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Abstract Finite element analysis using plate elements based on the absolute nodal coor-
dinate formulation (ANCF) can predict the behaviors of moderately thick plates subject to
large deformation. However, the formulation is subject to numerical locking, which com-
promises results. This study was designed to investigate and develop techniques to prevent
or mitigate numerical locking phenomena. Three different ANCF plate element types were
examined. The first is the original fully parameterized quadrilateral ANCF plate element.
The second is an update to this element that linearly interpolates transverse shear strains to
overcome slow convergence due to transverse shear locking. Finally, the third is based on a
new higher order ANCF plate element that is being introduced here. The higher order plate
element makes it possible to describe a higher than first-order transverse displacement field
to prevent Poisson thickness locking. The term “higher order” is used, because some nodal
coordinates of the new plate element are defined by higher order derivatives.

The performance of each plate element type was tested by (1) solving a comprehen-
sive set of small deformation static problems, (2) carrying out eigenfrequency analyses, and
(3) analyzing a typical dynamic scenario. The numerical calculations were made using MAT-
LAB. The results of the static and eigenfrequency analyses were benchmarked to reference
solutions provided by the commercially available finite element software ANSYS.

The results show that shear locking is strongly dependent on material thickness. Poisson
thickness locking is independent of thickness, but strongly depends on the Poisson effect.
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Poisson thickness locking becomes a problem for both of the fully parameterized element
types implemented with full 3-D elasticity. Their converged results differ by about 18 %
from the ANSYS results. Corresponding results for the new higher order ANCF plate ele-
ment agree with the benchmark. ANCF plate elements can describe the trapezoidal mode;
therefore, they do not suffer from Poisson locking, a reported problem for fully parameter-
ized ANCF beam elements. For cases with shear deformation loading, shear locking slows
solution convergence for models based on either the original fully parameterized plate ele-
ment or the newly introduced higher order plate element.

Keywords Higher order plate element · Multibody dynamics · Numerical locking

1 Introduction

This study was designed to investigate and develop techniques to avoid or mitigate numeri-
cal locking phenomena associated with moderately thick absolute nodal coordinate formu-
lation (ANCF) plate elements. A new higher order ANCF plate element is introduced to
avoid Poisson thickness locking phenomena. The fully parameterized plate elements under
investigation are based on an identical in-plane approximation, the only difference being the
kinematics description in the transverse direction. Each plate element is based on continuum
mechanics theory, and full three-dimensional strain and stress tensors are used in the formu-
lations. As a result, these continuum elements should be applicable for thin and thick plate
analyses. Any general material law based on continuum mechanics can be used. The ANCF
elements do not use geometrical approximations, which is seldom the case for conventional
structural finite elements.

Nonlinear continuum plate/shell elements have been the subject of active research for
more than four decades. Continuum plate/shell elements often use rotation parameters in-
stead of gradient vectors. Continuum shell elements with three-dimensional stresses and
strains can be degenerated to behave as shell elements, so the kinematic and constitutive
shell assumptions are acceptable. See, for example [1]. The isoparametric continuum shell
element (known as the A–I–Z shell element) is based on the Mindlin/Reissner hypothesis.
The element includes three translational and two rotational parameters at each nodal loca-
tion. It suffers from shear locking, which can be alleviated, for example, by introducing
independent linear interpolation of transverse shear deformations in a four-node shell ele-
ment known as a MITCH4 shell element [13]. The original MITCH4 element was derived
from the A–I–Z shell element using the same five node parameters. Its only difference is that
using mixed interpolation, the MITCH4 element avoids shear locking. Another approach to
avoiding shear locking is use of higher order elements; see, for example, [3].

For large strain cases, thickness deformation should be taken into account. In the thick-
ness deformation description, the interpolation order for displacement in the thickness direc-
tion should be greater than first order, i.e., not linear. Otherwise, element types implemented
with full three-dimensional elasticity will be subject to Poisson thickness locking. To avoid
this problem, a 7-parameter formulation was derived in [8] that introduces two extra param-
eters at a node. This allows for linear stretching in the thickness direction. Furthermore, a
shell element based on the MITCH4 formulation was introduced in [36]. It uses 22 degrees
of freedom, including five generalized displacements at the nodal location and two degrees
of freedom for linear thickness stretching.

The absolute nodal coordinate formulation was proposed by Shabana for analysis of large
deformations in multibody applications [31]. This finite element approach describes beam
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and plate elements using absolute nodal positions and position gradients. In the formulation,
gradient coordinates that are partial derivatives of the position vector are used to describe
cross section or fiber orientations and deformations. All nodal coordinates are described in
an inertial frame, so the ANCF is a total Lagrangian formulation.

Benefits offered by the ANCF include a simplified description for the equations of mo-
tion with a constant mass matrix [33]. Because ANCF element configuration is defined using
a global description, estimating contact surfaces and describing geometric constraints, such
as for a sliding joint, are straightforward—particularly when compared to the floating frame
of reference formulation [34]. On the other hand, describing nonconservative forces, such as
internal damping, in the formulation is cumbersome [14]. The ANCF’s use of fully param-
eterized elements brings about another disadvantage. Fully parameterized elements include
high frequency transverse deformation modes that are, in fact, approximately two times
higher than the frequencies for the common shear modes [15]. However, high frequencies
due to shear deformation dominate in fine mesh refinement cases due to the different order
of discretization in the transverse and axial directions [22].

The ANCF formulation can be applied to conventional as well as shear deformable beam
and plate elements. In shear deformable elements, beam and plate elements can be described
as a continuum. Unlike conventional beam and plate elements, the position gradients for
material points within the element are displacement field derivatives. In continuum beam
and plate/shell elements, the kinematic and constitutive assumptions can be relaxed. Strain
and stress quantities are frame-indifferent, enabling numerical model description for large
deformation problems. This can be accomplished, for example, using a nonlinear material
model based on hyperelasticity [7, 19].

The first ANCF plate element was developed by Shabana and Christensen [32]. This el-
ement was based on classical (Kirchoff–Love) plate theory. Rotation parameters were used
only to describe bending deformation. To account for shear and thickness deformation, a
fully parameterized quadrilateral plate element was developed [25]. Full-parameterization
indicates that a position vector and position vector gradients are used as variables at nodal
locations. The use of fully parameterized plate/shell elements makes it possible to describe
fiber deformation. However, the original fully parameterized plate element especially suf-
fers from slow convergence due to transverse shear locking because the transverse gradient
vector and in-plane gradient vectors contain different polynomial orders. This means that for
the original fully-parameterized plate element, the rotation of a transverse fiber is described
by linear interpolation using in-plane coordinates, and the rotation of a longitudinal fiber is
described using quadratic interpolation. The unbalance of the base functions leads to overly
large shear strain, which can be alleviated using mixed interpolation.

A fully parameterized quadrilateral ANCF plate element including mixed interpola-
tion, i.e., the use of linearized shear angles, was introduced to overcome slow convergence
brought about by shear locking and curvature locking [24]. In [21], which was a starting
point for this study, fully parameterized plate elements are compared. Dmitrochenko et al.
introduced linear shear deformable triangular and rectangular ANCF plate elements with-
out in-plane gradient vectors [10]. Linear interpolation results in fewer degrees of freedom
and simpler elastic forces; only one integration point can be used to integrate for the strain
energy of bending and in-plane deformation.

Recent studies have shown that B-spline geometries can be converted to produce an
ANCF plate element geometry description with simple linear mapping if polynomial order
and degree of continuity are identical [23]. Converting B-spline representations to ANCF-
based finite element descriptions makes it possible to control the number of degrees of free-
dom within the finite element model, which allows an ANCF-based finite element mesh
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to be constructed directly from the B-spline representation. This, in turn, can be used to
develop pre- and post-processing procedures for the ANCF [28].

Higher than first-order linear interpolation for displacement in the thickness direction
prevents Poisson thickness locking in the studied ANCF plate element. An accurate descrip-
tion of thickness deformation is important for continuum plate elements based on three-
dimensional elasticity. The advantages and disadvantages of these plate elements are demon-
strated here with a number of simple numerical examples. Their verification is accomplished
with numerical examples of thin and thick plates. Moderately thick plate elements should be
suitable for analysis where transverse shearing deformations must be considered. However,
moderately thick plate elements should also be suitable for thin plate problems where the
effect of transverse shearing deformations can be neglected without losing accuracy. Here,
the elastic forces of the plate elements are integrated using a full Gaussian integration to
show that the elements are performing properly.

The following paragraphs (Sect. 2) describe the kinematics of the fully parameterized
plate elements. Section 3 introduces the updated fully parameterized plate element with
linearized shear angles. Section 4 describes the higher order plate element newly introduced
by this study. Section 5 offers general expressions for mass matrices, elastic forces, and
external forces. Section 6 offers numerical tests for the thin plate element, and Sect. 7 covers
a few thick plate numerical tests. Using a modified material model to eliminate thickness
locking is discussed in Sect. 8, and numerical tests of dynamic performance are presented in
Sect. 9. Finally, Sect. 10 discusses the different locking phenomena for ANCF plate elements
and offers some conclusions.

2 The kinematics of a fully parameterized plate element

The fully parameterized plate element introduced by Mikkola and Shabana [25] is desig-
nated ANCF-P48. It is a four-node quadrilateral element with 48 degrees of freedom. Three
degrees of freedom are for position and nine are for displacement gradients at each node.
In ANCF elements, kinematics is expressed using spatial shape functions and global coor-
dinates, similarly to conventional solid elements. The position of an arbitrary particle in the
isoparametric fully parameterized plate element can be interpolated in the global fixed frame
as follows:

r = Sm(x)e, (1)

where Sm is a shape function matrix expressed using local element coordinates x, and
e = e(t) is the vector of nodal coordinates. The kinematics of the element in the refer-
ence configuration at time t = 0 can be described as r0 = Sm(x)e0, where e0 = e(0). The
fully parameterized undeformed plate element in the current configuration with dimensions
of width lx , length ly , and thickness lz is shown in Fig. 1.

The vector of nodal coordinates at node i can be written as follows:

e(i) =
[
r (i)T r (i)T

,x r (i)T

,y r (i)T

,z

]T ; i = 1, . . . ,4, (2)
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Fig. 1 Undeformed plate
element with its dimensions in
the current configuration

where r is the position vector of the element, and x, y, and z are local coordinates. The
following notation for partial derivatives is used here:

r (i)
,α =

⎡
⎢⎢⎣

r
(i)

1,α

r
(i)

2,α

r
(i)

3,α

⎤
⎥⎥⎦ = ∂r (i)

∂α
; α = x, y, z.

The interpolation functions for position are based on the following set of basis polynomials:

[
1, x, y, z, xz, yz, yx, x2, y2, x3, y3, x2y, y2x, xyz, x3y, xy3

]
. (3)

Note that the basis polynomials in Eq. (3) are incomplete, so the element only has linear
terms in the transverse coordinate z. Accordingly, the displacement distribution is linear in
the element’s transverse direction. The interpolation for position is cubic in the in-plane co-
ordinates x and y. The shape functions can be presented using local normalized coordinates;
such as ξ, η, ζ,∈ [−1 . . .1]. The shape functions can be written as follows when the local
coordinate system x, y, z is placed along the middle of the element.

S1 = (−1 + ξ)(1 − η)(ξ 2 + ξ + η2 + η − 2)

8
, S2 = lx(1 − η)(1 + ξ)(−1 + ξ)2

16
,

S3 = ly(1 − ξ)(η + 1)(−1 + η)2

16
, S4 = lzζ(−1 + ξ)(−1 + η)

8
,

S5 = (1 + ξ)(−1 + η)(ξ 2 − ξ + η2 + η − 2)

8
, S6 = lx(1 − ξ)(−1 + η)(1 + ξ)2

16
,

S7 = ly(1 + ξ)(η + 1)(−1 + η)2

16
, S8 = lzζ(1 + ξ)(1 − η)

8
,

S9 = (1 + ξ)(−η − 1)(ξ 2 − ξ + η2 − η − 2)

8
, S10 = lx(−1 + ξ)(η + 1)(1 + ξ)2

16
, (4)

S11 = ly(1 + ξ)(−1 + η)(η + 1)2

16
, S12 = lzζ(1 + ξ)(η + 1)

8
,

S13 = (−1 + ξ)(η + 1)(ξ 2 + ξ + η2 − η − 2)

8
, S14 = lx(1 + ξ)(η + 1)(−1 + ξ)2

16
,
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S15 = ly(−1 + ξ)(1 − η)(η + 1)2

16
, S16 = lzζ(η + 1)(1 − ξ)

8

where ξ = 2x/lx , η = 2y/ly , and ζ = 2z/lz. The shape functions can be represented in
matrix form as

Sm = [
S1I S2I S3I . . . SnsI

]
(5)

where I is a 3 × 3 identity matrix and ns is the number of shape functions. Because of the
isoparametric property of the element, the kinematics (1) can also be expressed in terms of
the local normalized coordinates r = Sm(ξ, η, ζ )e. The strains can be obtained using the
Green strain tensor E, which can be written for the plate element as

E = 1

2

(
F T F − I

)
, (6)

where F is the deformation gradient. The deformation gradient can be shown in terms of
the relationship of deformations between the initial r0 = Sme(t = 0) = Sme0 and current
configuration r as follows:

F = ∂r

∂r0
= ∂r

∂x

(
∂r0

∂x

)−1

. (7)

Using the engineering notations, the strains can be written in vector form as

ε = [Exx Eyy Ezz 2Eyz 2Exz 2Exy]T . (8)

3 The kinematics of a plate element with linearized shear angles

The fully parameterized plate element with linearized shear angles [24], designated here
as ANCF-P48lsa, leads to an improved definition of elastic forces. The use of improved
definition overcomes shear and curvature locking. The updated element is based on the
same in-plane interpolation functions as the original fully parameterized plate element [25].
In contrast to the ANCF-P48, however, fiber deformation of the ANCF-P48lsa plate element
has been modified to linearize transverse shear deformation. This approach to alleviating
shear locking has been demonstrated widely with classical MITCH shell elements [13].
Shear locking can also be avoided by applying the Hellinger–Reissner variational principle
as was demonstrated with an ANCF beam element in [30]. Slow convergence as a result of
shear locking also can be improved by adding shape function terms; for example, in higher
order beam elements based on the ANCF [16].

The position of an arbitrary particle in the ANCF-P48lsa plate element can be expressed
in the global fixed frame as follows:

re = r|z=0 + A1sA2sn̂z. (9)

The vector n̂ describes the unit transverse vector of the midplane, which can be expressed
with the aid of gradient vectors accordingly.

n̂ = r ,x × r ,y

‖r ,x × r ,y‖
∣∣∣∣
z=0

. (10)
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The vector n̂ is normal to the element midplane. Therefore, it is invariant with respect to
transverse shear deformation. Its normalization is cumbersome, but it avoids error due to
shrinking. The matrices A1s and A2s are used to describe transverse shear deformation. By
assuming that the shear angles are small and by applying the Rodrigues rotation formula,
these matrices can be obtained as follows:

A1s = I + r̃ ,x sinγ1 + 2r̃2
,x sin2 γ1

2
≈ I + r̃ ,xγ1, (11a)

A2s = I + r̃ ,y sinγ2 + 2r̃2
,y sin2 γ2

2
≈ I + r̃ ,yγ2 (11b)

where γ1 and γ2 are the shear angles with respect to gradient vectors r ,x and r ,y that define
the direction of rotation. A skew-symmetric matrix r̃ ,x is determined by the unit vector r̂ ,x .
And respectively, a skew-symmetric matrix r̃ ,y is determined by the unit vector r̂ ,y . Taking
advantage of ANCF properties, the shear angles γ1 and γ2 can be derived from the gradient
vectors as follows:

sinγ1 = rT
,yr ,z

‖r ,y‖‖r ,z‖ ≈ γ1 and sinγ2 = − rT
,xr ,z

‖r ,x‖‖r ,z‖ ≈ γ2. (12)

In this case, shear angles in the element will be interpolated in-plane by fourth-order
polynomials. However, nonlinear interpolations for shear deformation can lead to slow con-
vergence, which can be alleviated by linearly interpolating the transverse shear deformations
[13]. For the ANCF-P48lsa plate element, shear locking is avoided using a similar approach
as in the MITC4 element [13], except the nodal values are used instead of sampling points
to guarantee zero parasitic strain distribution such as in [6]. Therefore, bilinear interpolation
is used for the shear angles. That is, the shear angles are interpolated linearly over the length
and width of the element using the following equations:

γ lin
1 =

4∑
i=1

N(i)γ
(i)

1 and γ lin
2 =

4∑
i=1

N(i)γ
(i)

2 (13)

where N(i) are bilinear shape functions at the midplane. With the linearized Rodrigues rota-
tion formula and the shear angles, the rotation matrices A1s and A2s take the form:

A1s ≈ I + r̃ ,xγ
lin
1 and A2s ≈ I + r̃ ,yγ

lin
2 . (14)

According to [24], for small displacements and when the element in the current con-
figuration is axis-parallel to the reference configuration, unit vectors can be expressed by
r̃ ,x = [

1 0 0
]T

and r̃ ,y = [
0 1 0

]T
. Using this simplification, the product of shear

matrices can be expressed as follows:

A1sA2s ≈

⎛
⎜⎜⎝

1 0 γ lin
2

0 1 −γ lin
1

−γ lin
2 γ lin

1 1

⎞
⎟⎟⎠ , (15)
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where the quadratic term γ lin
1 γ lin

2 is neglected. The strains can be obtained using the Green
strain (6). As a result, the strain components can be expressed as

Exx = 1

2

(
rT

e,xre,x − 1
)
, Eyy = 1

2

(
rT

e,yre,y − 1
)
,

Exy = 1

2

(
rT

e,xre,y

)
, Exz = 1

2

(
rT

e,xre,z

)
, Eyz = 1

2

(
rT

e,yre,z

)
.

(16)

The strain component Ezz in the element thickness direction cannot be defined with the
kinematics described by re (9). However, Ezz can be obtained from kinematics r of the
fully parameterized plate element (1) as follows:

Ezz = 1

2

(
rT

,zr ,z − 1
)
. (17)

The strain component Ezz can also be interpolated using bilinear shape functions, which will
prevent curvature locking (also called trapezoidal locking) [6, 17]. Therefore, the bilinear
strain distribution Elin

zz along the length and width of the element is used here. The strain
components can be shown in vector form ε as follows:

ε = [
Exx Eyy Elin

zz 2Exy 2Exz 2Eyz

]T
, (18)

where kinematics with linearized shear angles is used for all strain components except Elin
zz .

4 The kinematics of a higher order plate element

The first higher order ANCF elements introduced in [16] were beam elements. The higher
order terms were used to prevent shear locking. The term “higher order” was used, because
the nodal coordinates were defined by higher order derivatives. In [20], the trapezoidal mode
with higher order terms was employed to prevent Poisson locking. Here, a new higher order
four-node quadrilateral plate element is introduced to prevent Poisson thickness locking.
The new element, ANCF-P60, has second derivatives with respect to z as additional nodal
coordinates. The use of quadratic interpolation yields three additional nodal coordinates per
node, resulting in a plate element with 60 degrees of freedom. The interpolation polynomials
can be written as follows:

[
1, x, y, z, xz, yz, xy, xyz, x2, y2, x3, y3, x2y, xy2, x3y, xy3, z2, xz2, yz2, xyz2

]
, (19)

where the additional terms z2, xz2, yz2 and xyz2 account for the higher order deformation
mode in the thickness direction, thereby lessening Poisson thickness locking compared to
the fully parameterized plate elements ANCF-P48 and ANCF-P48lsa. The vector of nodal
coordinates at node i of the higher order ANCF-P60 plate element can be written as

e
(i)

60 =
[
r (i)T r (i)T

,x r (i)T

,y r (i)T

,z r (i)T

,zz

]T ; i = 1, . . . ,4, (20)

where r is the position vector of the element and x, y, and z are the local coordinates. The
ANCF-P60 shape functions are those given in (4) plus four additional shape functions given
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as follows:

S17 = lz
2ζ 2(−1 + η)(−1 + ξ)

32
, S18 = lz

2ζ 2(1 − η)(ξ + 1)

32
,

S19 = lz
2ζ 2(η + 1)(ξ + 1)

32
, S20 = lz

2ζ 2(η + 1)(1 − ξ)

32
.

(21)

As was done for the fully parameterized ANCF-P48 plate element, strains can be obtained
for ANCF-60 using the Green strain tensor.

5 Elastic forces, external forces, and the mass matrix

General hyperelastic materials can be used to define elastic forces in ANCF-based elements.
However, for the fully parameterized plate elements in this work, 3-D elasticity is described
using the simple linear elastic St. Venant–Kirchhoff material, a valid simplification in the
small strain regime. The constitutive relation in the case of the linear elastic St. Venant–
Kirchhoff material can be expressed as

S = 4D : E (22)

where the fourth-order tensor 4D includes the properties of the material. For an elastic
isotropic material, the relationship between the second Piola–Kirchhoff stress tensor and
the Green strain tensor takes the following form:

S = λI tr(E) + 2GE, (23)

where λ and G are the Lamé elastic constants. The strain energy of one plate element can
be written as

Wint = 1

2

∫

V

εT Dε dV (24)

and the vector of elastic forces can be defined as follows:

F e = ∂WT
int

∂e
. (25)

Externally applied forces are

F ext =
∫

V

bT Sm dV. (26)

where b is the vector of body forces. In the special case of gravity, the body forces can be
written as b = ρg; where ρ is mass density, and g is the field of gravity. Using the definition
for the kinematics of the ANCF plate element (Eq. (1)), the ANCF leads to a constant mass
matrix:

M =
∫

V

ρST
mSm dV. (27)

For the fully parameterized plate element with linearized shear angles, the mass matrix
would no longer be constant due to the kinematic description (Eq. (9)). However, the mass
matrix definition (Eq. (27)) can be also used for the fully parameterized plate element with
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linearized shear angles without losing accuracy, because its kinematic description within the
element differs slightly from the ANCF-P48 element. This influence decreases in value for
finer meshes.

6 Numerical tests of thin plate elements

The three ANCF plate elements examined in this study accommodate transverse shear de-
formation and a nonlinear relationship between strain and displacement. Although the first
numerical examples are for thin plate elements, ANCF plate elements are not restricted to
thin plate structures or small displacements. All plate element types should perform properly
as thin plate structures, so it is appropriate to test them using small displacement statics and
eigenvalue thin plate tests. Convergence is studied by varying mesh refinement. Numerical
tests used in this study, such as the cantilever plate and eigenfrequency analyses, were orig-
inally introduced by Schwab et al. to verify an ANCF thin plate element [29]. The regular
meshes n × n, as shown in Fig. 2, are used.

6.1 Cantilever plate

The first numerical test is a linear static analysis of an infinitely wide cantilever plate under
two different loading conditions. The first loading case is a distributed moment. The second
is a distributed transverse force along the free edge of the structure. The numerical solutions
are compared to the analytical exact solutions for transverse displacement, which in the case
of static analysis are defined as follows:

wexact = ML2

2D
+ FL2

3D
and ϕexact = ML

D
+ FL2

2D
, (28)

where M is distributed moment, F is distributed force along the loaded edge, and D is the
elastic plate constant D = EH 3/(12(1−ν2)). The results of the computations for transverse
displacement w and rotation ϕ along the loaded edge about the y-axis are normalized with
respect to the exact analytical results. The rotation angle ϕ, which defines the rotation due
to shear and bending for ANCF plate elements, can be expressed as follows:

ϕ = arccos
rT

0,zr ,z

‖r0,z‖‖r ,z‖ , (29)

where r0 is defined such that e0 is the vector of nodal coordinates in the initial configuration.

Fig. 2 Distributed bending
moment M and distributed force
F ; boundaries Γ1, Γ2, Γ3, and
Γ4; and uniform 4 × 4 mesh of a
square cantilevered plate with
quadrilateral elements
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Table 1 Average normalized transverse displacements w and rotations ϕ at the loaded edge for a square
cantilevered plate loaded by a distributed moment at the free edge for a number of mesh refinements and
three different element types with ν = 0.3—displacements and rotations are normalized with Eq. (28)

Mesh ANCF-P48 ANCF-P48lsa ANCF-P60

w w w

1 × 1 0.8164 0.8164 1.000

2 × 2 0.8164 0.8164 1.000

4 × 4 0.8166 0.8164 1.000

8 × 8 0.8169 0.8165 1.000

16 × 16 0.8174 0.8168 1.000

32 × 32 0.8185 0.8172 1.001

64 × 64 0.8205 0.8181 1.002

ϕ ϕ ϕ

1 × 1 0.8164 0.8164 1.000

2 × 2 0.8165 0.8164 1.000

4 × 4 0.8167 0.8164 1.000

8 × 8 0.8170 0.8166 1.000

16 × 16 0.8175 0.8168 1.000

32 × 32 0.8186 0.8173 1.001

64 × 64 0.8207 0.8182 1.002

In this example, r0,z = [0,0,1]T is the transverse gradient vector in the initial unde-
formed configuration. The test is modeled with the following parameters: length L = 1 m,
height H = 0.01 m, width W = 1 m, Young’s modulus E = 210×109 N/m2, shear modulus
G = E

2(1+ν)
, shear correction factor ks = 1, Poisson’s ratio ν = 0.3, the distributed moment

M = 1 N m/m, and force F = 1 N/m. At the clamped end, the boundary condition is defined
by fixing all the nodal degrees of freedom at Γ1. For a higher order plate element, the higher
order degrees of freedom are unconstrained.

In [29], the component r2,y was unfixed in the clamped boundary to allow in-plane defor-
mation. However, in this study, the fixed component r2,y did not lead to slow convergence.
The analytical solutions are formulated for a cantilever plate with infinite width W . For this
reason, the in-plane component r3,y is fixed to prevent in-plane rotation along the boundaries
Γ2 and Γ4. However, transverse shear deformation γyz remains unconstrained to avoid slow
convergence. The boundary Γ3 is unconstrained while loaded by the distributed force F or
moment M .

As can be seen from the results presented in Tables 1 and 2, the chosen boundary con-
ditions lead to acceptable results. Errors are nearly equivalent for both loading cases. For
the transverse loading force, the convergence of ANCF-P48lsa is faster than for the original
fully parameterized plate element ANCF-P48. See the convergence curves in Fig. 3. ANCF-
P48 converges more slowly because of shear locking, which is avoided by linearization of
transverse shear angles in ANCF-P48lsa. However, because of Poisson thickness locking
caused by the low order interpolation approximation in the transverse direction in full 3-D
elasticity, both elements converge to an incorrect solution for both loading cases.

The higher order plate element ANCF-P60 converges to a result that agrees with the
analytical solution. For all cases, except plate elements ANCF-P48 and ANCF-P60 under
transverse loading, the relative error for coarse meshes is small, but becomes larger for plate
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Table 2 Average normalized transverse displacements w and rotations ϕ at the loaded edge for a square
cantilevered plate loaded by a distributed transverse force at the free edge for a number of mesh refinements
and three different element types with ν = 0.3—displacements and rotations are normalized with Eq. (28)

Mesh ANCF-P48 ANCF-P48lsa ANCF-P60

w w w

1 × 1 0.6123 0.8164 0.7501

2 × 2 0.7654 0.8164 0.9276

4 × 4 0.8039 0.8165 0.9816

8 × 8 0.8137 0.8166 0.9956

16 × 16 0.8167 0.8168 0.9994

32 × 32 0.8183 0.8173 1.000

64 × 64 0.8204 0.8182 1.002

ϕ ϕ ϕ

1 × 1 0.8164 0.8164 1.000

2 × 2 0.8165 0.8164 1.000

4 × 4 0.8166 0.8164 1.000

8 × 8 0.8169 0.8166 1.000

16 × 16 0.8174 0.8168 1.001

32 × 32 0.8185 0.8173 1.001

64 × 64 0.8206 0.8182 1.002

Fig. 3 Convergences of the
relative error of transverse
displacement w at the loaded
edge for two load cases
(distributed moment M and
distributed force F ) calculated
using the ANCF-P48,
ANCF-P48lsa and ANCF-P60
elements

elements ANCF-P48 and ANCF-P60 under transverse loading. For spatial beam elements,
Poisson thickness locking can be avoided by neglecting the Poisson effect with ν = 0, as
explained in [27]. Correspondingly, for continuum plates and shells, different modified ma-
terial laws can be used to overcome Poisson thickness locking for thin plate/shells [18].
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Table 3 First ten dimensionless eigenfrequencies Ω = ω/ω0 of the free (ffff) square plate modeled by the
ANCF-P48 with a Poisson’s ratio of ν = 0.3 for a number of mesh refinements—Analytic solutions are from
[29] and ω0 = π2

√
D/ρHL4. A relative plate thickness of H/L = 0.01 is used

No. 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 64 × 64 Analytic

1 1.4383 1.4381 1.4245 1.3870 1.3739 1.3715 1.3701 1.3646

2 2.2739 2.2738 2.0761 2.0396 2.0268 2.0241 2.0235 1.9855

3 3.5947 3.5944 2.9253 2.8184 2.7867 2.7798 2.7781 2.4591

4 71.994 7.9946 5.5712 3.8034 3.6448 3.6284 3.6234 3.5261

5 71.994 7.9946 5.5712 3.8034 3.6448 3.6284 3.6234 3.5261

6 – 18.036 7.8878 7.0253 6.8120 6.7653 6.7541 6.1900

7 – 18.036 7.8878 7.0253 6.8120 6.7653 6.7541 6.1900

8 – 54.593 14.9194 7.4395 6.7585 6.6985 6.6851 6.4528

9 – 72.227 16.687 7.9823 7.2925 7.2245 7.2095 7.0181

10 – 72.524 17.665 9.3391 8.6230 8.5354 8.5162 7.8191

6.2 Eigenfrequencies and Chladni figures

The second test is an eigenfrequency analysis with free boundaries, previously studied
in [29]. The eigenfrequency analysis is used as a dynamics test, because it offers the ad-
vantage of coordinate free frequency and vibration mode comparison. The eigenfrequencies
ω are nondimensionalized by the frequency ω0 = π2

√
D/ρHL4, and the analytical results

for the eigenvalue analysis were obtained from [29].
The eigenmodes will be presented as Chladni figures, where lines for nodes without

displacement are shown. For a thin plate, applying the classical Kirchhoff plate element
implemented in the general multibody code SPACAR can provide the reference solution [4].
The thin plate SPACAR is fully described in [29], which compares the thin plate solution for
the fully parameterized ANCF plate element with SPACAR results. The same relative plate
thickness of H/L = 0.01 is used for this numerical example. The eigenfrequencies for the
case of free boundary conditions are expressed in Tables 3, 4 and 5 where in-plane modes
denoted by – are not shown.

As shown by Tables 3–4, none of the first ten dimensionless eigenfrequencies for both
fully parameterized plate elements converge to the results solved using thin plate theory.
This is because of Poisson thickness locking, which is avoided in the case of ANCF-P60. See
Table 5. The convergence rate for ANCF-P48lsa is considerably faster than the convergence
rate for ANCF-P48 or ANCF-P60. To emphasize the difference between plate elements
ANCF-P48 and ANCF-P48lsa, the convergence of the first mode (see top left mode in Fig. 5)
is also considered for thin plates in Fig. 4, in which the relative plate thickness is assumed
to be H/L = 0.001. Accordingly, for a thin plate, the convergence of the first mode does
not depend on a relative plate thickness of H/L, as is the case for ANCF-P48 and ANCF-
P60. This type of locking phenomenon is known as shear locking. It seems the first bending
mode includes shear deformation, which results in the slow convergences for ANCF-P48
and ANCF-P60.

Two different relative plate thicknesses, H/L = 0.01 and H/L = 0.001, were used in
this numerical example. The eigenmodes for the ANCF-P48lsa plate element are illustrated
using Chladni figures (lines of nodes) in Fig. 5. These agree with earlier reported Chladni
figures based on SPACAR thin elements [29]. In [29], the in-plane modes of ANCF-P48 also
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Table 4 First ten dimensionless eigenfrequencies Ω = ω/ω0 of the free (ffff) square plate modeled by the
ANCFP48lsa with a Poisson’s ratio of ν = 0.3 for a number of mesh refinements—Analytic solutions are
from [29] and ω0 = π2

√
D/ρHL4. A relative plate thickness of H/L = 0.01 is used

No. 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 64 × 64 Analytic

1 1.3999 1.3918 1.3797 1.3747 1.3727 1.3714 1.3701 1.3646

2 2.2739 2.0307 2.0340 2.0268 2.0243 2.0236 2.0234 1.9855

3 3.5948 2.7949 2.8104 2.7875 2.7805 2.7785 2.7778 2.4591

4 4.1709 3.5484 3.6349 3.6335 3.6296 3.6266 3.6231 3.5261

5 4.1709 3.5484 3.6349 3.6335 3.6296 3.6266 3.6231 3.5261

6 10.328 7.7428 6.8913 6.7999 6.7651 6.7550 6.7516 6.1900

7 10.328 7.7428 6.8913 6.7999 6.7651 6.7545 6.7516 6.1900

8 – 6.6779 6.5930 6.6671 6.6888 6.6898 6.6834 6.4528

9 9.1662 7.8723 7.3146 7.2603 7.2289 7.2163 7.2079 7.0181

10 13.517 9.7664 8.4230 8.5262 8.5237 8.5178 8.5123 7.8191

Table 5 First ten dimensionless eigenfrequencies Ω = ω/ω0 of the free (ffff) square plate modeled by the
ANCF-P60 with a Poisson’s ratio of ν = 0.3 for a number of mesh refinements—The finite element solution is
provided by commercial software with three dimensional elasticity defined using an ANSYS 45 solid element
with a mesh size of 190×190×4. Analytic solutions are from [29] and ω0 = π2

√
D/ρHL4. A relative plate

thickness of H/L = 0.01 is used

No. 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 ANSYS 45 Analytic

1 1.4383 1.4381 1.4234 1.3796 1.3656 1.3632 1.360 1.3646

2 2.2739 2.2738 2.0489 2.0025 1.9890 1.9858 1.985 1.9855

3 3.0985 3.0982 2.5860 2.4915 2.4661 2.4600 2.460 2.4591

4 71.982 7.4354 5.5404 3.7042 3.5400 3.5230 3.513 3.5261

5 71.982 7.4354 5.5404 3.7042 3.5403 3.5233 3.513 3.5261

6 – 17.985 7.2973 6.4419 6.2444 6.1980 6.183 6.1900

7 – 17.985 7.2973 6.4419 6.2450 6.1982 6.184 6.1900

8 – 54.566 14.862 7.2324 6.5060 6.4465 6.419 6.4528

9 – 72.227 16.665 7.7934 7.0882 7.0177 6.990 7.0181

10 – 72.402 17.022 8.6216 7.9075 7.8245 7.798 7.8191

are discussed. The in-plane modes for ANCF-P48 and ANCF-P48lsa are identical. There-
fore, they are not shown.

6.3 A particular pure bending test

This section reports how each of the subject ANCF plate elements performs in pure bending.
Figure 6(a) illustrates a particular case of anticlastic pure bending in response to distributed
twisting moments M applied to the free edges of a plate [35]. Identical displacement fields
result from application of moments M for the portion abcd (Fig. 6(a)) or nodal forces 2ML

at corners a, b, c, and d (Fig. 6(b)). For this loading case, in-plane shear locking is assumed
not dominant. The ANCF-P48 and ANCF-P48lsa fully parameterized ANCF plate elements
are exercised here, and the results are compared to a SPACAR simulation using a three-node
thin plate element (18 dofs).
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Fig. 4 Convergences of the first
vibration eigenmode normalized
by the analytical solution for a
free (ffff) square plate as
calculated by SPACAR, the
ANCF-P48, the ANCF-P48lsa,
and the ANCF-P60 with
Poisson’s ratio ν = 0.3. Two
different relative plate
thicknesses, H/L = 0.01 and
H/L = 0.001, are used

Fig. 5 First 10 transverse vibration modes together with their dimensionless frequencies for free (ffff) square
plate as calculated by the ANCF-P48lsa with a mesh 32 × 32 and Poisson’s ratio ν = 0.3—a relative plate
thickness of H/L = 0.01 is used

The boundary conditions for the SPACAR element are relatively straightforward to de-
fine: All degrees of freedom at origin node O are fixed. For the ANCF-plates, all degrees
of freedom at node O are fixed except for r1,x , r2,y , and r3,z. The meshes for the different
loading cases are shown in Fig. 7.

Displacement at the asymptotic line for moderately thick plates is considered in this
numerical example. In the case of small deflections and moderately thick plates, deflection
w in direction Z can be defined for an anticlastic surface [35] as follows:

w = M

2D(1 − ν)

(
X2 − Y 2

)
, (30)

where D = EH 3/(12(1 − ν2)). The rotation at point a about the X-axis can be defined as

ϕ = M

D(1 − ν)
Y. (31)
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Fig. 6 Particular cases of pure bending caused by distributed twisting moment M and nodal forces 2ML

from [35]

Fig. 7 Square meshes 8 × 8 for different loading cases

The parameters used in the plate example are as follows: length L = 1 m, Young’s mod-
ulus E = 210 × 109 N/m2, shear modulus G = E

2(1+ν)
, shear correction factor ks = 1, Pois-

son’s ratio ν = 0.3, and the distributed moment M = 1 N m/m. The computed displacements
and rotations for elements SPACAR, ANCF-P48, and ANCF-P48lsa (H/L = 0.01 for thin
plates, and H/L = 0.2 for thick plates as shown in Table 8) are normalized by the analytical
solution from Eq. (30) and the analytical solution from Eq. (31).

The results in Table 6 show that in pure bending cases with distributed moments, all
elements present similar and accurately converged results for a thin structure. According
to [35, p. 45], the lines ab, bc, cd , and ad for the thin structure should be linear, based
on equivalence in the loading cases (Fig. 6). However, some discrepancies arise from these
lines that can be seen near the corners for moderately thick plates. See Fig. 8.

For alternative loading by nodal forces at corners, both plate elements based on the ANCF
converge to incorrect results, whereas the SPACAR thin elements converge to correct results.
Since both loading cases should produce similar displacement fields for thin plates, shear de-
formation is overly estimated in the ANCF plate elements. This can also be seen in Table 7,
where total rotation ϕ and shear angle γ are shown.
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Table 6 Normalized transverse displacements w at point a (Fig. 6) of the square thin plate modeled by
SPACAR, ANCF-P48, and ANCF-P48lsa elements—displacements are normalized with Eq (30). A relative
plate thickness of H/L = 0.01 is used

Mesh SPACAR ANCF-P48 ANCF-P48lsa ANCF-P60

Moment Forces Moment Forces Moment Forces Moment Forces

w w w w w w w w

2 × 2 1.014 1.027 1.000 1.001 1.000 1.000 1.000 1.001

4 × 4 1.004 1.012 1.000 1.002 1.000 1.001 1.000 1.002

8 × 8 1.001 1.005 1.000 1.002 1.000 1.002 1.000 1.002

16 × 16 1.000 1.002 1.000 1.004 1.000 1.004 1.000 1.004

32 × 32 1.000 1.001 1.000 1.007 1.000 1.007 1.000 1.007

64 × 64 1.000 1.000 1.000 1.011 1.000 1.011 1.000 1.011

Table 7 Normalized rotations ϕ and shear angles γ at point a (Fig. 6) of the square thin plate modeled by
SPACAR, ANCF-P48 and ANCF-P48lsa elements. Displacements are normalized with Eq. (30). A relative
plate thickness of H/L = 0.01 is used

Mesh SPACAR ANCF-P48 ANCF-P48lsa

Moment Forces Moment Forces Moment Forces

ϕ ϕ ϕ ϕ ϕ ϕ

2 × 2 1.024127 1.050475 1.000000 1.002648 1.000000 1.000000

4 × 4 1.007862 1.025814 1.000000 1.010236 1.000000 1.000268

8 × 8 1.003778 1.013677 1.000000 1.009877 1.000000 1.001040

16 × 16 1.001864 1.007268 1.000000 1.009454 1.000000 1.003054

32 × 32 1.000929 1.003852 1.000000 1.011828 1.000000 1.007604

64 × 64 1.000464 1.002035 0.999999 1.018134 1.000000 1.015315

γ γ γ γ γ γ

2 × 2 – – 0.000000 0.001390 0.000000 0.000000

4 × 4 – – 0.000000 0.002339 0.000000 0.000802

8 × 8 – – 0.000000 0.004130 0.000000 0.001794

16 × 16 – – 0.000000 0.007841 0.000000 0.003677

32 × 32 – – 0.000000 0.015277 0.000000 0.007244

64 × 64 – – 0.000000 0.030209 0.000000 0.013967

Locking is not observed indicating that similar error will be observed when using a ma-
terial with ν = 0. In the previous test cases, the static and eigenfrequency analyses, the
solutions converge to incorrect results due to Poisson thickness locking. An interesting fea-
ture of the pure bending test example is that it does not show inaccuracy due to Poisson
thickness locking or slow convergence due to shear locking. On the other hand, according to
eigenfrequency analysis, the second mode (saddle mode) indicates Poisson thickness lock-
ing (Tables 3 and 5). When using special material ν = 0, all introduced plate elements lead
to acceptable results in the studied examples where shear deformation is not a dominating
factor.
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Table 8 Normalized transverse displacements w and rotations ϕ at point a (Fig. 6) of the square thick plate
modeled by SPACAR, ANCF-P48, and ANCF-P48lsa elements. Displacements are normalized with Eq. (30).
A relative plate thickness of H/L = 0.2 is used

Mesh SPACAR ANCF-P48 ANCF-P48lsa

Moment Forces Moment Forces Moment Forces

w w w w w w

2 × 2 1.014122 1.027241 1.000000 1.204565 1.000000 1.160000

4 × 4 1.003721 1.012120 1.000000 1.339463 1.000000 1.297473

8 × 8 1.000873 1.005163 1.000000 1.459176 1.000000 1.404434

16 × 16 1.000210 1.002256 1.000000 1.542509 1.000000 1.470083

32 × 32 1.000052 1.001033 1.000000 1.602122 1.000000 1.511021

64 × 64 1.000013 1.000491 1.000000 1.652936 1.000000 1.541885

ϕ ϕ ϕ ϕ ϕ ϕ

2 × 2 1.024127 1.050475 1.000000 1.065904 1.000000 1.000000

4 × 4 1.007862 1.025814 1.000000 1.109816 1.000000 1.063898

8 × 8 1.003778 1.013677 1.000000 1.171608 1.000000 1.133889

16 × 16 1.001864 1.007268 1.000000 1.215226 1.000000 1.179872

32 × 32 1.000929 1.003852 1.000000 1.237486 1.000000 1.205232

64 × 64 1.000464 1.002035 1.000000 1.247965 1.000000 1.220813

7 Numerical tests of thick plate elements

Based on the numerical results of the previous thin plate tests, the SPACAR plate element
performs well and fully parameterized plate elements perform acceptably only in the case
of pure bending. The following paragraphs will examine the behaviors of the ANCF plate
elements for thick plates. The SPACAR plate element is based on Kirchhoff theory and
cannot be used for the analysis of thick plates for any other test except the pure bending test.

7.1 Pure bending test

The numerical example introduced in this section is the same as the example discussed in
Sect. 6.3, except that H/L is increased to 0.2. The results from Table 8 show that for pure
bending with distributed moments, fully parameterized ANCF plate elements give similar
results in both the thin and thick plate examples. The displacements resulting from nodal
forces at the corners using thin plate SPACAR converges to the analytical solution for thick
plates subject to pure bending. For shear deformable plate elements based on the ANCF,
line ad is not straight as shown by Fig. 8, where displacements are shown resulting from
the nodal force loading of ANCF-P48lsa at line ad . The moment loading shows a straight
line, but the alternative nodal force loading shows a nonstraight line with discrepancies at
the edges. The line should be straight [35].

7.2 Thick simply supported plate under uniform static load

In this test, a thick plate is constrained with a simply supported condition and loaded with a
normal uniform force in the z-direction as shown in Fig. 9. The simply supported boundary
condition is also depicted. The complete plate is modeled with identical boundary conditions
as in previous examples for simply supported plates.
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Fig. 8 Displacements at
asymptotic line ad from Fig. 6.
The mesh 64 × 64, plate element
ANCF-P48lsa, and a relative
plate thickness H/L = 0.2 are
used

Fig. 9 Simply supported plate,
its subdomain Ω , and the
coordinate system

Mid-plate deflection calculated using the ANCF plate elements is compared to the analyt-
ical result based on the Reissner–Mindlin theory for a simply supported plate. This analytical
formulation, presented in [37], is as follows:

wM
0 = wK

0 + MK

ksGH
, (32)

where wK
0 is the Kirchhoff solution, and MK is the Marcus moment. The Marcus moment

can be expressed as

MK = −D∇2wK
0 = 1

π2

∞∑
m=1

∞∑
n=1

qmn

m2

L2 + n2

W2

sin
mπX

L
sin

nπY

W
. (33)
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Table 9 Normalized transverse displacement w at the center of the plate with ANCF-P48 loaded by a uni-
form loading—displacements are normalized with Eq. (32)

Mesh H/L = 0.001 H/L = 0.01 H/L = 0.1 H/L = 0.2

w w w w

2 × 2 0.0003151 0.02998 0.5333 0.6821

4 × 4 0.005940 0.3208 0.7210 0.8002

8 × 8 0.1013 0.6885 0.7742 0.8534

16 × 16 0.5428 0.7379 0.7938 0.8719

32 × 32 0.7259 0.7435 0.8011 0.8772

64 × 64 0.7417 0.7454 0.8032 0.8786

In the Navier solution for a simply supported Kirchhoff rectangular plate, the deflection
wK

0 is as follows. For an example, see [35].

wK
0 = 1

π4D

∞∑
m=1

∞∑
n=1

qmn

m2

L2 + n2

W2

sin
mπX

L
sin

nπY

W
, (34)

where

qmn = 4

LW

∫ W

0

∫ L

0
q(X,Y ) sin

mπX

L
sin

nπY

W
dX dY

= 16q

π2mn
; iff m and n odd. (35)

q(X,Y ) is the uniformly distributed load, which is expressed as q = −5 × 106H 3 N/m3 for
this example. The analytical solutions were computed using m = n = 12, which resulted
in an acceptable accuracy for normalized transverse displacement to within four significant
digits. For a finite element solution, a uniformly distributed load is defined as a consistent
load vector as follows:

Fext =
∫ 1

−1

∫ 1

−1

∫ 1

−1
bT SJ dξ dη dζ (36)

where the body force is b = [0,0, q/H ]T and the determinant of the deformation gradient
tensor J = det(F ). Other parameters are identical to the examples from previous sections.
The normalized transverse displacements at the center of the plate, w = w/wM

0 , are shown
in Tables 9, 10 and 11.

To minimize the number of degrees of freedom, double symmetry for the plate under
constant loading is used in the numerical example shown in Table 12. In double symmetry,
the boundary conditions of subdomain Ω for boundary Γ3 are r1 = 0, r3,x = 0, and r1,z = 0.
For boundary Γ4, they are r2 = 0, r2,z = 0, and r3,y = 0. The boundaries Γ1 and Γ2 are
simply supported, therefore, r1 and r3 are fixed for boundary Γ1, and r2 and r3 are fixed for
Γ2. Table 12 shows the displacements w differ from those of the original problem (Table 10),
where the converged displacements coincide to within three digits.

The relationship between the Reissner–Mindlin and Kirchhoff theories (Eq. (32)) is valid
only when the Marcus moments are zero at the boundaries or only for “hard” simply sup-
ported conditions [37]. As shown in Fig. 10, convergence for plate elements ANCF-P48
and ANCF-P60 is slow in the beginning for the thin plate scenarios. The convergence of
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Table 10 Normalized transverse displacement w at the center of the plate with ANCF-P48lsa loaded by a
uniform loading. Displacements are normalized with Eq. (32)

Mesh H/L = 0.001 H/L = 0.01 H/L = 0.1 H/L = 0.2

w w w w

2 × 2 0.8074 0.8077 0.8370 0.9107

4 × 4 0.7610 0.7614 0.79632 0.8768

8 × 8 0.7475 0.7481 0.7922 0.8731

16 × 16 0.7440 0.7449 0.7983 0.8768

32 × 32 0.7432 0.7448 0.8021 0.8784

64 × 64 0.7430 0.7456 0.8034 0.8789

Table 11 Normalized transverse displacement w at the center of the plate with ANCF-P60 loaded by a
uniform loading for a number of mesh refinements. The converged finite element solutions based on com-
mercial software are found using ANSYS SHELL 181 plate and ANSYS 45 solid elements. Displacements
are normalized with Eq. (32)

Mesh H/L = 0.001 H/L = 0.01 H/L = 0.1 H/L = 0.2

w w w w

2 × 2 0.0003151 0.03027 0.6306 0.8029

4 × 4 0.005950 0.3505 0.8762 0.9681

8 × 8 0.1040 0.8318 0.9498 1.046

16 × 16 0.6272 0.9031 0.9784 1.080

32 × 32 0.8848 0.9110 0.9903 1.100

64 × 64 0.9082 0.9137 0.9956 1.120

ANSYS SHELL181 1.00 1.01 1.09 1.16

ANSYS SOLID 45 1.0 1.0 1.1 1.3

Table 12 Normalized transverse displacement w at the center of the plate with ANCF-P48 and ANCF-
P48lsa loaded by a uniform loading; the symmetry of the plate is used. H/L = 0.2

Mesh ANCF-P48 ANCF-P48lsa

w w

2 × 2 (1 × 1) 0.6006 0.7353

4 × 4 (2 × 2) 0.7843 0.8625

8 × 8 (4 × 4) 0.8511 0.8711

16 × 16 (8 × 8) 0.8716 0.8766

32 × 32 (16 × 16) 0.8772 0.8784

64 × 64 (32 × 32) 0.8786 0.8789

128 × 128 (64 × 64) 0.8789 0.8790

element ANCF-P48lsa is likely to be linear, and its relative error should be smaller than for
the ANCF-P48 and ANCF-P60 elements. However, both fully parameterized plate elements
converge to the same incorrect solution due to Poisson thickness locking. As can see from
Table 8, when locking is neglected, shear deformation is overestimated for thick plates.
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Fig. 10 Convergences of relative
error of transverse displacement
w at the center of the plate with
uniform loading as calculated by
the ANCF-P48, ANCF-P48lsa,
and ANCF-P60 using a Poisson’s
ratio of ν = 0.3. Relative plate
thicknesses of H/L = 0.01 and
H/L = 0.001 are used

8 Using a modified material model to eliminate thickness locking

Thickness locking can be prevented by applying higher order theories for the displacement
field in the thickness direction or by modifying the elastic coefficients. For the newly intro-
duced higher order ANCF plate element, a higher than first-order displacement field in the
thickness direction is included in the formulation with additional nodal coordinates that are
second derivatives. However, for thin plates, the assumption σzz = 0 can be used to obtain
modified in-plane elastic coefficients as follows:

D11 = E

1 − ν2
; D12 = D21 = νE

1 − ν2
. (37)

However, this is only suitable for thin plates, and it does not produce a solution based on full
3-D elasticity. In Table 13, the first ten eigenfrequencies are shown of a free square plate for
the ANCF-P48 element with modified material. The lowest eigenfrequencies correspond to
analytic results, but because of slow convergence due to shear locking, the converged higher
eigenfrequencies are not reached.

Slow convergence for transverse forces occurs when the plane stress assumption is used
(Table 14). However, convergence does not depend on the Poisson effect, because the effect
is neglected when using modified elasticity matrix. In the pure bending example, there were
only minor differences compared to the analytical solution for 3-D elasticity. This result
supports the supposition that Poisson thickness locking is not a factor in the pure bending test
example. However, using the modified material does not remedy slow convergence arising
from in-plane shear locking.

9 Numerical test for dynamic performance

In several previous publications related to ANCF plate elements, a rectangular plate pendu-
lum under gravitational field has been used as a benchmark problem to validate the dynamic
performance of plate/shell elements. See, for example, [11, 12, 25]. However, current re-
search has determined that using the low Young’s modulus of 1 × 105 N/m2 and a mass
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Table 13 First ten dimensionless eigenfrequencies Ω = ω/ω0 of the free (ffff) square plate modeled by the
ANCF-P48 with Poisson’s ratio ν = 0.3 for a number of mesh refinements. Analytic solutions are from [29].
Thickness locking is neglected using plane stress assumption. A relative plate thickness of H/L = 0.01 is
used

No. 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 64 × 64 Analytic

1 1.4383 1.4381 1.4234 1.3793 1.3655 1.3632 1.3618 1.3646

2 2.2739 2.2738 2.0380 1.9997 1.9882 1.9856 1.9850 1.9855

3 3.0985 3.0982 2.5636 2.4859 2.4646 2.4596 2.4584 2.4591

4 71.982 7.2347 5.5339 3.7007 3.5388 3.5230 3.5184 3.5261

5 71.982 7.2347 5.5339 3.7007 3.5388 3.5230 3.5184 3.5261

6 – 17.985 7.1124 6.3970 6.2335 6.1955 6.1862 6.1900

7 – 17.985 7.1124 6.3970 6.2335 6.1955 6.1862 6.1900

8 – 54.568 14.856 7.2267 6.5069 6.4460 6.4333 6.4528

9 – 72.207 16.632 7.7644 7.0798 7.0156 7.0017 7.0181

10 – 72.382 16.982 8.5799 7.8955 7.8216 7.8058 7.8191

Table 14 Average normalized transverse displacements w and rotations ϕ at the loaded edge for a square
cantilevered plate loaded by a distributed moment or a distributed transverse force at the free edge for a
number of mesh refinements and ν = 0.3. Plate element ANCF-P48 is used and Poisson thickness locking is
neglected using plane stress assumption

Mesh Moment Transverse force

1 × 1 1.0000 0.7501

2 × 2 1.0000 0.9376

4 × 4 1.0001 0.9846

8 × 8 1.0003 0.9964

16 × 16 1.0005 0.9996

32 × 32 1.0011 1.0009

64 × 64 1.0021 1.0020

density of 7810 kg/m3 leads to substantial elongation of the material near the pendulum
joint. For this reason, the plate does not act as pendulum after ~0.4 seconds, when the num-
ber of elements is increased to obtain converged results. Rather, the plate collapses in the
direction of the gravitational force. A similar result was obtained with plate elements in
two commercial finite element software programs; ANSYS 12.0.1 and ABAQUS CAE 6.8.
The phenomenon was not reported in the previous publications, because an overly coarse
mesh was used resulting in an overly stiff plate simulation unable to depict this behavior
accurately. A different dynamic example was chosen for this study to achieve results for the
ANCF elements and commercial finite element software elements that are comparable.

9.1 Free flying flexible plate

The dynamic performance of the ANCF-P48 and ANCF-P48lsa elements when used to de-
scribe the behavior of a moderately thick plate is analyzed using the example shown in
Fig. 11. In this example, the plate is subject to a moment and two point forces. The Young’s
modulus of the material used in the analysis is E = 1×106 N/m2. Poisson’s ratio is ν = 0.3,
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Fig. 11 Free flying flexible plate

and the material density is ρ = 1500 kg/m3. Shear modulus is given by G = E
2(1+ν)

, and the
shear correction factor is ks = 5/6. Plate length L = 1.00 m, width W = 0.50 m, and thick-
ness H = 0.10 m, respectively. The simulation duration for the free flying flexible plate is
3.0 s.

An implicit Runge–Kutta method of order 5 is used with automatic time stepping to
analyze ANCF elements. The selected initial and maximum time steps are 1 × 10−2 s, and
the minimum time step is 1 × 10−5 s. During the transient analysis, the convergence of each
time step solution is checked against elastic forces using an error tolerance of 1 × 10−5. The
simulation results for the ANCF-P48 and ANCF-P48lsa elements are compared to results
obtained using ANSYS, version 12.0.1. The plate is modeled with shell elements based on
Mindlin–Reissner theory, i.e., ANSYS element notation SHELL181 with a consistent mass
matrix. The SHELL181 is a 4-node-element, and each node has three translational and three
rotational degrees of freedom. The element is suitable for large rotation and large strain
nonlinear applications. Transverse shear strain is described in the element formulation using
the Assumed Natural Strains (ANS) method to alleviate shear locking [13]. Stress stiffening
is included with the analysis in ANSYS for transient analysis with geometrical nonlinearities
[2]. Full integration with incompatible modes is chosen to prevent the propagation of zero
energy modes during the analysis.

In ANSYS, implicit numerical integration (Newmark integration) is used with automatic
time stepping. The integration parameters are chosen to be δ = 1

2 and α = 1
4 to render

the general Newmark scheme to a constant-average-acceleration scheme. This integration
scheme will retain high-frequency response. The only error caused by the time integration
for displacements is period elongation [5]. The selected initial and maximum time steps are
1 × 10−2 s, and the minimum time step is 1 × 10−4 s. A maximum of 25 equilibrium itera-
tions per time step is used. During the transient analysis, the convergence of each time step
solution is checked against displacement, force, and moment using the Euclidean norm with
an error tolerance of 5 × 10−4. The point forces and moment vary with time according to
the following equations:

Fx(t) =
{

0 if 0 ≤ t ≤ 1.5,

13.5(t − 1.5) if 1.5 < t ≤ 3.0,
(38)
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Fig. 12 Free flying flexible plate. The deformation of a free plate computed using ANSYS SHELL 181 with
32 × 16

Fy(t) =
{

0 if 0 ≤ t ≤ 1.5,

18(t − 1.5) if 1.5 < t ≤ 3.0,
(39)

Mz(t) =
{−47.5t if 0 ≤ t ≤ 1.5,

0 if 1.5 < t ≤ 3.0.
(40)

Forces in the global x- and y-directions are applied as point loads to the node at point a in
all element types. See Fig. 11. The moment around the global z-axis for the ANCF elements
and ANSYS shell elements is divided among the nodes located at side ab. To illustrate the
large displacement problem, the deformation of a free plate is shown in half second intervals
in Fig. 12 as computed by ANSYS SHELL 181 with 32 × 16 mesh.

9.1.1 Results

A separate convergence analysis was done using SHELL181 elements to determine a refer-
ence result. The maximum absolute difference of the displacements at point a was 1.31 mm
with a 256 element mesh in the longitudinal direction and a 128 element mesh across the
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Fig. 13 Convergence curves for absolute error of displacements in the x-direction (left) and y-axis direction
(right) at point a calculated with ANCF-P48, ANCF-P48lsa, and SHELL181 elements for the time instance
0.75 s. Reference result calculated with SHELL181 with a 256 × 128 mesh

width compared to a 128 × 64 element mesh. The SHELL181 results are presented here for
the 256 × 128 mesh as reference.

The convergence of the absolute displacements error in the x- and y-axis directions at
point a at time = 0.75 s modeled using the ANCF-P48, ANCF-P48lsa, and SHELL181 ele-
ments is shown by Fig. 13. The convergence plot shows that for a moment force applied to
the plate, the ANCF-P48lsa element gives more accurate results than the ANCF-P48. The
ANCF-P48 element suffers from Poisson thickness and curvature locking. The rate of con-
vergence for ANCF-P48lsa is worse than for SHELL181, because the ANCF-P48lsa element
still suffers from Poisson thickness locking. For time = 2.50 s, when the two point forces
are acting on the plate, the absolute displacement errors for the ANCF elements are similar,
as can be seen from Fig. 14. However, the ANCF-P48lsa element, which does not suffer
from shear locking, shows absolute errors that are closer to the results from the SHELL181
element when the number of elements is increased.

10 Discussion of locking phenomena for ANCF plate elements in the benchmarked
problems

The original fully parameterized plate element ANCF-P48 with 3-D elasticity suffers from
three different locking phenomena including shear, Poisson thickness, and curvature lock-
ing. In the ANCF-P48lsa fully parameterized plate element, shear and curvature locking
are prevented with an improved description for kinematics and using low order interpola-
tions for transverse shear deformations. However, according to the results, Poisson thickness
locking is still problematic for the ANCF-P48lsa element.

Shear locking is caused by an imbalance of the base functions [13]. This can be avoided
using the Assumed Natural Strain (ANS) technique, which is presented for shells in [13].



A study of moderately thick quadrilateral plate elements based 335

Fig. 14 Convergence curves of absolute error of displacements in the x-direction (left) and y-axis direction
(right) at point a calculated with ANCF-P48, ANCF-P48lsa, and SHELL181 elements for the time instance
2.50 s. Reference result calculated with SHELL181 with a 256 × 128 mesh

The ANS technique is based on strains at the sampling points. Sampling points can be either
quadrature points, nodal points, or neither. In papers [6, 26], strains at the nodal points are
used instead of Gaussian quadrature points, because parasitic strains are zero at the nodes
[6]. To account for 3-D elasticity in the plate and shell formulations without inducing Pois-
son thickness locking, the transverse normal strains have to be interpolated at least linearly
over the thickness direction [9]. In contrast to the other mentioned locking phenomena, the
error due to Poisson thickness locking does not decrease with mesh refinements in the in-
plane coordinates. In the newly introduced higher order ANCF-P60 plate element, Poisson
thickness locking is prevented with a higher than first-order interpolation in the thickness
direction. The ANCF-P60 plate element still suffers from shear locking; however, it can be
mitigated using mixed interpolation. The ANCF-P48 plate element also suffers from curva-
ture locking due to shrinking in the thickness direction. This locking effect is also mentioned
to be problematic in other continuum plate/shell elements with coarse meshes and initially
curved elements in [6]. In the ANCF-P48lsa, curvature locking is avoided using an improved
description for kinematics.

When using the special case ν = 0 in 3-D elasticity, or using a modified material stiffness
matrix, Poisson thickness locking can be avoided. Therefore, both fully parameterized plate
elements converge to the analytic solution in most thin plate cases since coupling between
bending and shear deformation is neglected. In conclusion, in case of thin plates, the classi-
cal modified material, which was used for 3-D plates, can also be used to approximate a 3-D
solution for thin plates modeled by fully parameterized plate elements. It shall be noted that
the modified material stiffness matrix used in this study differs from the simplified material
used in [24]. The same simplified material based on the diagonal material stiffness matrix
D = diag(E,E,E,G,G,G) is also used for the continuum beam element [27], leading to
similar results as obtained with beam theory. However, in case of plates/shells, such a sim-
plified constitutive relation will obviously lead to an incorrect solution, which can be seen
from the results in [24].
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The benchmark problem results show that shear locking is strongly dependent on thick-
ness, whereas Poisson thickness locking is independent of thickness, but strongly dependent
on the Poisson effect. Numerical results differ from analytical results by about 18 %, be-
cause of Poisson thickness locking. See Tables 1–2. However, for in-plane modes in the
eigenfrequency analyses, Poisson thickness locking is difficult to recognize from Tables 3,
4, and 13. The pure bending test used in this study is interesting, because it can be used to
verify the accuracy of the shear deformation prediction without manifesting either shear or
Poisson thickness locking (Table 7). In the pure bending test, the same amount of error for
shear angles occurs for the special case of ν = 0 or when the modified material is used. In
other words, fully parameterized ANCF plate elements will pass all of the plate tests except
for the saddle test and the simply supported plate test under uniform static load when ν = 0.

11 Conclusions

In this study, rectangular plate elements based on the absolute nodal coordinate formulation
were compared in terms of several numerical examples. The finite elements under investi-
gation included a fully parameterized quadrilateral ANCF plate element, an update to this
element that linearly interpolates transverse shear strains to overcome slow convergence
due to transverse shear locking and a newly introduced higher order ANCF plate element
designed to prevent Poisson thickness locking.

The numerical examples demonstrate the different locking phenomena that numerical
solutions based on ANCF plate elements encounter. Poisson thickness locking is dominant
for the fully parameterized plate elements. Because of Poisson thickness locking, both fully
parameterized ANCF elements converged to the same incorrect solution in most of the nu-
merical examples. The introduced higher order plate element with linearization of shear
angles mostly overcomes the slow convergence brought about by shear locking and curva-
ture locking. However, shear locking can be mitigated further using a mixed interpolation.
Therefore, future research will concentrate on the investigation of higher order plate ele-
ments with mixed interpolation.
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