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ABSTRACT
Rider control in bicycling is modeled by first adding the

rider as a passive mechanism to the Whipple bicycle model. Next,
for the rider control model a linear PID controller with and with-
out delay is assumed, where the control inputs are the bicycle roll
and steer angle with their higher derivatives, and the control out-
put is the action-reaction steer torque applied by the rider at the
handle bars. The experimental data is obtained from riding a bi-
cycle on a narrow treadmill while applying an intermitted lateral
perturbation by means of an impulse force applied at the seat
post. The experiments are conducted in both the stable and the
unstable forward speed range. After some filtering, a parametric
control model is fitted to the data. Finally, the gains of this con-
trol model are used to identify the specific optimal control LQR
cost function which the rider is using to control the bicycle on
the treadmill at the various forward speeds.

1 INTRODUCTION
Balancing a bicycle in motion is an acquired skill which is

poorly understood. Multibody dynamic models of the uncon-
trolled bicycles have provided fundamental insight into bicycle
stability in relation to speed and geometry [1, 2]. Further insight
into human control is needed, e.g. to design bicycles, possibly
with augmented control, minimizing risks of falling.

The research in human rider control in bicycles and mo-
torcycles started in the seventies during the renewed interest in
cybernetics [3, 4, 5]. Among the first were Van Lunteren &
Stassen [3] who used a stationary bicycle setup, mimicking nor-
mal bicycling, to investigate the influence of drugs and alcohol
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on the performance of the rider. With the same setup they per-
formed some system identification of the rider control at one
fixed forward speed, where they adequately described the rider as
a linear proportional integral derivative (PID) controller with de-
lay. Rice & Roland [4] measured rider control behavior after an
initial lateral perturbation at various speeds on various bicycles
and compared the results to computer simulations. Weir [5] used
a computer model of a motorcycle rider combination to identify
the transfer functions of the various control input-output rela-
tions, and concluded that steer torque to roll angle is the easiest
way to balance a motorcycle in motion. After these pioneering
studies, most attention has been directed to high-speed motor-
cycle rider control for reasons of traffic safety [6]. However,
the act of balancing at low speed, as is the case for bicycles,
has been given little attention. Only this decade, the research on
low speed human rider control in bicycling was started again at
TU Delft and UC Davis, by observing motions of various rider-
bicycle combinations while balancing a bicycle in motion on a
large treadmill [7].

Currently there are two main modeling approaches on hu-
man rider control in bicycling. One builds on the well-developed
linear aircraft pilot model as developed by McRuer et al. [8, 9]
and are transferred to the control of a bicycle. The other is more
about intermittent control, where the rider has no action until
a certain threshold and then performs an impulsive like action
(e.g. Doyle [10]). Such systems are essentially nonlinear, and
parallels can be drawn with the recent human postural balance
research by Milton [11]. Here we have investigated the valid-
ity of the first type of models, that is, a linear controller with or
without delay, and see from an optimal control perspective what
the rider is optimizing.

ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the
JSME 2012 11th Motion and Vibration Conference

DSCC2012-MOVIC2012

1 Copyright © 2012 by ASME

DSCC2012-MOVIC2012-8587

October 17-19, 2012, Fort Lauderdale, Florida, USA



The outline of the paper is as follows. After this introduction
the model of the bicycle-rider combination which is used in the
system identification process is presented. Then the method of
the applied system identification techniques are discussed. Next
the measurements are briefly discussed after which the results of
the system identification and the optimization strategy are pre-
sented. The paper ends with a discussion of the results and some
conclusions.

2 METHODS
For the rider model we assume a linear PID controller with

or without delay, where the control inputs are the bicycle roll and
steer angle with their higher derivatives, and the control output
is the steer torque. The rider is assumed to be rigidly attached
to the rear frame. The experimental data is obtained from UC
Davis [12], where experiments concerning rider control in bicy-
cling are in progress. In these experiments, the bicycle is ridden
on a narrow treadmill and intermittently laterally perturbed by an
impulsive force at the seat post, see Figure 1. The experiments
were done at three forward speeds: 3.2, 4.3 and 7.4 m/s, and by
such covering both unstable and stable uncontrolled lateral mo-
tions. First a nonparametric final impulse response (FIR) model
is derived, which served as a platform for subsequent paramet-
ric modeling. Next a linear PID parametric model is fitted to the
non-parametric model using the steer angle signal. Finally the
gains form this model are used in an linear quadratic regulator
(LQR) optimal control scheme to see what the rider is optimiz-
ing.

3 EXPERIMENTAL SETUP
At UC Davis a measurement bicycle is constructed, which

is equipped with a number of sensors to measure the state and
rider input, see Figure 1. In addition, a perturbator mechanism
is present, which is used to excite the system. These perturba-
tions are applied by laterally pulling a rope with a force sensor
in series, which is attached on the seat post. The measurement
bicycle has the following characteristics: the upper body lean is
constrained by rigidly fixing the upper body with a harness to
the bicycle frame in order to mimic the rigid rider bicycle model
(Whipple model) as best as possible, the bicycle is electrically
driven, so the rider does not need to exert pedaling power and
thus eliminates the need for lower limb movement, and the knees
are fixed to the bicycle frame, which prevents the lateral knee
movement which was observed in [7].

The experiments are performed on a narrow treadmill were
the task is to keep the bicycle in balance. The treadmill proved to
be very suitable for the perturbation experiments, since it is easy
to perturb a stationary positioned bicycle by pulling the rope. A
downside of this environment is the rather narrow track, result-
ing in a stressful and unnatural overly concentrated way of bi-

FIGURE 1. Experimental setup at UC Davis of an instrumented and
actuated bicycle riding on a narrow treadmill. The lateral perturbation
is an impulsive pulling force at the seat post.

FIGURE 2. Measurements of the roll angle φ (top), steering angle δ

(middle) and disturbance w (bottom) for a forward velocity of 3.2 m/s.

cycling. The treadmill perturbation experiments were performed
at forward velocities of 3.2, 4.3 and 7.4 m/s with a measurement
time of 60 to 90 seconds per run, each of which is repeated a
number of times. The measured data during the experiment are:
the forward velocity v, the rear frame roll angle φ and roll rate φ̇ ,
the steer angle δ and steer rate δ̇ , the disturbance force applied
at the seat post w, and the steering torque Tδ . Unfortunately the
latter showed large errors and was not used in the identification
process. Figure 2 shows a typical measurement of the roll angle,
steering angle and input force.
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SYSTEM MODEL
The total system is a combination of a bicycle model and a

rider model. For the bicycle the Whipple [13] rigid rider model
will be used. Whereas, the rider control will be modeled as a
linear feedback control system with inherent neuromuscular lag
and time delays.

The Whipple bicycle model [13], which recently has been
benchmarked [1], consists of four rigid bodies connected by rev-
olute joints. The contact between the knife-edged wheels and
the flat level surface is modelled by holonomic constraints in the
normal direction, prescribing the wheels to touch the surface, and
by non-holonomic constraints in the longitudinal and lateral di-
rections, prescribing zero longitudinal and lateral slips. In this
original model, it is assumed that the rider is rigidly attached to
the rear frame and has no hands on the handlebar. The resulting
non-holonomic mechanical model has three velocity degrees of
freedom: forward speed v, roll rate φ̇ and steering rate δ̇ . The
lateral motions can be described by the linearized equations of
motion for small perturbations about the upright steady forward
speed v, and have the structure,

Mq̈+ vC1q̇+[gK0 + v2K2]q = f, (1)

where the time-varying variables are q = [φ ,δ ]T and the roll and
steering torques are f = [Tφ ,Tδ ]

T. The entries in the constant
coefficient mass matrix M, damping-like matrix C1 (there is no
real damping in the system), and constant and velocity depen-
dent stiffness matrices K0 and K2 can be calculated from a non-
minimal set of 25 bicycle parameters as described in [1]. For
the instrumented bicycle from Figure 1, where the 25 bicycle pa-
rameters where measured using the methods described in [14],
the resulting matrices are:

M0 =

[
131.5085 2.6812

2.6812 0.2495

]
,C1 =

[
0 42.748

−0.31806 1.6022

]
,

K0 =

[
−116.19 −2.7633
−2.7633 −0.94874

]
,K2 =

[
0 102.02
0 2.5001

]
. (2)

Because the forward speed is a parameter, the stability of the
lateral motions expressed by the eigenvalues from the linearized
equations of motion (1), also show this forward speed depen-
dency. These eigenvalues of the uncontrolled instrumented bi-
cycle, in the forward speed range of 0m/s < v < 10 m/s, are
presented in Figure 3. In principle, there are up to four eigen-
modes, where oscillatory eigenmodes come in pairs. Two are
significant and are traditionally called the capsize mode and the
weave mode, see Figure 3. The capsize mode corresponds to a
real eigenvalue with an eigenvector dominated by lean: when un-
stable, the bicycle follows a spiralling path with increasing cur-
vature until it falls. The weave mode is an oscillatory motion in

which the bicycle sways about the heading direction. The third
remaining eigenmode is the overall stable castering mode, like
in a trailing caster wheel, which corresponds to a large negative
real eigenvalue with an eigenvector dominated by steering. In the
unstable region (v< vweave) there is clearly need for rider control.
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FIGURE 3. Eigenvalues for the uncontrolled instrumented bicycle
from figure 1 in the forward speed range 0 < v < 10 m/s, solid lines
are the real values and dashed lines are the imaginary values. The speed
where the weave motion becomes stable is vweave ≈ 6.2 m/s. The cap-
size mode becomes mildly unstable at vcapsize ≈ 10.8 m/s, which is not
shown in the figure. Forward speeds used in the experiments are donated
by an ∗.

The rider control model is assumed to be a linear feedback
system in series with neuromuscular lag and time delay. The lin-
ear feedback system is usually written as u(s) = K(s)y(s) with
the control input y, control output u, and feedback gains K. In
our model the rider control input is assumed to be the bicycle
roll and steer angle, y = [φ ,δ ]T , and for the rider control out-
put we assume steer torque only, u = [Tδ ,u]. This rider control
output then acts as input to the bicycle model, f = [0,1]T u, and
by such closes the control loop. Next we introduce a number of
sensory feedback gains, which act linearly on the bicycle config-
uration output. We assume the rider to be capable of sensing and
applying proportional, integrative, first and second order deriva-
tive action. These assumptions may be modeled mathematically
according to,

Kφ (s) = kφ p + kφ i s−1 + kφd s+ kφdd s2 ,

Kδ (s) = kδ p + kδ i s−1 + kδd s+ kδdd s2 , (3)

with roll angle feedback Kφ and steer angle feedback Kδ , and s
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FIGURE 4. Block diagram of the inner control structure of K, with
roll and steering angle feedback gains Kφ and Kδ , timedelay Gτ , neuro-
muscular lag Gnm, input y = [φ ,δ ]T and output u = [Tδ ,u]T .

the Laplace argument. The gains k with subscript p, i, d and dd
indicate proportional, integral, first and second order derivative
gains respectively.

According to McRuer and Jex [15], the human controller
is inherently limited by neuromuscular lag and time delays.
Here the neuromuscular dynamics is modeled just like in the
shoulder muscle model from [16, 17], which yields, Gnm(s) =
ω2

c /(s
2 +2ζ ωc +ω2

c ) with cuttof frequency ωc = 2.17 ·2π rad/s
and damping coefficient ζ =

√
2 (Figure 4). This system acts as

a critically damped second order filter with a cuttoff frequency
equal to ω0. Next the transport delays result in an effective time
delay, which is modeled as a single delay, with transfer function
Gτ(s) = e−τds. For the rider model we initially used a time delay
of τd = 0.03 seconds.

Finally the human limitations and the linear feedback model
are combined to form a rider control model according to, K(s) =
Gnm(s)Gτ(s)

[
Kφ (s),Kδ (s)

]T , which is presented as a block di-
agram in Figure 4. Since the lateral dynamics of the bicycle is
strongly forward speed dependent, it is expected that the feed-
back gains will also show this forward speed dependency.

IDENTIFIED RIDER MODEL
The rider control system identification is done in three steps.

First, a nonparametric Finite Impulse Response (FIR) model [18]
is fitted to the raw data. Next, the FIR model is used to ob-
tain a noise model. Finally, a parametric model according to
(3) is used, which is optimized by using parameter reduction
techniques. The analysis is performed for a number of forward
speeds, resulting in a set of parametric models. Finally, the gains
of this control model are used to identify the specific LQR cost
function which the rider is using to control the bicycle at the var-
ious forward speeds.

The parametric model (3) has in principal eight feedback
gains. However, the number of parameters can be reduced while
still maintaining a good fit, expressed by the variance accounted
for (VAF). The reduction technique is based on parameter selec-
tion with the help of the parameter sensitivity on the VAF deter-
mined by the parameter covariances [18]. The results of this pro-
cess, the identified control feedback gains of the rider model, are
shown in Table 1, where zero time delays are used because of in-

v kφd kφ p kδd kδ p kδ i VAF
m
s

Nms
rad

Nm
rad

Nms
rad

Nm
rad

Nm
s rad %

3.2 32.99 36.81 −3.25 0 89.45 94.24

78.51 26.95 −2.08 −19.91 54.40

4.3 33.79 29.58 −2.74 0 195.40 98.75

34.09 100.51 −2.27 −20.99 162.60

7.4 41.56 59.20 −10.56 0 816.11 95.06

46.48 139.79 −2.83 −27.57 804.39

TABLE 1. Results of the reduced parameter rider control model, with
controller gains K (3), forward velocity v, no time delay τd = 0, and
variance acounted for (VAF). The grey marked rows indicate the gains
obtained from the optimal control approach, where the optimal criterium
weights Q and R are presented in Table 2.

Q R

v ˆ̇
φ φ̂

ˆ̇
δ δ̂ ψ̂ τ̂δ

m/s rad/s rad rad/s rad rad Nm

3.2 ∞ ∞ ∞ ∞ 0.0547 1

4.3 ∞ ∞ ∞ ∞ 0.0246 1

7.4 ∞ ∞ ∞ ∞ 0.0086 1

TABLE 2. Optimal control weights for the state vector, Q, and for the
control effort R, where a value > 1e6 is donated by ∞. The weights are
normalized with respect to the control effort τδ .

stability problems. The use of roll angle and roll angle rate repre-
sent vestibular and/or visual feedback, and the use of steer angle
rate represents proprioceptive feedback. The signs of the gains
on the roll angle and roll rate clearly show that the necessary
steer-into-the-fall balance mechanism [2] for stabilizing the lat-
eral motions is used by the rider. That is, a roll or roll rate to the
right results in a control steer torque to the right. The feedback
of the integral of the steer angle can be explained by the need
for the rider to stay on the the narrow treadmill. Here the rider
is controlling the heading of the bicycle within small bounds and
the heading, ψ , is mainly determined by the integral of the steer
angle, ψ =

∫
(vδ + cδ̇ )/wcos(λs)dt ≈ v/wcos(λs)

∫
δ dt, with

the wheelbase w, the trail c and the head angle λs. All feedback
gains show a forward speed dependency, the most profound in
the integral steering feedback, which seems to be quadratic in
the forward speed.

Finally, we like to address the question: if the rider is oper-
ating like an optimizer then what is the rider optimizing? To an-
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swer this question we formulate the standard LQR optimal con-
trol problem [19] with the performance index (or cost function)
for the control task

J =
∫
(xT Qx+uT Ru)dt, (4)

with the state vector x=(φ̇ , δ̇ ,φ ,δ ,
∫

δ ) and the controller output
u = (τδ ), and the weight factors Q on the state and R on the con-
trol effort. The optimal feedback gains for a linear feedback con-
troller are found by minimizing the performance index J, which
is the well known Riccati solution (LQR model). Here, we work
the other way around, given the feedback gains from the parame-
ter identification process, what are the weight factors? We solve
this by a nonlinear search on J. For the weights we assume all
off-diagonal terms in Q and R zero, and the remaining unknown
diagonal terms as 1/x̂2

i , where x̂i is the maximal allowable value
of the ith element of the state vector [19]. For the control effort
weights R, here a scalar, we write R = 1/τ̂2

δ
, where τ̂δ is identi-

fied as the maximum steer torque. The results of this process are
shown in Table 2. Clearly, the rider is not optimizing with respect
to the roll or steer angle and rate, indicated by ∞ values. When
we normalize the weights with respect to the control effort, that
is normalize with respect to the maximum steer torque τδ , we see
that the rider has to pay more and more attention to the heading
with increasing speed, which makes sense for the task of riding
on a narrow treadmill.

CONCLUSIONS
The conclusions from these experiments and data analysis

are that, if we assume that the rider is using a linear feedback
control system, then he only uses the roll angle, roll rate, steer
angle rate and integral of the steer angle (is heading) for feed-
back control. Next, if we assume that this linear control model is
correct and if the rider is seen as an optimizer then in the task of
riding on a treadmill he optimizes his control with respect to the
heading angle only.
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