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This paper addresses the influence of a passive rider on the lateral dynamics of a bicycle model and the
controllability of the bicycle by steer or upper body sideway lean control. In the uncontrolled model
proposed by Whipple in 1899, the rider is assumed to be rigidly connected to the rear frame of the
bicycle and there are no hands on the handlebar. Contrarily, in normal bicycling the arms of a rider are
connected to the handlebar and both steering and upper body rotations can be used for control. From
observations, two distinct rider postures can be identified. In the first posture, the upper body leans
forward with the arms stretched to the handlebar and the upper body twists while steering. In the second
rider posture, the upper body is upright and stays fixed with respect to the rear frame and the arms,
hinged at the shoulders and the elbows, exert the control force on the handlebar. Models can be made
where neither posture adds any degrees of freedom to the original bicycle model. For both postures, the
open loop, or uncontrolled, dynamics of the bicycle–rider system is investigated and compared with
the dynamics of the rigid-rider model by examining the eigenvalues and eigenmotions in the forward
speed range 0–10 m/s. The addition of the passive rider can dramatically change the eigenvalues and
their structure. The controllability of the bicycles with passive rider models is investigated with either
steer torque or upper body lean torque as a control input. Although some forward speeds exist for
which the bicycle is uncontrollable, these are either considered stable modes or are at very low speeds.
From a practical point of view, the bicycle is fully controllable either by steer torque or by upper body
lean, where steer torque control seems much easier than upper body lean.

Keywords: bicycle dynamics; non-holonomic systems; multibody dynamics; human control; modal
controllability

1. Introduction

The bicycle is an intriguing machine as it is laterally unstable at low speeds and stable, or easy
to stabilise, at high speeds. During the last decade a revival in the research on dynamics and
control of bicycles has taken place [1–3]. Most studies use the so-called Whipple model [4]
of a bicycle. In this model, a hands-free rigid rider is fixed to the rear frame. However, from
experience it is known that some form of control is required to stabilise the bicycle and follow
a path. This control is either applied by steering or by performing some set of upper body
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1210 A.L. Schwab et al.

Figure 1. Bicycling on a treadmill, two distinct postures: (a) RiderA on the hybrid bicycle with body leaned forward
and stretched arms and (b) Rider A on the city bicycle with an upright body and flexed arms.

motions. The precise control used by the rider is currently under study [5,6]. Here, we focus
on two subjects: (i) the contribution of passive body motions to the uncontrolled dynamics of
a bicycle, and (ii) the controllability of these extended models with either steering or upper
body lean as a control input.

From observations [5,6], two distinct rider postures can be identified. In the first posture, the
upper body leans forward with stretched arms on the handlebar, see Figure 1(a). For steering,
the upper body needs to twist. In the second rider posture, the upper body stays upright and
fixed with respect to the rear frame and the arms, hinging at the shoulders and the elbows, are
connected to the handlebar, see Figure 1(b). For both postures, models can be made with the
same number of degrees of freedom as the original Whipple bicycle model. In other words,
both rider models just add a mechanism to the original system without any additional degrees
of freedom. In order to describe the control by applying a lean torque from the lower body to
the upper body, both posture models are extended with an extra degree of freedom to describe
the upper body lean.

Only a few people have investigated the controllability of a bicycle. Nagai [7] used a simple
bicycle model in which only the rear frame and rider have mass, the trail is zero and the steer
angle and upper body sideway lean angle are kinematic control inputs. He finds one non-zero
forward speed and one condition on the mass distribution which result in uncontrollability for
the system. Seffen et al. [8] investigate controllability for a bicycle model similar to the model
derived by Sharp [9] with steer torque as the control input. They introduce an index, based on
[10], which should indicate the difficulty of riding. The index is based on the ratio of the largest
and smallest singular values of the controllability matrix. Neither work addresses whether the
uncontrollable mode is stable or unstable, although Seffen et al. [8] mention stabilisability. It
could well be that the uncontrollable or nearly uncontrollable mode is a stable mode of the
system that is inessential for the desired output and therefore of no concern to the rider. This
paper tries to resolve that problem by determining the forward speed at which the bicycle is
uncontrollable and then identifying whether this corresponds to a stable or unstable mode. This
approach results in discrete speeds for which the system is uncontrollable. To investigate the
controllability by a continuous measure, the concept of modal controllability, as introduced
by Hamdan and Nayfeh [11], is applied.
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Vehicle System Dynamics 1211

The paper is organised as follows. First the original bicycle model is presented. Next the
extension of this model with a twisting upper body or flexed arms is presented and the stability
of the lateral motions is compared with that of a rigid rider model in a forward speed range
0–10 m/s. Then the models are extended with a degree of freedom for the upper body sideway
lean and the controllability is investigated for the two cases in which either the steer torque
or the upper body lean torque is a control input. The paper ends with some conclusions. The
appendix summarises the data for the bicycle models.

2. Bicycle model

The basic bicycle model used is the so-called Whipple model [4], which recently has been
benchmarked [2]. The model, see Figure 2, consists of four rigid bodies connected by revolute
joints. The contact between the knife-edged wheels and the flat level surface is modelled by
holonomic constraints in the normal direction, prescribing the wheels to touch the surface,
and by non-holonomic constraints in the longitudinal and lateral directions, prescribing zero
longitudinal and lateral slips. In this original model, it is assumed that the rider is rigidly
attached to the rear frame and has no hands on the handlebar. The resulting non-holonomic
mechanical model has three velocity degrees of freedom: forward speed v, lean rate φ̇ and
steering rate δ̇.

For the stability analysis of the lateral motions, we consider the linearised equations of
motion for small perturbations about the upright steady forward motion. These linearised
equations of motion are fully described in [2]. They are expressed in terms of small changes in
the lateral degrees of freedom (the rear frame roll angle, φ, and the steering angle, δ) from the
upright straight-ahead configuration (φ, δ) = (0, 0), at a forward speed v, and have the form

Mq̈ + vC1q̇ + [gK0 + v2K2]q = f , (1)

where the time-varying variables are q = [φ, δ]T and the lean and steering torques are
f = [Tφ , Tδ]T. The coefficients in this equation are: a constant symmetric mass matrix, M,
a damping-like (there is no real damping) matrix, vC1, which is linear in the forward speed v,
and a stiffness matrix which is the sum of a constant symmetric part, gK0, and a part, v2K2,
which is quadratic in the forward speed. The forces on the right-hand side, f , are the applied
forces which are energetically dual to the degrees of freedom q. In the upright straight-ahead

x
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F,leehwtnorFR,leehwraeR

Rear frame including
rider Body, B

Front frame (fork and
Handlebar), H

Steer axis

Figure 2. The bicycle model: four rigid bodies (rear wheel R, rear frame B, front handlebar assembly H and front
wheel F) connected by three revolute joints (rear hub, steering axis and front hub), together with the coordinate
system.
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1212 A.L. Schwab et al.

configuration, the linearised equation of motion for the forward motion is decoupled from the
linearised equations of motion of the lateral motions and simply reads v̇ = 0.

Besides the equations of motion, kinematic differential equations for the configuration
variables that are not degrees of freedom have to be added to complete the description. For
the forward motion, the equations for the rotation angles of the wheels are θ̇R = −v/rR,
θ̇F = −v/rF, where θR and θF are the rotation angles of the rear and front wheel and rR

and rF are the corresponding wheel radii. For the lateral motion, the equations for the yaw
(heading) angle, ψ , and the lateral displacement of the rear wheel contact point, yP, are
ψ̇ = (vδ + cδ̇) cos λs/w and ẏP = vψ . For the case of the bicycle, these equations can be
considered as a system in series with the system defined by the equations of motion (1) with
q and q̇ as inputs and the configuration variables as outputs. The stability and controllability
of the two systems can therefore be studied separately.

The entries in the constant coefficient matrices M, C1, K0 and K2 can be calculated from a
non-minimal set of 25 bicycle parameters as described in [2]. A procedure for measuring these
parameters for a real bicycle is described in [12], whereas measured values for the bicycles
used in this study are listed in Table A2 of the appendix. Then, with the coefficient matrices
the characteristic equation,

det(Mλ2 + vC1λ + gK0 + v 2K2) = 0, (2)

can be formed and the eigenvalues, λ, can be calculated. In principle, there are up to four
eigenmodes, where oscillatory eigenmodes come in pairs. Two are significant and are tra-
ditionally called the capsize mode and the weave mode, see Figure 3(a). The capsize mode
corresponds to a real eigenvalue with an eigenvector dominated by lean: when unstable, the
bicycle follows a spiralling path with increasing curvature until it falls. The weave mode is an
oscillatory motion in which the bicycle sways about the heading direction. The third remaining
eigenmode is the overall stable castering mode, like in a trailing caster wheel, which corre-
sponds to a large negative real eigenvalue with an eigenvector dominated by steering. The
eigenvalues corresponding to the kinematic differential equations are all zero and correspond
to changes in the rotation angles of the wheels, a constant yaw angle and a linearly increasing
lateral displacement.
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Figure 3. Eigenvalues for the lateral motions of a bicycle–rider combination in a forward speed range of
0 m/s < v < 10 m/s, (a) with a completely rigid rider and hands-free and (b) with a rider with stretched arms,
hands on the handlebar and a yawing upper body according to the model from Figure 4(a). Note that the bicycle is
passively self-stable between the weave speed vw and the capsize speed vc.
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Vehicle System Dynamics 1213

At near-zero speeds, typically 0 m/s < v < 0.5 m/s, there are two pairs of real eigenvalues.
Each pair consists of a positive and a negative eigenvalue and corresponds to an
inverted-pendulum-like falling of the bicycle. The positive root in each pair corresponds to
falling, whereas the negative root corresponds to a righting motion. For v = 0, these two are
related by a time reversal of the motion. When speed is increased, two real eigenvalues coa-
lesce and then split to form a complex conjugate pair; this is where the oscillatory weave
motion emerges. At first, this motion is unstable, but at v = vw ≈ 4.8 m/s, the weave speed,
these eigenvalues cross the imaginary axis at a Hopf bifurcation and this mode becomes sta-
ble. At a higher speed, the capsize eigenvalue crosses the origin at a pitchfork bifurcation
at v = vc ≈ 7.9 m/s, the capsize speed, and the bicycle becomes mildly unstable. The speed
range for which the uncontrolled bicycle shows asymptotically stable behaviour, with all
eigenvalues having negative real parts, is vw < v < vc.

3. Passive rider models

The original Whipple model is extended with a passive rider without adding any degrees
of freedom. From observations of riding on a large treadmill (3 × 5 m2) [5,6], two distinct
postures emerged which are both modelled. In the first posture model the upper body is leaned
forward and the arms are stretched and connected to the handlebar whereas the upper body is
allowed to twist, see Figure 4(a). The second posture model has a rigid upper body connected
to the rear frame and hinged arms at the shoulder and elbow connected to the handlebar, see
Figure 4(b). Neither model adds any degree of freedom to the original Whipple model. This
means that the number and structure of the linearised equations of motion (1) stay the same
and only the entries in the matrices change.

For the modelling of the geometry and mass properties of the rider, the method as described
by Moore et al. [13] is used. Here the human rider is divided into a number of simple geometric
objects, namely cylinders, blocks and a sphere of constant density (see Figure A1(a) in the
appendix). Then with the proper dimensions and the estimates of the masses of the individual
body parts and the necessary skeleton points describing the posture, the mechanical model
can be made. For Rider A used in this study, these anthropomorphic data can be found in
Table A3 of the appendix, whereas the procedure for calculating the necessary skeleton points
is presented in Table A4 of the appendix.

(a) (b)

Figure 4. Two distinct bicycle models which include a passive rider: (a) rider with forward leaned body and stretched
arms and (b) rider with upright body and flexed arms.
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1214 A.L. Schwab et al.

The geometric and mass properties of the two bicycles used in this study were obtained
by the procedure described in [12] and the results are presented in Tables A1 and A2 of the
appendix.

The complete model of the bicycle with a passive rider was analysed with the multibody
dynamics software package SPACAR [14]. This package can handle systems of rigid and
flexible bodies connected by various joints in both open and closed kinematic loops, where
parts may have rolling contact [15,16]. The package generates numerically, and solves, full
non-linear dynamics equations using minimal coordinates (constraints are eliminated). It can
also be used to find the numeric coefficients for the linearised equations of motion based on a
semi-analytic linearisation of the non-linear equations. This technique has been used here to
generate the constant coefficient matrices M, C1, K0 and K2 from the linearised equations of
motion (1), which serve as a basis for generating the eigenvalues of the lateral motions in the
desired forward speed range.

3.1. Forward leaned passive rider

In the model for leaned forward posture, the arms are stretched and the upper and lower arms
are modelled as one rigid body each, connected by universal joints to the torso and by ball
joints to the handlebar (see Figure 4(a)). The torso is allowed to twist and pitch. Note that in a
first-order approximation, the pitching motion is zero, which follows directly from symmetry
arguments. The legs are rigidly attached to the rear frame. The linearised equations of motion
are derived as described above and the eigenvalues and eigenmotions of the lateral motions
are calculated in a forward speed range 0–10 m/s. These eigenvalues are shown in Figure 3(b).
For comparison, the eigenvalues of a Whipple-like rigid rider model are shown in Figure 3(a).
In the rigid rider model we assume the same forward leaned posture but now with no hands
on the handlebar and the complete rider rigidly attached to the rear frame.

Compared with the rigid rider solutions, there are some small changes in the eigenvalues,
but the overall structure is the same. Most noticeable are that the stable speed range goes up
and that the frequency of the weave motion goes down. These changes can be explained from
two major contributing factors. The first is that the attached passive mechanism of arms and
twisting upper body adds a mass moment of inertia to the steering assembly. This increases
the diagonal mass term Mδδ of the mass matrix for the steering degree of freedom from 0.28
to 0.72 kg m2. The off-diagonal terms increase slightly (10%). The added mass increases the
weave speed and decreases the weave frequencies over the considered speed range. The second
factor is the added stiffness to the steering assembly due to the compressive forces exerted
by the hands on the handlebar. This affects several entries in the matrices of the linearised
equations; the most noticeable are the changes in the symmetric static stiffness matrix gK0.
The diagonal term for the steering stiffness, gK0δδ , decreases from −6.9 to −9.7 N m/rad and
the off-diagonal terms decrease by 10%. The effects on the eigenvalues are an increased weave
and capsize speed and an overall decrease of weave frequencies, whereas the structure of the
eigenvalues with respect to the forward speed remains about the same. It should also be noted
that the more the direction of the stretched arms is parallel to the steer axis, the less the change
in the dynamics compared with the rigid rider model is.

3.2. Upright passive rider

In the upright posture, the torso and the legs are rigidly connected to the rear frame. The upper
arms are connected to the torso by universal joints and the lower arms are connected to the
upper arms by single hinges at the elbows and by ball joints at the handlebar (see Figure 4(b)).
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Figure 5. Eigenvalues for the lateral motions of a bicycle–rider combination (a) with a fully rigid rider and hands-free
and (b) with a rider with rigid upper body and flexed arms and hands on the handlebar according to the model from
Figure 4(b).

The linearised equations of motion are derived as described above and the eigenvalues of the
lateral motions are computed. These eigenvalues are shown in Figure 5(b). For comparison,
the eigenvalues of a Whipple-like rigid rider model are shown in Figure 5(a). In the rigid rider
model, we assume the same upright posture, but now with no hands on the handlebar and the
complete rider rigidly attached to the rear frame.

Compared with the rigid rider solutions, there are dramatic changes in the eigenvalues and
their structure. The stable forward speed range has disappeared completely, because the weave
speed has decreased to zero and the capsize motion is always unstable. Note that the weave
motion is now always stable but gets washed out by the unstable capsize. This dramatic change
can be explained as follows. By adding the hinged arms to the handlebar, a stable pendulum-
type of oscillator has been added to the steer assembly. Although this oscillator stabilises the
initially unstable weave motion, it kills the self-stability of the bicycle; the steer-into-the-fall
mechanism is made ineffective. The added pendulum mass is most noticeable in the diagonal
mass matrix entry related to steering, Mδδ , which increases from 0.25 to 0.46 kg m2. More
dramatic is the change in the constant symmetric stiffness matrix gK0, where the stiffness
related to steering, gK0δδ , increases from a negative value, −6.6 N m/rad, to a positive value,
2.3 N m/rad, which partly explains the dramatic change in the eigenvalue structure.

4. Controllability

The controllability of the bicycles with passive rider models is investigated where either steer
torque or upper body lean torque are considered as a control input. Therefore, both posture
models will be extended with an extra degree of freedom to describe the upper body lean. The
extended models for both postures are shown in Figure 6. The upper body lean angle θ is made
possible by a hinge between the rear frame and the torso located at the saddle, position number
13 in Figure A1(b) of the appendix, with the hinge axis along the lengthwise x-direction.

The structure of the linearised equations of motion remains identical to that of Equation (1),
but the number of equations increases from two to three. The three degrees of freedom for
the lateral motion are now the rear frame roll angle, φ, the steer angle, δ, and the upper
body lean angle, θ . The equations are linearised in the upright straight ahead configuration
(φ, δ, θ) = (0, 0, 0) at a forward speed v and have the form of Equation (1) where the time-
varying variables are now q = [φ, δ, θ ]T and the lean and steering torques are f = [Tφ , Tδ , Tθ ]T.
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1216 A.L. Schwab et al.

(a) (b)

Figure 6. Two distinct bicycle models which include a leaned and steering rider: (a) rider with forward leaned body
and stretched arms and (b) rider with upright body and flexed arms.

Tφ is an externally applied torque, and Tδ and Tθ are usually provided by a combination of
internal torques in one or more of the joints of the arms and between the upper and lower body.

To investigate the controllability of the bicycle–rider system we rewrite these linearised
equations of motion into a set of first-order differential equations, the so-called state–space
equations, as

ẋ = Ax + Bu, (3)

with the state vector x = [φ, δ, θ , φ̇, δ̇, θ̇ ]T and the control input vector u = [Tδ , Tθ ]T. The
applied rear frame torque Tφ is not considered as a possible control input. Since we wish to
address the control inputs separately, we split the input vector u and the associated matrix B
into, respectively, two scalars and two associate vectors,

ẋ = Ax + bδTδ + bθTθ . (4)

For the bicycle–rider system, the coefficient matrix, A, and the control input vectors, bδ and
bθ , are given by

A =
[

0 I

−M−1(gK0 + v2K2) −M−1(vC1)

]
, (5)

bδ =

⎡
⎢⎢⎢⎢⎣

0

M−1

⎡
⎢⎣

0

1

0

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎦ , bθ =

⎡
⎢⎢⎢⎢⎣

0

M−1

⎡
⎢⎣

0

0

1

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎦ . (6)

Note that the system of kinematic differential equations is controllable if v �= 0 and cos λs �= 0.

4.1. Standard approach

In the standard approach to determine controllability of a linear dynamical system as
Equation (4), if the control input is restricted to a single variable, the controllability matrix

Qj = [bj, Abj, A2bj, . . . , Ak−1bj], (7)

is formed. If this controllability matrix has a full row rank k, where k is the dimension of the
system, which is equal to the number of state variables, then the system is fully controllable by
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Vehicle System Dynamics 1217

Table 1. Forward speed vu at which the hybrid bicycle with the forward leaned rider with
stretched arms on the handlebar from Figure 6(a) is uncontrollable by either steer torque
control Tδ or upper body lean torque control Tθ together with the corresponding eigenvalue
λu and right eigenvector coordinates (φ, δ, θ)u, with rear frame lean angle φ, steer angle δ

and upper body lean angle θ together with the mode description; see also Figure 7 for the
eigenvalue plot.

vu (m/s) λu (rad/s) (φ, δ, θ)u (rad) Mode

Steer torque control, Tδ

0.0091 −3.0150 (0.14, 0.56, −0.82) Capsize
1.5482 −3.0150 (0.15, 0.69, −0.71) Capsize
1.7656 7.8250 (0.15, 0.71, −0.69) Lean1
4.5588 −7.8250 (0.06, −0.28, 0.96) Caster

Upper body lean torque control, Tθ

0.0067 3.0177 (0.14, 0.56, −0.82) Weave
1.5033 −3.0233 (0.15, 0.69, −0.71) Capsize
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Figure 7. (a) Eigenvalues λ from the linearised stability analysis for the hybrid bicycle with the forward leaned
rider with stretched arms on the handlebar from Figure 6(a), where the solid lines correspond to the real part of the
eigenvalues and the dashed line corresponds to the imaginary part of the eigenvalues, in the forward speed range
of 0 m/s < v < 10 m/s, together with forward speeds for which the bicycle is uncontrollable by either steer torque
(open circle) or upper body lean torque (black filled circle) alone. (b) Modal controllability βiδ (8) for steer control
torque Tδ for this bicycle model. (c) Modal controllability βiθ (8) for an upper body control lean torque Tθ for this
bicycle model.

input j, j = δ or j = θ , alone. Here, we determine the speeds for which rank deficiency occurs
by setting the determinant of Qj(v) equal to zero and solving the resulting equation in v. The
solutions are the forward speeds for which the system is uncontrollable with respect to the
considered control input, which we call vu. The corresponding eigenvector, v∗

u, spans the null
space of the transpose of the corresponding controllability matrix, v∗

u ∈ null(QT
j (vu)). Since

this is also an eigenvector of the system matrix AT(vu), the corresponding eigenvalue λu can
be found from the definition ATv∗

u = λuv∗
u. The corresponding right eigenvector vu satisfies

Avu = λuvu and gives the uncontrollable mode of the system. This procedure has been applied
to the two bicycle–rider models and the results are presented in Table 1 and Figure 7 and in
Table 2 and Figure 8.

For the hybrid bicycle with the forward leaned rider with stretched arms on the handlebar,
controlled by steer torque control, we find four uncontrollable forward speeds, see Table 1
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1218 A.L. Schwab et al.

Table 2. As Table 1, but now for the city bicycle with an upright rider and flexed arms on
the handlebar from Figure 6(b), see also Figure 8 for the eigenvalue plot.

vu (m/s) λu (rad/s) (φ, δ, θ)u (rad) Mode

Steer torque control, Tδ

0.0133 −2.8980 (0.16, 0.47, −0.87) Caster
0.8271 6.5895 (0.14, 0.44, −0.89) Lean1
1.0177 −2.8980 (0.14, 0.43, −0.89) Caster
4.1381 −6.5895 (0.01, −0.26, 0.97) Lean2

Upper body lean torque control, Tθ

0.2695 2.9017 (0.16, 0.46, −0.87) Capsize
1.2375 −2.9125 (0.13, 0.42, −0.90) Caster

0 1 2 3 4 5 6 7 8 9 10
-10

  -8

  -6

  -4

  -2

   0

   2

   4

   6

   8

  10

v (m/s)

v (m/s)

v (m/s)

[1/s]

lean1 weave

capsize

weavecaster

lean2

0 1 2 3 4 5 6 7 8 9 10
90

60

30

  0

lean1

weave

capsize
caster

lean2

0 1 2 3 4 5 6 7 8 9 10
90

60

30

  0

lean1

weavecapsize
caster

lean2

(a)
(b)

(c)

Re(l)

Im(l)

b id
(°)

b iq
(°)

Figure 8. (a) Eigenvalues λ from the linearised stability analysis for the city bicycle with an upright rider and flexed
arms on the handlebar from Figure 6(b), where the solid lines correspond to the real parts of the eigenvalues and the
dashed line corresponds to the imaginary part of the eigenvalues, in the forward speed range of 0 m/s < v < 10 m/s,
together with forward speeds for which the bicycle is uncontrollable by either steer torque (open circle) or upper body
lean torque (black filled circle) alone. (b) Modal controllability βiδ (8) for steer control torque Tδ for this bicycle
model. (c) Modal controllability βiθ (8) for an upper body control lean torque Tθ for this bicycle model.

and Figure 7(a). However, only the one at 1.7656 m/s concerns an unstable mode, an upper
body lean mode. This mode can be stabilised by placing a spring and a damper in parallel
between the lower and upper body. For a spring stiffness of 100 N m/rad and a damping
coefficient of 10 N m s/rad, the lean modes become stable and oscillatory, whereas the other
modes change. The uncontrollability shifts to a much lower speed and corresponds to a weave
mode. If we consider only upper body lean torque control, then there are two uncontrollable
forward speeds, but again only one, now at 0.0067 m/s, concerns an unstable mode. This mode
is the forerunner to the oscillatory weave mode, but since the speed is almost zero, this is again
of no concern to the practical control of the bicycle. Adding a spring and damper acting in
parallel with the control torque has no influence on the controllability. We conclude that this
bicycle–rider configuration is fully controllable by either steer torque control or upper body
lean torque control.

For the city bicycle with an upright rider and flexed arms on the handlebar we first find
that the eigenvalue structure differs considerably from that of the hybrid bicycle with rider
configuration. Whereas the hybrid bicycle had a stable forward speed range, between 7.4 and
8.7 m/s, the city bicycle configuration is always unstable. Although the weave mode is now

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ee
k 

T
U

 D
el

ft
] 

at
 1

2:
39

 0
1 

Se
pt

em
be

r 
20

12
 



Vehicle System Dynamics 1219

always stable, there is a capsize mode which is always unstable. For steer torque control on the
city bicycle configuration (see Table 2 and Figure 8(a)), we find again four forward speeds for
which the bicycle is uncontrollable, where only the one at 0.8271 m/s concerns an unstable
mode. As with the hybrid bicycle, this is again an upper body lean mode that can be stabilised
by adding a spring and a damper between the lower and the upper body; again, this shifts
the uncontrollability to a much lower speed for the weave mode. For upper body lean control
we have two uncontrollable speeds, where only the one at 0.2695 m/s concerns an unstable
capsize mode. But since this is at a very low speed, one can say that, from a practical point of
view, this configuration is also fully controllable by either steer torque control or upper body
lean torque.

4.2. Modal controllability

The standard approach as described above results in a discrete set of velocities for which
the bicycle is uncontrollable. It does not tell us anything about the ease or difficulty with
which the bicycle is controlled in the neighbourhood of these speeds at which controllability
is lost. To investigate that, we will follow a somewhat different approach and look at the modal
controllability.

A measure for modal controllability has been proposed by Hamdan and Nayfeh [11]. They
measure modal controllability by the angle βij between the left eigenvector v∗

i from ATv∗
i =

λiv∗
i , and the control input vector bj, as in

cos βij = v∗T
i bj

‖v∗
i ‖‖bj‖ . (8)

They argue that, if the two vectors are orthogonal, then v∗
i is in the left null-space of bj and the

ith eigenmode is uncontrollable from the jth input. If the angle is not a right angle but nearly
so, then again this indicates that the ith eigenmode is not easily controlled from the jth input.
This modal controllability is applied to the two bicycle–rider models from Figure 6.

For steer torque control on the hybrid bicycle with the forward leaned rider with stretched
arms on the handlebar, the modal controllability βiδ is shown in Figure 7(b). Note that the
vertical scale for the modal controllability angle βij runs from down 90◦ (uncontrollable)
to up 0◦ (well controllable). Clearly, the unstable weave mode is well controllable. We also
see two sharp dips in the capsize mode controllability near the uncontrollable speeds. It is
interesting to see that the uncontrollability is so local, but since this capsize mode is still a
stable mode, it is of no practical concern. What we call the caster mode shows a broad dip
around the uncontrollable forward speed of 4.6 m/s, which seems paradoxical, because we
use steer torque control, but note that there is still some steer amplitude in the corresponding
eigenvector (φ, δ, θ)u = (0.06, −0.28, 0.96) (Table 1). As expected, the unstable upper body
lean mode (lean1) is marginally controllable by steer torque control and shows a wide dip
around the uncontrollable speed of 1.8 m/s. The modal controllability for upper body lean
torque control on this bicycle–rider model is shown in Figure 7(c). Here, we see that the
modal controllability of the unstable weave mode is close to 90◦ and therefore hard to control
by lateral upper body motions. The same holds for the capsize mode, with a notable small rise
of the modal controllability just above the speed for which the mode in uncontrollable. The
caster mode also shows marginal controllability. The unstable upper body lean mode (lean1)
is well controllable, which we would expect, but its modal controllability levels off at higher
speeds. Note that the modal controllability for the lean torque input is almost the complement
of the one for the steer torque input, meaning that the two inputs taken together make the
system well controllable.
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1220 A.L. Schwab et al.

The modal controllability of the city bicycle with the upright rider and flexed arms on the
handlebar for steer torque control is shown in Figure 8(b). The unstable capsize mode and
the stable weave mode are well controllable. In the stable caster and lean2 modes, we see
sharp dips around the uncontrollable speeds and here again the unstable upper body lean is
marginally controllable by this steer torque control. The modal controllability for upper body
lean torque control on this bicycle–rider model is shown in Figure 8(c). The same trends as
in the hybrid bicycle are present, meaning that the unstable mode, here the capsize mode, is
hard to control by upper body lean motions. It is interesting to see that the overall structure of
the modal controllability is about the same as in the hybrid bicycle, although the structure of
the eigenvalues with respect to forward speed is completely different.

We conclude that for both bicycle–rider combinations the controllability of the unstable
modes is very good for steer torque control and marginal for upper body lean motions. The
uncontrollable speeds, which are present, are of no real concern since they are either at stable
modes which are not practically important for the overall desired motion or at very low forward
speeds for which human control is difficult because of the relatively large positive real parts
of the unstable eigenvalues.

5. Conclusions

Adding a passive upper body to the three degrees of freedom Whipple model of an uncontrolled
bicycle, without adding any extra degrees of freedom, can change the open-loop dynamics
of the system. In the case of a forward leaned rider with stretched arms and hands on the
handlebar, there is little change. However, an upright rider position with flexed arms and hands
on the handlebar changes the open-loop dynamics drastically and ruins the self-stability of
the system.

The unstable modes of both bicycle–rider combinations have very good modal controlla-
bility for steer torque control but are marginally controllable by lateral upper body motions.
This indicates that most control actions for lateral balance on a bicycle are performed by steer
control only and not by lateral upper body motions.

Future work is directed towards the comparison of the control effort of the human rider in
both postures.
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Appendix 1. Measured bicycle and rider data

This appendix summarises the measured geometric and mass data of the bicycles and rider used, measured according
to [13]. The first bicycle, Figure 1(a), can be characterised as a hybrid bicycle. The second bicycle, Figure 1(b), is a
standard Dutch city bicycle (see Figure A1).

Figure A1. (a) Definition of the geometric parameters of the bicycle and (b) rider model with skeleton points,
from [13].
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1222 A.L. Schwab et al.

Table A1. Bicycle geometric dimensions for the hybrid bicycle and the city bicycle according to Figure A1(a).

Value for Value for
Parameter Symbol hybrid bicycle city bicycle

Bottom bracket height hbb 0.290 m 0.295 m
Chain stay length lcs 0.445 m 0.460 m
Fork length lf 0.455 m 0.455 m
Front hub width wfh 0.100 m 0.100 m
Handlebar length lhb −0.090 m 0.190 m
Rear hub width wrh 0.130 m 0.130 m
Seat post length lsp 0.195 m 0.240 m
Seat tube angle λst 75.0◦ 68.5◦
Seat tube length lst 0.480 m 0.530 m
Stem length ls 0.190 m 0.250 m
Wheel base w See Table A2
Trail c See Table A2
Head tube angle λht = 90◦ − λs See Table A2
Rear wheel radius rR See Table A2
Front wheel radius rF See Table A2

Table A2. Parameters for the hybrid bicycle and the city bicycle for the bicycle model from Figure 2.

Parameter Symbol Value for Hybrid Bicycle Value for City Bicycle

Wheel base w 1.037 m 1.121 m
Trail c 0.0563 m 0.0686 m
Steer axis tilt λs 16.9◦ 22.9◦
Gravity g 9.81 N/kg 9.81 N/kg
Forward speed v various m/s various m/s

Rear wheel R
Radius rR 0.338 m 0.341 m
Mass mR 3.96 kg 3.11 kg
Inertia (IRxx , IRyy) (0.0916, 0.1545) kg m2 (0.0884, 0.1525) kg m2

Rear Body and frame assembly B
Centre of mass (xB, zB) (0.3263, −0.4826) m (0.2760, −0.5378) m
Mass mB 7.22 kg 9.86 kg

Inertia

⎡
⎣IBxx 0 IBxz

0 IByy 0
IBxz 0 IBzz

⎤
⎦

⎡
⎣0.37287 0 0.03835

0 0.71704 0
0.03835 0 0.45473

⎤
⎦

⎡
⎣0.52714 0 0.11442

0 1.31682 0
0.11442 0 0.75920

⎤
⎦

kg m2 kg m2

Front Handlebar and fork assembly H
Centre of mass (xH, zH) (0.9107, −0.7303) m (0.8669, −0.7482) m
Mass mH 3.04 kg 3.22 kg

Inertia

⎡
⎣IHxx 0 IHxz

0 IHyy 0
IHxz 0 IHzz

⎤
⎦

⎡
⎣0.17684 0 0.02734

0 0.14437 0
0.02734 0 0.04464

⎤
⎦

⎡
⎣ 0.25338 0 −0.07205

0 0.24610 0
−0.07205 0 0.09558

⎤
⎦

kg m2 kg m2

Front wheel F
Radius rF 0.340 m 0.344 m
Mass mF 3.334 kg 2.02 kg
Inertia (IRxx , IRyy) (0.09387, 0.15686) kg m2 (0.09041, 0.14939) kg m2
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Vehicle System Dynamics 1223

Table A3. Anthropomorphic data for Rider A according to Figure A1(b).

Parameter Symbol Rider A

Chest circumference cch 0.94 m
Forward lean angle λfl 63.9◦ (on hybrid bicycle)

82.9◦ (on city bicycle)
Head circumference ch 0.58 m
Hip joint to hip joint lhh 0.26 m
Lower arm circumference cla 0.23 m
Lower arm length lla 0.33 m
Lower leg circumference cll 0.38 m
Lower leg length lll 0.46 m
Shoulder to shoulder lss 0.44 m
Torso length lto 0.48 m
Upper arm circumference cua 0.30 m
Upper arm length lua 0.28 m
Upper leg circumference cul 0.50 m
Upper leg length lul 0.46 m
Rider mass mBr 72.0 kg
Head mass mh 0.068 mBr
Lower arm mass mla 0.022 mBr
Lower leg mass mll 0.061 mBr
Torso mass mto 0.510 mBr
Upper arm mass mua 0.028 mBr
Upper leg mass mul 0.100 mBr

Table A4. Skeleton points code according to Figure A1.

%% Matlab code for Skeleton Grid Points see Figure A1a
%% Adapted Table 10 from MooreHubbardKooijmanSchwab2009
r1 = [0 0 0];
r2 = [0 0 -rR];
r3 = r2 + [0 wrh/2 0];
r4 = r2 + [0 -wrh/2 0];
r5 = [sqrt(lcsˆ2-(rR-hbb)ˆ2) 0 -hbb];
r6 = [w 0 0];
r7 = r6 + [0 0 -rF];
r8 = r7 + [0 wfh/2 0];
r9 = r7 + [0 -wfh/2 0];
r10 = r5 + [-lst*cos(last) 0 -lst*sin(last)];
% calculate f0
f0 = rF*cos(laht)-c*sin(laht);
r11 = r7 + [-f0*sin(laht)-sqrt(lfˆ2-f0ˆ2)*cos(laht)…
0 f0*cos(laht)-sqrt(lfˆ2-f0ˆ2)*sin(laht)];

r12 = [r11(1)-(r11(3)-r10(3))/tan(laht) 0 r10(3)];
r13 = r10 + [-lsp*cos(last) 0 -lsp*sin(last)];
% determine mid knee angle and mid knee position
a1 = atan2((r5(1)-r13(1)),(r5(3)-r13(3)));
l1 = sqrt((r5(1)-r13(1))ˆ2+(r5(3)-r13(3))ˆ2);
a2 = acos((l1ˆ2+lulˆ2-lllˆ2)/(2*l1*lul));
%
r14 = r13 + [lul*sin(a1+a2) 0 lul*cos(a1+a2)];
r15 = r13 + [lto*cos(lafl) 0 -lto*sin(lafl)];
r16 = r12 + [-ls*cos(laht) 0 -ls*sin(laht)];
r17 = r16 + [0 lss/2 0];
r18 = r16 + [0 -lss/2 0];
r19 = r17 + [-lhb 0 0];
r20 = r18 + [-lhb 0 0];
r21 = r15 + [0 lss/2 0];
r22 = r15 + [0 -lss/2 0];
% determine left elbow position
a1 = atan2((r19(1)-r21(1)),(r19(3)-r21(3)));
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Table A4. Continued

l1 = sqrt((r19(1)-r21(1))ˆ2+(r19(3)-r21(3))ˆ2);
a2 = acos((l1ˆ2+luaˆ2-llaˆ2)/(2*l1*lua));
%
r23 = r21 + [lua*sin(a1-a2) 0 lua*cos(a1-a2)];
r24 = r23 + [0 -lss 0];
r25 = r15 + [ch/(2*pi)*cos(lafl) 0 -ch/(2*pi)*sin(lafl)];
r26 = r5 + [0 lhh/2 0];
r27 = r5 + [0 -lhh/2 0];
r28 = r14 + [0 lhh/2 0];
r29 = r14 + [0 -lhh/2 0];
r30 = r13 + [0 lhh/2 0];
r31 = r13 + [0 -lhh/2 0];
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