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Special Issue Article

Rider control identification in bicycling
using lateral force perturbation tests

AL Schwab1, PDL de Lange1, R Happee1 and Jason K Moore2

Abstract

A model describing rider control while steering and stabilizing a bicycle has been developed. Experimental data were

obtained from riding a bicycle on a narrow treadmill while perturbing balance with impulsive forces at the seat post. The

experiments were conducted at 2–7 m/s covering both the stable and the unstable forward speed range. Bicycle and rider

mechanics have been modeled using the Whipple bicycle model extended with the rider inertia. A rider control model

applying steering torque at the handle bars has been developed exploring potential feedback of visual, vestibular and arm

proprioceptive cues. The identified rider control parameters, after model reduction, stabilize the system and mimic

realistic rider control behavior. The feedback gains of this control model were used to identify the specific optimal control

linear-quadratic regulator (LQR) cost function which the rider was using to control the bicycle. The identified cost

functions indicate that at low speed the rider minimizes his control effort and at high speed he minimizes the heading error.
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Introduction

Balancing a bicycle in motion is an acquired skill
which is poorly understood. Multibody dynamic
models of uncontrolled bicycles have provided funda-
mental insight into bicycle stability in relation to
speed and geometry.1,2 Further insight into human
control is needed to design bicycles that minimize
the risk of falling, possibly utilizing automatic or
assisting control. In particular, we need to better
understand which sensory information is used by the
rider, and how this information is used in the com-
bined steering and stabilization task.

Research in manual control of bicycles and motor-
cycles started in the 1970s during the renewed interest
in cybernetics.3–6 Among the first were Van Lunteren
and Stassen3 who used a stationary bicycle simulator,
mimicking normal bicycling, to investigate the influ-
ence of drugs and alcohol on the performance of the
rider. With the same simulator they used system iden-
tification techniques to identify the rider control at
one fixed forward speed, where they adequately
described the rider as a linear proportional–
integral–derivative (PID) controller with delay. Rice
and Roland4 measured rider control behavior after an
initial lateral perturbation at various speeds on vari-
ous bicycles and compared the results to computer
simulations. Weir5 used a computer model of a
motorcycle rider combination to identify the transfer
functions of the various control input–output

relations, and concluded that steer torque response
to lean angle error is the easiest way to balance a
motorcycle in motion. The first to actually validate
a rider–vehicle model was Eaton,6 who carried out
experiments to validate the theoretical Sharp7 motor-
cycle model (including tires) and the rider control
crossover model by Weir.5 After these pioneering stu-
dies, most attention has been directed to high-speed
motorcycle rider control for reasons of traffic safety.8

However, the act of balancing at low speed, as is the
case for bicycles, has been given little attention. Only
in this decade, the research on low-speed human rider
control in bicycling was started again at TU Delft and
UC Davis, by observing motions of various rider–
bicycle combinations while balancing a bicycle in
motion on a large treadmill9 and the application of
modern manual control models.10

Currently there are two main modeling approaches
on human rider control in bicycling. One builds on the
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well-developed quasi-linear aircraft pilot and car
driver model as developed by McRuer et al.11–13 and
are transferred to the control of a bicycle. The other is
more about intermittent control, where the rider has
no action until a certain threshold and then performs
an impulsive like action.14 Such systems are essentially
nonlinear, and parallels can be drawn with recent
human postural balance research by Milton.15 In the
work presented here, which elaborates on ref., 16 we
have investigated the validity of the first type
of models, that is, a linear controller exploring poten-
tial feedback of visual, vestibular and arm propriocep-
tive cues.

The outline of this article is as follows. After this
introduction the model of the bicycle–rider combin-
ation which is used in the system identification process
is presented. Then the system identification method
used herein is presented. Next, the experimental meas-
urements are briefly discussed after which the identi-
fied models are presented. Then with the help of
optimal control theory the question ‘what does the
rider optimize?’ is addressed. This article ends with a
discussion and conclusions.

Approach

For the rider control model we assume a linear PID
controller with or without delay, where the control
inputs are the bicycle lean and steer angle with their
higher derivatives, and the control output is the steer
torque. The rider is assumed to be rigidly attached to
the rear frame. Experimental data were obtained at UC
Davis.17,18 In the experiments used here, the bicycle is
ridden on a narrow, 1-m wide, treadmill and intermit-
tently laterally perturbed by an impulsive force at the
seat post; this is further explained in the next section.
For the rider model system identification, first a black
box finite impulse response (FIR) model is fit to the
data, which served as a platform for subsequent

identification of the rider control parameters. Next, a
gray box model is fit to the response of the FIR model.
Finally, the identified feedback gains are used to com-
pute the specific optimal control linear-quadratic reg-
ulator (LQR) cost function which the rider is using to
control the bicycle. This is described in detail in the
‘System model’ and ‘System identification’ sections.

Experimental setup

At UC Davis, a measurement bicycle has been con-
structed, which is fully equipped with a number of
sensors to measure the state and rider input, see
Figure 1. In addition, a perturbator mechanism is pre-
sent, which is used to excite the system. These perturb-
ations are applied by laterally pushing or pulling a rod
with a force sensor in series, which is attached on the
seat post. The measurement bicycle has the following
characteristics: the upper body lean relative to the rear
frame is constrained by rigidly fixing the upper body
with a harness to the bicycle frame in order to mimic
the rigid rider bicycle model (Whipple model) as best
as possible. Next, the knees are fixed to the bicycle
frame, which prevents the lateral knee movement
which was observed by Moore et al.,9 and the bicycle
is electrically driven, so the rider does not need to
exert pedaling power and thus eliminates the need
for lower limb movement. The rider was only able
to move his arms from shoulder down and his head.
The instrumentation of this bicycle is described in
detail in ref. 18

Initially two different types of experiments are per-
formed; lateral line tracking and roll stabilization of
which only the latter is used here. The experiments are
performed in two environments: on a horse treadmill
and at a gymnasium. The horse treadmill proved to be
more suitable for the perturbation experiments, since
it is easier to perturb a stationary positioned bicycle
by pulling/pushing a rod. A downside of this

Figure 1. (a) Instrumented and actuated measurement bicycle with rigid rider harness, parameters according to Table 6 and system

matrices according to Table 7 and (b) experimental setup at UC Davis of an instrumented and actuated bicycle riding on a narrow

treadmill. The lateral perturbation is an impulsive pulling/pushing force at the seat post. The instrumentation of this bicycle is described

in detail in ref. 18
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environment is the rather narrow track, resulting in a
stressful and unnatural overly concentrated way of
bicycling, which in particular at high speed, turned
the roll stabilization more into heading tracking.
The treadmill perturbation experiments are performed
at forward velocities of about 2, 3, 4, 6 and 7m/s with
a measurement time of 60–90 s, each of them is
repeated a number of times.

The raw measured data during the experiments
were processed into these time series: the forward vel-
ocity v, the rear frame roll angle � and roll rate _�, the
steer angle d and steer rate _�, the disturbance force
applied at the seat post w and the steering torque T�,
see ref. 18 for details. Unfortunately, the measured
steering torque did not well match the torque
needed to drive the Whipple model in the same tra-
jectory, where the measured torque exceeded the
model torque by a factor of 2–3. Hence, the measured
torque was not used in the identification process. The
discrepancy could be attributed to measurement
errors, or limitations in the Whipple model, such as
neglected tire dynamics. Figure 2 shows a typical
measurement of the roll angle, steering angle and
input force.

For further analysis, measured data from 15 trials
are chosen, these runs are shown in Table 1. These 15
trials are chosen, because they are well spread over the
forward speed range and show a clear input/output
relationship, which allows for proper system identifi-
cation. The corresponding data for these trials are
publicly available and can be downloaded from ref. 17

The dynamic model of the bicycle rider combin-
ation is presented in the next section, where the

dimensions and inertial properties of the bicycle are
measured according to Moore et al.18,19 The resulting
parameters for the rigid rider (Whipple) bicycle model
are presented in Table 6 of the appendix, whereas the
corresponding mass, damping and stiffness matrices
together with the disturbance force transfer matrix

0 10 20 30 40 50 60 70 80
−0.2

0

0.2
Perturbation run at v=4.3 m/s

an
gl

e 
(r

ad
)

φ(t)

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

an
gl

e 
(r

ad
)

δ(t)

0 10 20 30 40 50 60 70 80
−500

0

500

fo
rc

e 
(N

)

time (s)

w(t)

Figure 2. Measurements of the rear frame roll angle � (top), steering angle d (middle) and disturbance w (bottom) as a function of

time, for a forward velocity of 4.3 m/s (run 252).

Table 1. Experimental runs used in this study with: run id,

rider name, forward speed, duration, and date and time of the

experiment. These were all done on a narrow treadmill for a

balancing task.

Run id Rider v (m/s) T (s) Date and time

248 Jason 2.1 90 30-Aug-2011 11:24:37

249 Jason 2.2 90 30-Aug-2011 11:27:20

250 Jason 2.2 90 30-Aug-2011 11:30:51

184 Jason 3.2 60 09-Mar-2011 17:04:38

185 Jason 3.2 60 09-Mar-2011 17:09:20

186 Jason 3.1 60 09-Mar-2011 17:12:33

251 Jason 4.3 90 30-Aug-2011 11:33:18

252 Jason 4.3 90 30-Aug-2011 11:36:16

253 Jason 4.3 90 30-Aug-2011 11:39:57

190 Jason 6.0 60 09-Mar-2011 17:24:22

191 Jason 6.1 60 09-Mar-2011 17:26:39

192 Jason 6.1 60 09-Mar-2011 17:28:39

255 Jason 7.3 90 30-Aug-2011 12:07:37

256 Jason 7.3 90 30-Aug-2011 12:10:12

257 Jason 7.4 90 30-Aug-2011 12:17:47
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are shown in Table 7 of the appendix. Note from the
transfer function Hfw from Table 7 of the appendix,
that the lateral force w contributes mainly to the gen-
eralized lean torque T� and little to the generalized
steer torque T�. This makes sense, because the rope
is attached under the rider seat and is pulled in a lat-
eral direction, which mainly causes a roll torque and
little steering.

System model

The total system is a combination of a bicycle and
rider. For the bicycle the Whipple rigid rider model
will be used, whereas the rider control will be modeled
as a linear feedback control system with inherent
neuromuscular lag.

Bicycle model

The bicycle model used is the so-called Whipple
model,20 which recently has been benchmarked by
Meijaard et al.1 The model, see Figure 3, consists of
four rigid bodies connected by three revolute joints.
The contact between the knife-edged wheels and the
flat level surface is modeled by holonomic constraints
in the normal direction, prescribing the wheels to
touch the surface, and by non-holonomic constraints
in the longitudinal and lateral directions, prescribing
zero longitudinal and lateral slips. In this original
model, it is assumed that the rider is rigidly attached
to the rear frame and has no hands on the handlebar.
The resulting non-holonomic mechanical model has
three velocity degrees of freedom: forward speed v,
rear frame roll rate _� and steering rate _�.

The lateral motions can be described by the linear-
ized equations of motion for small perturbations
about the upright steady forward motion. These line-
arized equations of motion are fully described by
Meijaard et al.1 They are expressed in terms of small

changes in the lateral degrees of freedom (the rear
frame roll angle, �, and the steering angle, d) from
the upright straight-ahead configuration ð�, �Þ ¼
ð0, 0Þ, at a forward speed v, and have the form

M€qþ vC1 _qþ ½ gK0 þ v2K2�q ¼ f ð1Þ

where the time-varying variables are q ¼ ½�, ��T and
the lean and steering torques are f ¼ ½T�,T��

T. The
coefficients in this equation are: a constant symmetric
mass matrix, M, a damping-like (there is no real
damping) matrix, vC1, which is linear in the forward
speed v, and a stiffness matrix which is the sum of a
constant symmetric part, gK0, and a part, v2K2, which
is quadratic in the forward speed. The forces on the
right-hand side, f, are the applied forces which are
energetically dual to the degrees of freedom q. In
the upright straight-ahead configuration, the linear-
ized equation of motion for the forward motion is
decoupled from the linearized equations of motion
of the lateral motions and simply reads _v ¼ 0.

Besides the equations of motion, kinematic differ-
ential equations for the configuration variables that
are not degrees of freedom have to be added to com-
plete the description. For the forward motion, the
equations for the rotational angular rates of the
wheels are _�R ¼ �v=rR, _�F ¼ �v=rF, where �R and �F
are the rotation angles of the rear and front wheel and
rR and rF are the corresponding wheel radii. For the
lateral motion, the equations for the yaw (heading)
angle, c, and the lateral displacement of the rear and
front wheel contact point, yP and yQ, are

_ ¼ ðv�þ c _�Þ cos �s=w ð2Þ

_yP ¼ v ð3Þ

yQ ¼ yP þ w � c� cos �s ð4Þ

with wheelbase w, trail c and steer axis tilt �s. For the
case of the bicycle, these equations can be considered
as a system in series with the system defined by the
equations of motion (1) with q and _q as inputs and the
configuration variables as outputs.

The entries in the constant coefficient matrices
M, C1, K0 and K2 can be calculated from a non-
minimal set of 25 bicycle parameters as described in
ref.1 A procedure for measuring these parameters for
a given bicycle is described in refs18,19,21 whereas mea-
sured values for the bicycles used in this study are
listed in Table 6 of the appendix. To determine the
stability of the straight-ahead steady motion, expo-
nential motions of the form q ¼ q0 expð�tÞ are
assumed. Then with (1) the characteristic equation

det M�2 þ vC1�þ gK0 þ v2K2

� �
¼ 0 ð5Þ

can be formed and the eigenvalues, �, can be calcu-
lated, see Figure 4. In principle, there are up to four

x

z

w
c

ls

QP

Front wheel, FRear wheel, R

rear frame including
rider Body, B

front frame (fork and
Handlebar), H

steer axis

Figure 3. The bicycle model: four rigid bodies (rear wheel R,

rear frame B, front handlebar assembly H, front wheel F)

connected by three revolute joints (rear hub, steering axis,

front hub), together with the coordinate system.
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eigenmodes, where oscillatory eigenmodes come in
pairs. Two are significant and are traditionally
called the capsize mode and the weave mode. The cap-
size mode corresponds to a real eigenvalue with an
eigenvector dominated by lean: when unstable, the
bicycle follows a spiraling path with increasing curva-
ture until it falls. The weave mode is an oscillatory
motion in which the bicycle sways about the heading
direction. The third remaining eigenmode is the over-
all stable castering mode, like in a trailing caster
wheel, which corresponds to a large negative real
eigenvalue with an eigenvector dominated by steering.
The eigenvalues corresponding to the kinematic dif-
ferential equations are all zero and correspond to
changes in the rotation angles of the wheels, a con-
stant yaw angle and a linearly increasing lateral
displacement.

For control purposes it is convenient to express the
bicycle equation (1) in state-space form and as a set of
transfer functions. The state-space representation is
then give by

_x ¼ Axþ Bf ð6Þ

y ¼ CxþDf ð7Þ

with the state vector x ¼ ½ _�, _�,�, ��T, input vector
f ¼ ½T�,T��

T and output vector y ¼ ½�, ��T. The
system matrix A, input gain matrix B, observer
matrix C and direct feed-through matrix D are then
given by

A¼
�M�1vC1 �M

�1 gK0þv
2K2

� �
I 0

" #
, B¼

M�1

0

" #
C¼ 0 I

� �
, D¼ 0½ � ð8Þ

The state-space equations can also be expressed as
a set of transfer functions HyfðsÞ by making use of

yðsÞ ¼ HyfðsÞfðsÞ, with HyfðsÞ ¼ C sI� Að Þ
�1BþD

ð9Þ

where s denotes the Laplace argument. Finally, we
end by introducing the reference error z. Since we
are interested in roll stabilization, this simply becomes
z ¼ ��, resulting in the following transfer function:

zðsÞ ¼ HzfðsÞfðsÞ, where HzfðsÞ ¼ �½0, 0, 1, 0�HyfðsÞ

ð10Þ

Rider control model

The rider control model is assumed to be a linear
feedback system in series with neuromuscular lag.
The linear feedback system is usually written as

uðsÞ ¼ �KðsÞyðsÞ ð11Þ

with the control input y, control output u and linear
feedback gains KðsÞ. In our model the rider control
input is assumed to be the bicycle lean and steer angle,
y ¼ ½�, ��T, and for the rider control output we assume
steer torque only, u ¼ ½T�,u�. This rider control output
then acts as input to the bicycle model, f ¼ ½0, 1�Tu,
and by such closes the control loop. We assume only
steer torque control because according to both Weir5

and Moore et al.9 the rear frame roll angle is mainly
controlled by steering, and the upper body lean action
is known to be ineffective for control purposes.
Moreover, during the experiments the upper body
lean is restrained by a harness connected rigidly to
the bicycle. In addition, the knees are also connected
to the bicycle frame through a set of magnets. All
together, this makes it very unlikely that the rider
uses control means other than the steering control.
This rider contribution to the generalized steering
torque will be denoted by T�,u, where the subscript u
indicates the rider contribution. Next we introduce a
number of sensory feedback gains, which act linearly
on the bicycle configuration output. In order to
explore a range of potentially relevant sensory
inputs we assume the rider to be capable of sensing
and applying proportional, integrative, first- and
second-order derivative actions. These assumptions
can be modeled mathematically according to

K�ðsÞ ¼ k�p þ k�is
�1 þ k�dsþ k�dds

2

K�ðsÞ ¼ k�p þ k�is
�1 þ k�dsþ k�dds

2
ð12Þ

with roll angle feedback K� and steer angle feedback
K�. The gains k with subscript p, i, d and dd indicate
proportional, integral, first- and second-order deriva-
tive gains, respectively.
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According to McRuer and Jex,22 the human con-
troller is inherently limited by neuromuscular lag and
time delays. Force generation of the rider arms is
modeled using activation dynamics estimated for the
shoulder joint,23,24 which yields

GnmðsÞ ¼
!2
c

s2 þ 2�!c þ !2
c

ð13Þ

with cutoff frequency !c ¼ 2:17 � 2� rad/s and damp-
ing coefficient � ¼

ffiffiffi
2
p

. This system acts as a critically
damped second-order filter with a cutoff frequency
equal to !c. Neural transmission results in time
delays, which differ for visual, vestibular and muscle
feedback. We simplified the time-delay models with a
single effective time delay and ultimately removed it
all together for successful numerical identification as
explained in the ‘Gray box model’ section. Sensory
information regarding roll angle will derive from the
visual and the vestibular system, while sensory infor-
mation regarding steer angle will derive from muscle
spindles in the arm. Manual control studies show that
operators can apply proportional as well as lead (dif-
ferential) or lag (integrator) control actions using
visual task information.25 The vestibular organ
senses roll through the semicircular canals where its
output is largely in phase with rotational velocity,
while the otoliths sense linear acceleration, direction
and magnitude of the gravitational force. The muscle
spindles supply position and velocity information.
The relevance, and possible sensory origin of steering
angle acceleration and roll acceleration, will be
addressed in the ‘Discussion’ section.

Finally, the human limitations and the linear feed-
back model are combined to form a rider control
model according to

KðsÞ ¼ GnmðsÞG�ðsÞ K�ðsÞ K�ðsÞ
� �T

ð14Þ

which is presented as a block diagram in Figure 5.
Note that the forward speed v serves as a parameter,
such that all results depend on this since the dynamics
of the bicycle is strongly forward speed dependent.

System identification

The rider control system identification uses a combin-
ation of black box and gray box models to identify the

numerical values of the gains employed by the rider
during each run. Starting with the basic measure-
ments, the identification is performed in six steps:

1. Data preparation: The mean was subtracted from
the roll and steer angles and the linear drift was
subtracted from the lateral force.

2. Black box identification: FIR models are fit to
both the lateral force and steer angle measurement
pair and the lateral force and roll angle measure-
ment pair for each run.

3. Simulation: A simulated response of roll angle and
steer angle is generated by driving the FIR models
with the measured lateral force.

4. Filtering: These simulated responses are then fil-
tered to produce an idealized time history of the
underlying linear relationship between the input
and output.

5. Gray box identification: A gray box model struc-
tured around the feedback laws in (12) and the
Whipple bicycle model is fit to the measured lat-
eral force and the filtered response of the FIR
model for each run.

6. Parameter reduction: We then reduce the param-
eters of the gray box model through an iterative
reduction technique based on the covariance of the
identified gray box parameters and the Variance
Accounted For (VAF) in the lateral force to steer
angle fit.

The analysis is performed for a number of forward
speeds, resulting in a set of parametric models, one for
each run. The accompanying data and the source code
which details these methods are available for down-
load from ref.26

For the system identification a linear input/output
model with additive random noise, i.e. output error, is
assumed. Such a system can be described by

yðtÞ ¼ GðqÞwðtÞ þ vðtÞ ð15Þ

with output yðtÞ, input wðtÞ, disturbance v(t) and
model GðqÞ, see Figure 6. The q operator acts as a
discrete shifting function, such that q�kwðtÞ ¼
wðt� kÞ. This is a convenient description, because it
separates the deterministic input related contribution
GðqÞwðtÞ from the stochastic contribution v(t).

KKφ(s)

Kδ(s)

Gnm(s)Gτ (s)
y

φ

δ

u+

+

Figure 5. Block diagram of the inner control structure of K,

with roll and steering angle feedback gains K� and K�, time delay

G� , neuromuscular lag Gnm, input y ¼ ½�, ��T and output

u ¼ ½T�,u�
T .

G(q)
+

+
w(t)

v(t)

y(t)

Figure 6. System description with: output yðtÞ, input wðtÞ,

disturbance v(t) and system GðqÞ.
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FIR model

Each run contains multiple perturbations in left and
right directions with slightly different amplitudes,
shapes and intervals. For each run an FIR model is
used to capture the full system response to an applied
force perturbations, and to separate it into linear
deterministic and stochastic noise components. The
unknown coefficient of the FIR model have been esti-
mated by using the measured input w(t) and output
y(t) data. The output data either represents yðtÞ ¼ �
corresponding to G�ðqÞ or yðtÞ ¼ �ðtÞ corresponding to
G�ðqÞ. We assume a finite discrete normalized time;
t ¼ 1, 2, 3, . . . , n, such that the approximated output
ŷðtÞ is

ŷðtÞ ¼
Xm
k¼1

ĝðkÞwðt� kÞ þ vðtÞ ð16Þ

From the experiment we know that no input outside
the measurement interval {15 t5 n} is applied,
which can be expressed as: wðtÞ ¼ 0 for t5 1 and
t4 n. The unknown coefficients ĝðkÞ can be solved
from the linear quadratic optimization problem,bg ¼ argminbg ðby� yÞ2

� �
. After experimenting with dif-

ferent finite impulse lengths, the oscillations are found
to die out after about m ¼ 768 samples, which corres-
pond to a finite response length of 3.84 s. Once the m
coefficients are identified for each run the resulting
FIR model is used to generate the linear outputs, �
and d from the measured input w. These simulated

outputs are smoothed by applying a zero-phase low
pass eighth-order Butterworth filter with a cutoff fre-
quency of 10Hz. The results for v ¼ 4:3 m=s are
shown in Figure 7.

Noise

We can use the FIR model to estimate the noise or
remnant v(t), from (15), we obtain

bvðtÞ ¼ yðtÞ � bGNðqÞwðtÞ ð17Þ

where bvðtÞ ¼ ½v�ðtÞ, v�ðtÞ�T is the estimated remnant
and bGNðqÞ ¼ ½Ĝ�ðqÞ, Ĝ�ðqÞ�

T represents the obtained
impulse response model from input w(t) to output
yðtÞ. The decomposition of the measured data into
the deterministic input related component and rem-
nant component is shown for v ¼ 4:3 m=s in Figure 8.

When inspecting the unfiltered FIR output, see
Figure 7, it is apparent that the high-frequency noise
is merely an artifact of the deconvolution process and
does not originate from the rider/bicycle system itself.
This makes the signals ideal for simple low pass filter-
ing. A number of observations can also be made
about the output error, v(t), shown in Figure 8. The
small amplitude changes in both the roll and steering
angle about 2–3 s after the lateral perturbation do not
seem to be linearly correlated with the input force and
are likely due to the human induced remnant. The
signal-to-noise ratio for the case v ¼ 2:1 m=s (not
shown here) is very low, resulting in an unreliable
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Figure 7. FIRs for the roll angle � (top) and steering angle d (bottom) for a forward velocity of v ¼ 4:3 m=s (run 252). The raw FIR

output is smoothed using a zero-phase low pass filter with a cutoff frequency of 10 Hz.

FIR: finite impulse response.
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FIR model. The signal-to-noise ratio of the steering
angle response is generally higher than the roll angle
response. The overall shape of the roll and steering
angle responses are similar, but the amplitudes and
time characteristics differ. The amplitudes of the
output oscillations decrease as the forward velocity
increases. The impulse response seems to damp out
more quickly as the forward velocity increases,
which may have some corollary to the open-loop
dynamics of the bicycle.

Gray box model

In the rider control model, the parameters are the
unknown linear feedback control gains from (12).
The complete system model, the bicycle model
together with the feedback control model, is shown
in Figure 9. Its structure constitutes a standard

linear gray box model formulation. The correspond-
ing gray box model structure is then given by

yðhÞ ¼ GðhÞw,GðhÞ

¼ Pyw þ Pyu I� KðhÞPyu

� ��1
KðhÞPyw

h i
ð18Þ

with bicycle dynamics Pyw and Pyu, human controller
KðhÞ with the unknown gains k defined as the model
parameters h, disturbance input w ¼ w and output
y ¼ ½�, ��T. Notice that only the human controller par-
ameters are unknown, while the open-loop bicycle
parameters are known since they are determined a
priori from the bicycle model (8).

The error criteria used to estimate the gray box
parameters h is based on a weighted quadratic sum

VNðhÞ ¼
1

N

XN
t¼1

Ĝ�ðqÞ � G�ðq, hÞ
	 


wðtÞ
h i2

ð19Þ

which is different than the previous FIR error criteria
by the addition of the weighting by the input signal w.
This weighting forces the minimizer to positively
weight the portion of the time series with higher
signal-to-noise ratios. Here, we also only use the mea-
sured steering angle response because both single-
input and single-output (SISO) identification is more
tractable than single-input and multiple-output
(SIMO) identification and, with the rider directly
exciting the steering dynamics, it is expected that the
steering signal contains the most direct information
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Figure 8. Output decomposition of the steering angle output y(t) in terms of input related component GðqÞwðtÞ and remnant

component v(t) for a forward velocity of v ¼ 4:3 m=s (run 252).
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w z

Figure 9. Block diagram of the general control description,

with known bicycle dynamics P, unknown controller K, dis-

turbance input w, error output z ¼ ��, control input y and

control output u.
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concerning rider actions. The initial parameter vector
h0 is determined by a random search method, for
which the lowest criteria score is further optimized
by using the lsqnonlin function in Matlab. The par-
ameter optimization results in an optimal parameter
vector set according to

bh ¼ argmin
h

VNðhÞ ð20Þ

The parameters are identified for 15 runs, where
the forward velocity takes the following values, 2.1,
3.2, 4.3, 6.1 and 7.3m/s, with multiple runs per speed,
see Table 1. Numerical issues and instabilities in the
identification process were encountered with the rider
model with a time delay. For the current study, this
problem is circumvented by ignoring the time delay
and setting it to zero. This ultimately affects the iden-
tified values of the controller gains but does so equally
for each run, thus maintaining the ability to compare
parameter values among runs.

As an example, the resulting response from the gray
box model for a forward velocity of v ¼ 4:3 m=s is
shown in Figure 10. The comparison of this model
response to the FIR model is shown in Figure 11.

The gray box model, with its eight free parameters,
adequately fits the data for each run but the identified
parameters were susceptible to over-fitting due to the
a priori structure of the model and it was likely that
some of the feedback gains were not necessarily
employed by human riders. Hence, to determine the
essential feedback loops in the rider control system we
apply a parameter reduction technique. The reduction
is based on the quality of the fit and selection of par-
ameters guided by the parameter covariance as
defined by Ljung.27 The quality of the fit is measured
by the VAF on the deterministic output yd ðtÞ, which is
defined as the normalized difference between the gray
box model response and the filtered FIR model
response

VAFðhÞ ¼ 1�
Xn
t¼1

ðeðt, hÞ2Þ=
Xn
t¼1

ð yd ðtÞ
2
Þ,

with eðt, hÞ ¼ yd ðtÞ � ŷd ðt, hÞ ð21Þ

with the deterministic output defined as the output
minus the output error (i.e. the noise), as in

yd ðtÞ ¼ yðtÞ � vðtÞ ¼ GðqÞwðtÞ ð22Þ

A VAF score of 1 means a perfect fit. The sensitiv-
ity of the quality of the fit with respect to the param-
eters h is defined by the parameter covariance

cov �ij ¼ 	
1

n

Xn
t¼1

 ðt, �iÞ ðt, �j Þ

" #�1
,

with 	 ¼
1

n

Xn
t¼1

½eðt, h�2 ð23Þ

and with the partial derivative of the error eðt, hÞ with
respect to the ith parameters �i defined as

 ðt, �iÞ ¼ �
d

d�i
eðt, hÞ ¼

d

d�i
ŷd ðt, hÞ ð24Þ

A reduced model with a minimal set of parameters
was derived as follows. Instead of calculating all
8! ¼ 40, 320 possible combinations of contributing
feedback parameters, we start from a full parameter
set and guided by the parameter covariance remove
the parameter which has the least influence on the
quality of the fit. This process is repeated until the
quality of the fit drops below a certain threshold,
e.g. 90%. An example of this parameter reduction
process, for v ¼ 4:3 m=s, is shown in Figure 12,
whereas the results for three forward speeds (low,
mid and high), are presented in Table 2. As a first
observation it is clear that not all feedback control
gains are important, in most cases at least four out
of the initial eight parameters can be omitted. The
remaining parameters are a proportional and differ-
ential feedback on the roll angle and an integral and
differential gain on the steer angle, where the inte-
grated steering angle reflects the heading error.
These results and implications will further be dis-
cussed in detail in the ‘Discussion’ section.

Finally, we check the stability of the rider con-
trolled system by calculating the eigenvalues for the
closed-loop system with the set of reduced control
model parameters, where these results are presented
in Table 3. We observe that the number of state vari-
ables has increased from 4 to 7. Two states are added
due to the neuromuscular activation dynamics Gnm,
which acts as a second-order low pass filter on the
controller output and one state is added due to the
integrative feedback action on the steering angle.
The real parts of all eigenvalues are negative, which
indicates that the closed-loop system is indeed stable.
If we compare these results to the open-loop uncon-
trolled dynamics, as represented by the eigenvalues
from Figure 4, we see that unstable roots at forward
speeds v ¼ 2:2, v ¼ 3:2 and v ¼ 4:3 m=s are clearly
stabilized.
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Figure 10. Comparison of the filtered FIR output, G�ðqÞ, and

the identified gray box model response G�ðq, �Þ of the steer

angle d, at a forward speed of v ¼ 4:3 m=s (run 252).

FIR: finite impulse response.
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Optimal control approach

Here, we attempt to address the question: ‘if the rider
is operating like an optimizer then what is the rider
optimizing?’ To answer this question we formulate a
standard LQR optimal control problem28 with
the performance index (or cost function) for the

control task

J ¼

Z
ðxTQxþ uTRuÞdt ð25Þ

with the state vector x ¼ ð _�, _�,�, �,
R
�Þ and the con-

troller output u ¼ ð��Þ, and the weight factors Q on
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Figure 12. Example of subsequent parameter covariance matrices after iterative parameter reduction for run 252 which is at a

forward velocity of v ¼ 4:3 m=s, where darker shading means higher covariance and lower sensitivity. The parameter space is reduced

by one for each iteration by removing the gain which has the highest covariance (dark square), from G1 to G6 until the VAF value drops

down dramatically. The subsequent VAF values are: (99.36, 98.92, 96.75, 96.39, 95.18, 63.49)%.

VAF: Variance Accounted For.
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FIR: finite impulse response.
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Table 2. Overview of gray box model identification results, with controller K, parameter vector �, forward velocity v (m/s), roll

proportional gain k�p (Nm/rad), roll integrative gain k�i (Nm/s rad), roll derivative gain k�d (Nm s/rad), roll 2nd derivative gain k�dd (Nm

s2/rad), steer proportional gain k�p (Nm/rad), steer integrative gain k�i (Nm/s rad), steer derivative gain k�d (Nm s/rad), steer 2nd

derivative gain k�dd (Nm s2/rad) and Variance Accounted For (VAF) (%). The gray marked rows indicate the reduced models which have

a minimal number of parameters and still show a good fit (VAF 4 90 %). As an example the covariance matrices of these reduction

steps for run 252 (v ¼ 4:3 m=s) are depicted in Figure 12.

Model k�p k�i k�d k�dd k�p k�i k�d k�dd VAF

Run 249: Kðs, �ðv ¼ 2:2ÞÞ 288.08 �100.30 93.86 �5.80 �23.43 186.05 �9.61 �0.50 99.26

265.93 96.81 �6.56 �23.91 162.90 �10.36 �0.51 99.09

59.65 47.50 �0.27 56.74 �3.36 �0.11 98.73

56.15 44.66 53.20 �3.05 �0.09 98.72

28.97 32.85 29.02 �2.50 94.89

27.68 5.45 �2.39 80.82

27.73 �2.60 79.59

27.98 0.00

Run 252: Kðs, �ðv ¼ 4:3ÞÞ 265.18 �239.20 108.92 �8.09 �98.47 957.34 �20.61 �0.79 99.36

269.35 108.24 �9.63 �124.76 812.04 �23.90 �0.81 98.92

50.84 38.90 �0.43 258.14 �4.59 �0.08 96.75

51.01 34.23 231.07 �3.62 �0.08 96.39

41.51 28.22 177.45 �3.19 95.18

21.47 22.08 �3.52 63.49

21.37 �3.86 62.44

20.59 0.00

Run 256: Kðs, �ðv ¼ 7:3ÞÞ 260.06 �240.71 90.53 �6.67 �303.87 2272.89 �35.13 �0.59 96.94

279.86 85.17 �7.27 �356.87 1869.45 �37.61 �0.63 96.32

54.82 40.80 �0.35 791.19 �10.84 �0.03 90.41

51.84 40.61 �0.45 769.67 �11.20 90.32

48.65 29.89 583.43 �7.05 90.09

16.90 26.54 �6.64 61.82

16.73 �6.94 61.24

16.34 0.00

VAF: Variance Accounted For.

Table 3. Feedback control gains K(12) of the reduced parameter rider control model and eigenvalues � for the corresponding

closed-loop control system, with experiment identification number id, forward velocity v, and VAF, for a rider model with no time

delay �d ¼ 0.

id

v
m
s

k�p
Nm
rad

k�d
Nms
rad

k�i
Nm
rads

k�d
Nms
rad

VAF

%

�1
rad
s

�2,3
rad
s

�4,5
rad
s

248 2.1 5.17 27.21 14.39 �1:92 85 �18:11 �0:90� 3:26i �0:67� 1:70i

249 2.2 28.97 32.85 29.02 �2:50 95 �21:33 �1:54� 1:85i �0:39� 3:33i

250 2.2 24.25 32.51 26.44 �2:57 96 �21:82 �1:41� 1:90i �0:46� 3:18i

184 3.2 22.72 26.12 65.92 �3:00 95 �26:76 �1:42� 3:13i �0:66� 3:08i

185 3.2 43.23 30.45 94.00 �3:21 97 �27:58 �2:15� 2:43i �0:30� 3:92i

186 3.1 31.12 28.46 71.26 �2:95 97 �26:05 �1:50� 2:68i �0:77� 3:64i

251 4.3 72.83 32.44 211.79 �3:81 90 �33:45 �2:54� 1:83i �0:73� 5:50i

252 4.3 41.51 28.22 177.45 �3:19 95 �29:82 �1:94� 3:37i �1:18� 4:18i

253 4.3 45.43 28.99 169.47 �3:60 95 �32:49 �1:75� 2:68i �1:20� 4:79i

190 6.0 34.19 23.34 334.82 �3:52 97 �36:60 �2:35� 4:65i �1:17� 3:84i

(continued)
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the state and R on the control effort. The optimal
feedback gains K for a linear feedback controller of
the form u ¼ �Kx are found by minimizing the per-
formance index J, which is done with the well-known
Riccati solution (LQR model). Here, we work the
other way around: given the feedback gains from
the reduced parameter rider model (Table 3), what
are the weight factors? We solve this by a nonlinear
search on J. For the weight factors we take the same
approach as used by Bryson and Ho,28 where we
assume all off-diagonal terms in Q and R zero, and
the remaining unknown diagonal terms to have the
form 1=x̂2i , where x̂i is the maximal allowable value
of the ith element of the state vector. The weight
factor matrices Q and R then take on the form

Q ¼ diag 1= _̂�
2
, 1= _̂�

2
, 1=�̂2, 1=�̂2, 1= ̂2

	 

ð26Þ

R ¼ 1=�̂2� ð27Þ

To obtain more meaningful results we have intro-
duced the approximate maximum allowable heading
angle  ̂ ¼ v cos �s=w

R
�dt as a physical interpretation

of the state variable
R
�dt. This approximate heading

follows directly from the kinematic equation (2), when
we neglect the small contribution of the trail times
steer rate term. The unknown weight factors are
now the maximum allowable state variables
ð _̂�, _̂�, �̂, �̂,  ̂Þ and the maximum allowable steer
torque �̂�. These weight factors are found in an opti-
mization process by minimizing the absolute differ-
ence between the feedback control gains from the
reduced parameter model and the ones from the cor-
responding LQR method. To simplify matters, the
neuromuscular lag Gnm and time delay G� in the feed-
back model 14 have been neglected. The justification
is that this system acts as a second-order filter at a
cutoff frequency of 2.17Hz, whereas the observed
control signals are in the order 1Hz.

The results of this process are the Q and R weight
factors shown in Table 4 and Figure 14, together with
the approximate feedback control gains shown in
Table 5 and added to Figure 13. Instead of the four
feedback gains from the reduced parameter model we
now have five feedback gains because the LQR

method used here has full state feedback. The
weight factors are normalized with respect to the con-
trol effort, that is normalized with �� ¼ 1. Clearly,
looking at the weights in Table 4, the rider is not
optimizing with respect to the roll or steer angle or
rates, indicated by the high maximum allowable
values. At low speed (v5 3 m=s), the rider is optimiz-
ing the control effort, since here the smallest values
are the maximum allowable steer torques. At moder-
ate to high speed, the rider is optimizing for heading,
indicated by the small value (negative number on a
log scale) of the maximum allowable heading  ̂,
which makes sense when balancing a moving bicycle
on a narrow treadmill.

Discussion

Identified parameter values for the linear feedback
rider control model according to Figure 5 and equa-
tion (12), for all five forward speeds, are presented in
Table 3 and Figure 13, from which the following
observations can be made. The reduced gray box
model with four feedback gains accounts for 90% of
the variance of the FIR model output, see Table 2 and
Figure 12. These four gains are: a gain on the lean
angle and lean rate and a gain on the steer rate and
the integral of the steer angle. The rider’s use of lean
angle and lean angle rate represents vestibular and/or
visual feedback, and the use of steer angle rate repre-
sents proprioceptive feedback. The sign of the gains
on the lean angle and lean angle rate are in total
agreement with the basic bicycle balance principle of
steer-into-the-fall.2 The feedback of the integral of the
steer angle can be explained by the need for the rider
to stay on the narrow treadmill and thus maintain a
tight heading because the heading c is mainly deter-
mined by the integral of the steer angle d, according to
the kinematic equation (2). All feedback gains show a
forward speed dependency, the most profound in the
integral steering feedback (heading), which seems to
be quadratic in the forward speed.

To understand what the rider is optimizing we have
successfully applied the LQR method in an inverse
manner. The resulting weight factors, in Table 4 and
Figure 14 indicate that at low speed (v5 3 m=s) the
rider is minimizing his control effort and at high speed

Table 3. Continued

id

v
m
s

k�p
Nm
rad

k�d
Nms
rad

k�i
Nm
rads

k�d
Nms
rad

VAF

%

�1
rad
s

�2,3
rad
s

�4,5
rad
s

191 6.1 29.63 22.83 322.89 �3:81 96 �38:82 �2:47� 5:02i �0:87� 3:46i

192 6.1 28.32 20.43 293.30 �3:31 92 �36:00 �2:16� 4:79i �1:09� 3:60i

255 7.3 37.19 26.66 533.49 �5:37 92 �51:53 �2:73� 6:55i �1:08� 2:95i

256 7.3 48.65 29.89 583.43 �7:05 90 �61:74 �2:10� 6:56i �1:48� 2:71i

257 7.4 45.58 26.97 617.10 �4:64 93 �46:73 �2:56� 5:97i �1:70� 3:47i

VAF: Variance Accounted For.
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Table 5. Feedback control gains K(12) obtained from the optimal control approach with experiment identification number id,

forward velocity v, performance index or cost function J(25) and no time delay �d ¼ 0. The optimal criterion weights Q and R are

presented in Table 4. For comparison with the original reduced parameter model gains these values are plotted as * in Figure 13.

Clearly run 191 and 255 are outliners, because of the high value of J compared to the other runs.

id

v
m
s

k�p
Nm
rad

k�d
Nms
rad

k�p
Nm
rad

k�i
Nm
rads

k�d
Nms
rad

J

–

248 2.1 41.18 14.50 �16.55 0.00 �1.79 1939

249 2.2 47.31 16.58 �16.34 3.50 �1.82 1520

250 2.2 43.31 21.55 �18.10 0.00 �2.00 1510

184 3.2 56.86 19.54 �17.32 36.50 �1.86 2376

185 3.2 81.10 27.82 �15.60 62.72 �2.01 2664

186 3.1 64.74 22.26 �16.73 41.81 �1.91 2317

251 4.3 115.19 40.56 �16.79 190.68 �2.44 2590

252 4.3 93.14 31.60 �16.73 153.35 �2.17 3539

253 4.3 90.82 30.81 �16.99 148.48 �2.16 2795

190 6.0 90.98 30.35 �22.00 321.40 �2.30 3939

191 6.1 125.80 38.97 �76.44 261.24 �3.85 19,153

192 6.1 79.20 26.31 �23.44 281.37 �2.18 3316

255 7.3 147.21 39.55 �52.95 497.79 �3.58 16,352

256 7.3 102.18 33.76 �25.26 575.53 �2.50 3601

257 7.4 106.61 35.27 �24.70 607.93 �2.55 4492

Table 4. Log10 of the weight factors ð _̂�, _̂�, �̂, �̂,  ̂Þ for the state vector weight matrix Q, together with the experiment identification

number id, forward velocity v and performance index or cost function J. The heading weight factor  ̂ is a measure for the weight on

the integral of the steer angle. The weights are normalized with respect to the control effort R, setting �̂� ¼ 1 ðlog10ð�̂�Þ ¼ 0Þ. Clearly

run 191 and 255 are outliners, because of the high value of J compared to the other runs.

Q

id v log _̂� log �̂ log _̂� log �̂ log  ̂ J

m/s rad/s rad rad/s rad rad –

248 2.1 2.3 3.6 2.5 2.5 3.3 1939

249 2.2 5.6 6.9 5.9 6.8 �0.9 1520

250 2.2 �1.2 2.1 1.6 2.0 2.2 1510

184 3.2 6.5 7.1 5.8 7.3 �2.0 2376

185 3.2 5.2 5.4 3.7 4.1 �2.3 2664

186 3.1 6.3 6.7 5.5 6.0 �2.1 2317

251 4.3 �1.0 0.4 �0.7 �0.3 �2.9 2590

252 4.3 5.9 6.2 5.3 5.6 �2.8 3539

253 4.3 3.5 4.1 3.7 3.7 �2.8 2795

190 6.0 5.1 6.0 4.9 5.3 �3.3 3939

191 6.1 �0.6 0.6 �1.7 �2.0 �3.2 19153

192 6.1 5.6 6.3 5.1 5.5 �3.2 3316

255 7.3 �1.0 �0.3 �2.0 �1.7 �3.5 16352

256 7.3 4.8 6.0 4.5 4.7 �3.6 3601

257 7.4 4.8 5.6 4.3 4.2 �3.6 4492
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Figure 14. Box plot of the log10 of the maximum allowable state variable values ð _̂�, _̂�, �̂, �̂,  ̂Þ from Table 4, which are used in the

optimal control state vector weight matrix Q, as a function of the forward velocity v. Note that the weights are normalized with

respect to the control effort R, setting �̂� ¼ 1 ðlog10ð�̂�Þ ¼ 0Þ.
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Figure 13. Box plot of the feedback control gains K(12) of the reduced parameter rider control models from Table 3, as a function

of the forward velocity v, together with the feedback control gains obtained by the optimal control approach from Table 5, which are

marked by an *.
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he is minimizing his heading error. The weight factors
on the heading show a strong forward speed depend-
ency, all other factors do not. The resulting control
feedback gains comply pretty well with the original
feedback gains from the reduced order model, as
can be seen in Figure 13. The proportional feedback
on the roll angle are about twice as high and the feed-
back on the steer rate, which can be seen as some sort
of steer damping, show the same forward speed
dependency but stay a bit behind, which can be attrib-
uted to the neglected human muscular dynamics.
The feedback gain on the integral of the steer angle,
the approximate heading, complies very well.

Conclusion

Rider control in bicycling is identified by a linear feed-
back control model where muscle dynamics are incor-
porated. The measured data were obtained while
riding on a narrow treadmill where the system was
perturbed by an intermittent lateral impulsive force.
The identified rider control model with the reduced
parameter set stabilizes the system, follows the neces-
sary stability condition of steer into the fall and seems
to mimic human control in a natural way. Application
of optimal control theory on the identified rider con-
trol model indicates that at low speed the rider min-
imizes his control effort and at high speed he
minimizes the heading error. This seems very plausible
for the task of riding on a narrow treadmill. Future
research will be conducted to obtain experimental
data of bicycling on the open road, where the restric-
tion of keeping a narrow lane, like on the treadmill, is
not imposed. The same techniques as described in this
article can then be used to obtain a pure stabilizing
rider control model.
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Appendix: Bicycle parameters

Table 6. Parameters for the measurement bicycle plus rigid rider from Figure 1 for the bicycle model from Figure 3.

Parameter Symbol Values

Wheel base w 1.0759 m

Trail c 0.0718 m

Steer axis tilt �s 20:1�

Gravity g 9.81 N/kg

Forward speed v various m/s

Rear wheel R

Radius rR 0.3325 m

Mass mR 4.90 kg

Inertia ðIRxx , IRyyÞ (0.0701, 0.12934) kg m2

Rear Body and frame assembly B

Center of mass ðxB, zBÞ (0.33235, �1.02217) m

Mass mB 106.40 kg

Inertia

IBxx 0 IBxz

0 IByy 0

IBxz 0 IBzz

24 35 13:9967 0 �0:6113

0 15:4633 0

�0:6113 0 4:4282

24 35 kg m2

Front Handle bar and fork assembly H

Centre of mass ðxH, zHÞ (0.8092, –0.9774) m

Mass mH 5.40 kg

Inertia

IHxx 0 IHxz

0 IHyy 0

IHxz 0 IHzz

24 35 0:3376 0 �0:0996

0 0:3399 0

�0:0996 0 0:1094

24 35 kg m2

Front wheel F

Radius rF 0.3356 m

Mass mF 1.55 kg

Inertia ðIFxx , IFyyÞ (0.0524, 0.0984) kg m2

.
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Table 7. Mass, damping and stiffness matrices (1) for the bicycle model from Figures 3 and 1

according to the parameters from Table 6, together with the transfer matrix Hfw which maps the

lateral force applied at the seat post to the generalized forces from the bicycle model.

M0 ¼
133:31668525 2:43885691

2:43885691 0:22419262

� �
, C1 ¼

0 44:65783277

�0:31500940 1:46189246

� �
,

K0 ¼
�116:73261635, �2:48042260

�2:48042260 �0:77434358

� �
, K2 ¼

0 104:85805076

0 2:29688720

� �
,

Hfw ¼
0:91

0:014408

� �
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