for the total yaw moment contribution of all wing
elements:

Nroll,wing = −
∫ s

−s
L(y) ·∆α(y)y (49)

The local lift coefficient is approximated by:

CL(y) = CL,nom + CLα∆α(y) (50)

where CL,nom is the nominal lift coefficient in steady, symmetric flight. Substituting the general
lift equation to eq. 49

Nroll,wing = −
∫ s
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ρV 2c(y)dy (CL,nom + CLα∆α(y)) ·∆α(y)y (51)

Substituting eq. 41 and eq. 43:
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Splitting the integral:
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The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:

Nroll,wing = −1

2
ρV SCL,nom

b2

16
p (54)

which yields the state space coefficient Np for one elliptical wing:

Np,wing = −1

2
ρV SCL,nom

b2

16
(55)

or equivalently:

Np,wing = −Lnom

V

b2

16
(56)

where Lnom indicates nominal wing lift in steady, symmetric flight.

B.3 Yaw-induced roll of elliptical wing

In addition to the above state couplings, a yaw rate r will create a local x-velocity increase ∆u
over a wing element. The corresponding lift difference across the wing span causes a rolling
moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:
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which yields the state space coefficient Np for one elliptical 
wing:
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The first integral is equal to eq. 45 and can be substituted by π
64b

3 The second integral term
becomes zero due to symmetry. Eq. 46 can be substituted as well. We obtain:
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moment Lyaw,wing. For one element with lift change δ�, we follow eq. 39 and 40 to get:
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positive (right-wing) element dy, causing a positive rolling moment. Note that during a pure
yaw motion, the angle of attack and lift coefficient are not expected to change. So we can write:
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The along-span speed change ∆u(y) is found by:The along-span speed change ∆u(y) is found by:

∆u(y) = −ry (59)

since a positive yaw rate reduces the velocity on a positive wing element, the minus sign is
required. For the TU Delft Solar Boat, the maximum ∆u is in the order of 0.3 m/s, which is
more than an order of magnitude below minimum take-off speed Vmin. Therefore, we can
linearise the quadratic term in eq. 58 and use (V +∆u(y))2 �= V 2 + 2V∆u(y).

The integral term going with V 2 can be shown to be just the nominal wing lift in steady,
symmetric flight. This causes no yawing moment. With the term 2V∆u(y), we obtain:

Lyaw,wing = −1

2
ρCL,nom · 2V

∫ s

−s
∆u(y)δS(y) · y (60)

Substituting eq. 42, 43 and 59 leads to:
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(y
s

)2
dy (61)

With the substitutions from eq. 45, eq. 46 and s = b
2 we can simplify this to:

Lyaw,wing =
1

2
ρV SCL,nom

b2

8
· r (62)

And we find the state derivative Lr,wing:

Lr,wing =
1

2
ρV SCL,nom

b2

8
(63)

his term shows that the wings will generate a positive rolling moment when the boat has a
positive yaw rate.

C Other figures

Below are some figures that were not considered essential in the main body text, but which may
provide extra insight.
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FIGURE 16. The three-step transformation from the Earth 
reference frame to the body-fixed reference frame. The 
first of three consecutive rotations is a Z-axis rotation 
over the yaw angle. A negative yaw angle −

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)

8

 was taken 
for illustrative purposes. Next, an Y-axis rotation over the 
pitch angle θ aligns the intermediate body frame with the 
aerodynamic reference frame. Finally, a rotation over roll 
angle 

tests are performed with a pilot that does not move. For example, the pilot does not lean
during cornering.

Hydrodynamic constants do not change with velocity. This means that the lift coefficients,
CL, are assumed to be independent of the Reynolds number [8]. It means that the dynamical
model may not be accurate for velocities far from the reference velocity that was used to find
the coefficients, which was ca. 10 m/s.

Hydrofoil drag acts in the XZ-plane only. This means that only lift forces contribute to yaw
and roll moments. In reality, a roll motion will cause a higher lift on one side of the hydrofoil,
leading to a higher local drag. Compared to lift force, this drag effect is negligible.

With the above assumptions and linearization, we can rewrite the equations of motion and ki-
nematic equations from Subsection 2.2. There are no disturbances, so the external forces and
moments are only the hydrodynamic forces and moments. From here on, let (L,M,N)T denote
the hydrodynamic moments about the Xb, Yb and Zb axes respectively. Let the hydrodynamic
force in Yb-direction Fy,dyn be denoted by Y . Also, linearized derivatives are written with nota-

tion yx = dy
dx . So for example, Np =

dN
dp denotes the effect of a roll rate p on the Zb-axis moment

N . We obtain:

mgφ+ Yvv + Yv̇v̇ + Ypp+ Yrr + Yγγ = m (v̇ + rV )

Lvv + Lpp+ Lrr + Lγγ = Ixxṗ− Ixz ṙ

Nvv +Nv̇ v̇ +Npp+Nrr +Nγγ = Izz ṙ − Ixz ṗ

ψ̇ = r

φ̇ = p

(12)

2.4 State-Space Model of Asymmetric Motions

To describe the lateral boat dynamics, the asymmetric equations of motion from Eq. 12 were
rewritten to a continuous linear time-invariant state-space model. The dynamics are described by:

ẋ(t) = Ax(t) +Bu(t) (13) y(t) = Cx(t) (14)

with x(t) the state vector that describes the boat dynamics, A the state matrix that contains

the state derivative coefficients, B the input matrix that relates the system input to the state
change, C the output matrix (the identity matrix) and y the output vector. From Eq. 12, it
can be seen that only four states are required to describe the motion and orientation of the boat.
These are the velocity in Yb-direction, roll angle, roll rate and yaw rate:

x(t) =
[
v, φ, p, r

]T

Under our assumptions, the steering angle γ is the only system input. It is purely controlled by
the human pilot. When a steering angle is applied, the front strut acts as a rudder and generates
a lift pointing in the Yb-axis direction. This lift has its center of pressure located on the rotation
axis of the front strut, so no moment is generated that influences the steering angle. So we have:

u(t) = γ(t) (15)

To make the state matrix easily readable, we define inertia factors K:

Kxx =
Ixx

IxxIzz − Ixz
2 (16)

Kzz =
Izz

IxxIzz − Ixz
2 (17)

Kxz =
Ixz

IxxIzz − Ixz
2 (18)

8

 is required. Obtained from [14].

C. Other figures
Below are some figures that were not considered essential in the main body text, but which may provide extra insight.

FIGURE 17. The sine-like input on the steer, given by 
the pilot, causes a rolling motion of the boat during data 
collection for dynamic model validation. Low-frequency 
steering input keeps the boat in upright position and is 
ignored in the data analysis.
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FIGURE 18. The boat has successfully competed in the 
Dutch Solar Challenge 2016. Shown here is the neck-
to-neck race against the triple wing hydrofoil from Clafis 
Victron Energy Solar Boat Team.
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FIGURE 20. TU Delft Solar Boat Team 2016 with their Solar Boat.

An Experimentally Validated Dynamical Model of a Single-Track Hydrofoil Boat

FIGURE 19. Under gentle weather conditions, the boat is able to sail in bays and the open sea, such as here during the 
Monaco Solar Boat Challenge.


