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ABSTRACT

This work is focused on the modeling and ex-
perimental validation of a steer-by-wire system
for bicycles. The purpose for this system is to
modify and enhance the lateral stability of a bi-
cycle at low forward speeds. Case studies show
additional capabilities of a steer-by-wire system
on bicycles to influence its dynamic behavior,
by providing a dynamic response comparable to
a bicycle with a virtually different geometry or
even the ability to stabilize an inherently unsta-
ble bicycle. A steer-by-wire bicycle prototype
was designed and build by replacement of the
mechanical connection between handlebar- and
steering-assembly by electronic actuators and a
custom digital controller. The steer-by-wire bi-
cycle prototype equipped with sensors, measur-
ing the forward speed and roll-rate was subse-
quently used to experimentally evaluate the pro-
posed control algorithms. Preliminary rider tests
showed a perceived near-to-identical behaviour
of the steer-by-wire system to a mechanical con-
nection. Adding lateral stability enhancement at
low speed by active steer-torque control was per-
ceived as beneficial by the rider.

Keywords: bicycle, steer-by-wire, stability, con-
trol, rider control.

1 INTRODUCTION

Already for some time, electronic enhance-
ments regarding vehicle behavior has made its
way into the aviation and automotive industry by
the term “by-wire” technology. Electronic sen-
sors and actuators are used to replace traditional
mechanical systems in which software is used to
operate the actuators in a way that is not possible
with traditional mechanical systems.

The use of steer-by-wire technology can also
offer great opportunities on single-track vehicles
like motorcycles, scooters and bicycles. Single-
track vehicles can be laterally highly unstable,
especially at low forward speeds and they require
a relative high amount of rider control [1,2]]. By
replacing the mechanical connection between the
handlebar- and steering-assembly with electronic
actuators and adding sensors to measure the state
of the system, a controller can be used to control
the dynamic behavior of the bicycle.

In open literature there is no research avail-
able which experimentally evaluates a steer-by-
wire system on single-track vehicles. Only a few
theoretical publications proposing enhancements
in motorcycle handling [3}4] are available. It re-
mains questionable if the removal of the counter
steering behavior as proposed by Marumo and
Nagai [3]] will be beneficial. The possibility of
a lane keeping assistance system on motorcycles
by Katagiri et al. [4]] on the other hand can greatly



improve safety. This is also demonstrated by
Seiniger et al. by actively assisting the mo-
torcycle rider’s steer input to hold its driving path
during extensive in-corner braking manoeuvres.

on-off switch

handlebar actuator

FIGURE 1.
with steering and handlebar actuators, sensors, actua-
tor controllers, battery pack and microcontroller.

Prototype of the steer-by-wire bicycle

The work presented here, is focused on the
modeling and experimental validation of a steer-
by-wire control strategy to modify and enhance
the lateral stability of a bicycle at low forward
speeds. Case studies show additional capabilities
of a steer-by-wire system on bicycles to influence
its dynamic behavior, by providing a dynamic re-
sponse comparable to a bicycle with a virtually
different geometry or even the ability to stabi-
lize an inherently unstable bicycle. A steer-by-
wire bicycle prototype was designed and build
by replacement of the mechanical connection be-
tween handlebar- and steering-assembly by elec-
tronic actuators and a custom digital controller,
see Figure [I] The steer-by-wire bicycle proto-
type equipped with sensors, measuring the for-
ward speed and roll-rate is subsequently used to
experimentally evaluate the proposed control al-
gorithms.

The paper is organized as follows. After this
brief introduction the model for the system de-
sign is described and some simulation results are
shown. Next the experimental setup is described
and some preliminary test results are shown. The
paper ends with some conclusions.

2 SYSTEM DESIGN AND SIMULATION
The model for the steer-by-wire system de-
sign is based on the three degree of freedom

Whipple/Carvallo [1] bicycle model. This model
is extended by separating the handlebar assem-
bly from the front steering assembly, which in-
troduces an additional rotational degree of free-
dom, see Figure 2] The lateral degrees of free-
dom of this extended model are: the rear frame
roll angle ¢, the front assembly steering angle
0, and the handlebar steering angle 6. Since we
are only interested here in the lateral dynamics,
the forward speed v, which is a degree of free-
dom of the Whippel/Carvallo model, is treated
as a parameter. Combining the lateral degrees

(b)

FIGURE 2. Steer-by-wire bicycle model, side view
(a) and top view (b), together with the lateral degrees
of freedom, rear frame roll angel ¢, front frame steer-
ing angle 8, and handlebar steering angle 0, and some
geometry variables. This model, based on the Whip-
ple/Carvallo bicycle model [I]l, shows the addition of
a separate handlebar body H and the possibility to
have unequal front wheel steering 6 and handlebar 0
relations.

of freedom in a generalized coordinate vector
q=[0,¢,8]", the linearized equations of motion
for the extended bicycle model can be expressed
by

Mg+ Cq+Kq=Hf, (D



with the mass matrix M, damping matrix C and
stiffness matrix K given by,

Iy 0 . oo
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and the right-hand side forcing term f =
[T, Ty,T5]", which contains the handlebar
torque Ty, the rear frame roll torque 7y (usu-
ally zero), and the front steering assembly torque
Tg. The matrices M,C1,K0, and K2, are the
two-by-two matrices from the linearized equa-
tions of motion of the original Whipple/Carvallo
model [[1]], 79 is the mass moment of inertia of the
handlebar assembly, v is forward speed and g is
the gravitational acceleration.

2.1 Handlebar tracking control

To minimize the difference between the han-
dlebar angle 0 and the steering assembly angle &,
tracking control needs to be implemented. In this
way the steer-by-wire system should behave like
an ordinary, mechanically steered bicycle, when
the rider applies a steer torque at the handle-
bar. A proportional-differential (PD) controller is
implemented which provides an action-reaction
torque Tpp to the steering assembly and the han-
dlebar, of the form,

Trp =K,(0 —8)+Ks(6-65),  (3)

with proportional gain K,,, and differential gain
K. The forcing term in[I] then becomes,

| Te T, —Trp
i=|n|=| o |, @)
Ts Tpp

with the rider applied steer torque 7}, at the han-
dlebar, and zero applied roll angle torque. The
steer-by-wire bicycle model can be visualized in
a block diagram as shown in Figure [3] The han-
dlebar block represents the rotational inertia of
the handlebar while the controller block repre-
sents the tracking controller layout. For the PD-
controller, the proportional and differential gains
in3]are chosen such that a critically damped sys-
tem response is obtained to ensure a fast and ac-
curate response without overshoot.

As an example we use the parameters of
the benchmark bicycle [1], with a handlebar
inertia of Iy = 0.001 kgm?, proportional gain
K, =90 Nm/rad, and differential gain K; = 0.6
Nms/rad. The performance of this tracking con-
trol is shown in Figure 4| by comparing the steer
stiffness transfer functions of the benchmark bi-
cycle without and with the steer-by-wire system.
The steer stiffness transfer function is defined as
Hpp(s) =Ts(s)/8(s) for the rigid connection and
as Hspw (s) = Ty(s)/0(s) for the steer-by-wire
bicycle. The proposed system shows, in a for-
ward speed range of 0 to 10 m/s, good tracking
performance in a frequency range of 0 to 3 Hz.
Above 3 Hz the steer stiffness drops of due to the
finite bandwidth of the tracking system.

FIGURE 3. Block diagram of the steer-by-wire bi-
cycle model, which includes the handlebar tracking
controller (PD) and steer torque feedback to the han-
dlebar, with the rear frame roll angle ¢, front assem-
bly steering angle &, handlebar steering angle 6, by
the rider applied handlebar steering torque 7}, front
assembly steering torque Ty, and the handlebar track-
ing controller and handlebar feedback steer-torque

Tpp.

2.2 Lateral stability enhancement

The unstable lateral motions at low speed
can be stabilized by adding a steer-torque con-
trol system to the handlebar tracking control sys-
tem. For the design of the low speed stability
controller we follow the work of Ruijs and Pace-
jka [6]] who proposed a steer-into-the fall con-
troller [2]] for a motorcycle robot at sub-weave
speed, which uses the roll rate of the rear frame
as input and steer-torque as system output, with
linear regressive gain scheduling as a function of
forward speed. This controller has successfully
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FIGURE 4. Magnitude of the steer stiffness trans-
fer function, as perceived by the rider, as a function
of forward speed v and the frequency s, (a) on the
benchmark bicycle Hpg(s), and (b) the steer-by-wire
bicycle Hspw (s). The steer stiffness at the handle-
bars changes significantly as a function of input fre-
quency as well as the forward speed of the bicycle. At
higher frequencies the steer stiffness is primarily de-
fined by the mass- and inertia properties of the bicy-
cle. A significant drop in the steer stiffness magnitude
relation occurs at the weave speed (v,, = 4.29 m/s)
and the corresponding weave frequency (0.55 Hz) of
the bicycle shown by the downward resonance-like
peak. The steer stiffness of the steer-by-wire bicy-
cle at higher frequencies are primarily defined by the
stiffness and damping properties of the PD-controller,
whereas the anti-resonance-like upward peak at low
forward speeds is caused by the PD-controller coeffi-
cients and the mass- and inertia properties defined in
the system matrix.

been implemented [[7] on the benchmark bicycle
model and on scaled down prototype [8]. The
proposed stabilizing control takes on the form of
an additional steer torque Tsg applied at the steer-

ing assembly,
Tsg = Ks(vavg — V)(b vV ov< Vavg (5)

which is proportional to the rear frame roll rate
¢, the forward speed v of the bicycle, and a con-
stant K;. The magnitude of this speed depen-
dency is linearly decreased in magnitude up to
Vavg> Which is around the weave speed, as no sta-
bilizing control is required inside the auto-stable
speed region. At higher forward speeds no sta-
bilizing control torque is applied, as the unstable
capsize mode is relatively slow and easy to con-
trol. The forcing term in the linearized equations
of motion (1)) is now f = [T}, — Tpp,0, Tpp + Tse]" .
This leads to an extended block diagram for the
complete system, as shown in Figure 3]
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FIGURE 5. Block diagram of the steer-by-wire bi-
cycle model with enhanced lateral stability at low
speed, which includes the combined handlebar track-
ing controller (PD) and low speed stabilization con-
troller (SE).

By applying this low speed stabilization con-
troller with proportionality constant K; = 10
Ns2/rad and Vavg = 5 m/s, the weave speed is de-
creased from 4.3 m/s to 1.0 m/s and by such mak-
ing the bicycle self-stable from 1 m/s until high
forward speed, since the unstable capsize mode is
relatively slow and easy to control. This change
in the eigenvalues and the selfstable speed range
is illustrated in Figure [6]

3 EXPERIMENTAL SETUP

A conventional Dutch city bicycle (Batavus
Browser) is converted to a steer-by-wire bicy-
cle by replacement of the mechanical steering
connection with electronic actuators and sensors,
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FIGURE 6. Eigenvalues A from the linearized sta-
bility analysis for the original steer-by-wire bench-
mark bicycle model (a) in comparison to the eigen-

values for the same model with added lateral stability
control (b), in the forward speed range of 0 < v < 10
m/s. The lateral stability control enlarged the stable
forward speed range by pushing the weave speed v,,
back from 4.3 to 1.0 m/s, while retaining the capsize
speed v,.

see Figure[I] Two identical Maxon EC90 brush-
less DC motors and EPOS2 power-amplifiers ac-
tuate the steering- and handlebar-assembly, as
shown in Figure [7]] To increase the maximum
output torque, the actuators are connected us-
ing a timing-belt construction with an amplifi-
cation ratio of 132/20 which allows for a maxi-
mum instantaneous steer torque of about 15 Nm.
Separate Altheris FCP22AC position- and Sili-
con Sensing CRS03 angular rate sensors are used
on the handlebar- and steering assembly to pro-
vide the controller the required state information.
The roll sensor uses an InvenSense IDG-500 an-
gular rate gyro to measure the rear frame roll rate.
A small Maxon DC motor, spring-loaded against

angular rate (&8

position sensor

angular rate

motor amplifier (2x)

& forward
— speed
sensor

FIGURE 7. Steer-by-wire bicycle component lay-
out, showing the physical placement of the steering-
and handlebar assembly, battery pack and controller,
with (a) front assembly with sensors, motors, and mo-
tor amplifiers, and (b) rear rack with battery pack, mi-
crocontroller, and forward speed sensor.

the rear wheel is used to measure the forward
speed of the bicycle. A Microchip dsPIC33F
equipped Explorer16 micro-controller is used to
control the system. A 24 V Super-B lithium-
ion battery pack powers the actuators and micro-
controller.

The proposed PD-controller values of K, =
90 Nm/rad and K; = 0.6 Nms/rad of the bench-
mark bicycle simulation would in practice result
in unrealistic high actuator torques. Also, dur-
ing the experiments it became apparent that pre-
sumable un-modeled actuator- and controller dy-
namics cause the handlebar assembly to become
mildly unstable.

The steer-by-wire prototype subsequently
utilizes a double PD-controller configuration
with slightly lower and unequal gain coefficients.
The double PD-controller configuration, one in
the steer torque path (K, = 15 Nm/rad, K; = 1.5
Nms/rad) and one in the handlebar torque path
(K, =8 Nm/rad, K; = 0.6 Nms/rad), was used to
maximize the feedback torque and tracking per-



formance without forcing the handlebar assem-
bly into an unstable mode.

4 PRELIMINARY TEST RESULTS

Preliminary rider tests with the steer-by-wire
system showed very satisfactory behaviour of the
system. After gaining some confidence, the rider
could not distinguish the handling of the steer-
by-wire bicycle from a bicycle with rigid steer-
ing connection. Only when looking at the front
steering assembly while applying a rider steering
torque, the rider was able to see a small phase lag
between the handlebar and the steering assembly.
This small phase lag had no influence on he per-
ceived handling during normal operation.

More qualitative results were obtained with
the stability enhanced steer-by-wire bicycle. In
riding a straight track at low forward speed at 5
km/h (1.4 m/s), two cases were compared; with
and without lateral stability enhancement. Dur-
ing these tests the steer rate of the handlebar was
recorded as a measure for rider control input.
Figure 8| shows the power spectral density (PSD)
of the steer rate. As a measure of steer effort,
the area under the PSD curve, indicated by Pe,
is used. Clearly, steer effort without haptic feed-
back (Pe = 2890) is much larger than with hap-
tic feedback (Pe = 980). Moreover, the power
spectral density of the stability enhanced bicycle
at low forward speed (5 km/h) was shown to be
comparable to the PSD at normal forward speed
of 20 km/h (not shown here). This clearly indi-
cates the benefit of such a stability enhancement
system at low forward speed. Rider steer effort
at low speed is reduced which makes the bicycle
more easy to ride and could lead to future im-
plementation on bicycles tailored for elderly or
those physically impaired.

5 CONCLUSIONS

A steer-by-wire bicycle has been designed
and build. Preliminary rider tests showed a per-
ceived near-to-identical behaviour of the steer-
by-wire system to a mechanical connection.
Adding lateral stability enhancement for low
speed stability by active steer-torque control re-
duced the steer-effort of the rider considerably
and was perceived as beneficial by the rider.

In future research the steer-by-wire bicycle
will serve as a versatile experimental platform for
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FIGURE 8. Power spectral density (PSD) of the
handlebar steer rate for a bicycle with (a) regular

steer torque feedback and (b) no steer torque feed-
back on the handlebar, riding a straight track at a
forward speed of 5 km/h. As a measure of steer ef-
fort, the area under the PSD curve, indicated by Pe,
is used. Clearly, steer effort without haptic feedback
(Pe =2890) is much larger than with haptic feedback
(Pe =980).

identifying human rider control in bicycling.
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