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We present canonical linearized equations of motion for the Whipple bicycle model
consisting of four rigid laterally symmetric ideally hinged parts: two wheels, a frame and
a front assembly. The wheels are also axisymmetric and make ideal knife-edge rolling
point contact with the ground level. The mass distribution and geometry are otherwise
arbitrary. This conservative non-holonomic system has a seven-dimensional accessible
configuration space and three velocity degrees of freedom parametrized by rates of frame
lean, steer angle and rear wheel rotation. We construct the terms in the governing
equations methodically for easy implementation. The equations are suitable for e.g. the
study of bicycle self-stability. We derived these equations by hand in two ways and also
checked them against two nonlinear dynamics simulations. In the century-old literature,
several sets of equations fully agree with those here and several do not. Two benchmarks
provide test cases for checking alternative formulations of the equations of motion or
alternative numerical solutions. Further, the results here can also serve as a check for
general purpose dynamic programs. For the benchmark bicycles, we accurately calculate
the eigenvalues (the roots of the characteristic equation) and the speeds at which bicycle
lean and steer are self-stable, confirming the century-old result that this conservative
system can have asymptotic stability.
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1. Introduction

In 1818, Karl von Drais showed that a person riding forward on a contraption
with two in-line wheels, a sitting scooter of sorts, could balance by steering the
front wheel (Herlihy 2004). Later, the velocipede of the 1860s which had pedals
directly driving the front wheel as on a child’s tricycle, could also be balanced by
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rider-applied steering control. This ‘boneshaker’ had equal-size wooden wheels
and a vertical (untilted) steering axis passing through the front wheel axle. By
the 1890s, it was well known that essentially anyone could learn to balance a
‘safety bicycle’, which had pneumatic tyres and a chain drive. More subtly, but
more importantly for balance and control, the safety bicycle also had a tilted
steer axis and fork offset (bent front fork) like a modern bicycle. In 1897, French
mathematician Carvallo (1899) and then, more generally, Cambridge under-
graduate Whipple (1899) used rigid body dynamics equations to show in theory
what was surely known in practice, that some safety bicycles could, if moving in
the right speed range, balance themselves. Presently, these same two basic
features of bicycle balance are clear.

(i) A controlling rider can balance a forward-moving bicycle by turning the front
wheel in the direction of an undesired lean. This moves the ground contact
points under the rider, just like an inverted broom or stick can be balanced on
an open hand by accelerating the support point in the direction of lean.

(ii) Some uncontrolled bicycles can balance themselves. If an appropriate typical
bicycle is given a push to approximately 6 m s~ ', it steadies itself and then
progresses stably until its speed gets too low. The torques for the self-correcting
steer motions can come from various geometric, inertial and gyroscopic
features of the bicycle.

Beyond these two generalities, there is little that has been solidly accepted in
the literature, perhaps owing to the lack of need. Through trial and error bicycles
had evolved by 1890 to be stable enough to survive to the present day with
essentially no modification. Since bicycle design has been based on tinkering
rather than equations, there has been little scrutiny of bicycle analyses.

To better satisfy general curiosity about bicycle balance and perhaps
contribute to the further evolution of bicycle design, we aim here to firmly
settle some basic, and largely previously presented, bicycle stability science. The
core of the paper is a set of easy-to-use and thoroughly checked linearized
dynamics equations for the motion of a somewhat elaborate, yet well-defined
bicycle model. These are given in equation (5.3) and appendix A. Future studies
of bicycle stability aimed, for example, at clarifying especially point (ii) above,
can be based on these equations.

Many methods can be used to derive the equations using various choices of
coordinates, each leading to vastly different-looking governing equations. Even
matching initial conditions between solution methods can be a challenge.
However, the roots of the characteristic equation (eigenvalues) and the speed
range of stability are independent of all of these differences. Thus, for example, a
computer-based study of a bicycle based on any formulation can be checked for
correctness and accuracy by comparing with the benchmark eigenvalues here.

The work here may also have more general use in that the bicycle balance
problem is close to that for skating, walking and running in their coupling of lean,
steer and balance. Furthermore, there is a dearth of non-trivial examples with
precisely known solutions that can be used to check general purpose multibody
dynamics simulators (such as used for machine, vehicle and robot design). This
paper provides such a non-trivial benchmark system.
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2. Brief literature review

Since their inception bicycles have attracted attention from the more or less well-
known scientists of the day, including thermodynamicist William Rankine, the
mathematicians Carlo Bourlet, Paul Appell and Emmanuel Carvallo, the
meteorologist Francis Whipple, the mathematical physicist Joseph Boussinesq,
and the physicist Arnold Sommerfeld working with mathematician Felix Klein and
engineer Fritz Noether (brother of Emmy). A later peak in the ‘single-track vehicle’
dynamics literature began in about 1970, perhaps because digital computers eased
integration of the governing equations, because of the increased popularity of large
motorcycles (and attendant accidents), and because of an ecology-related bicycle
boom. This latter literature includes work by dynamicists such as Neimark, Fufaev,
Breakwell and Kane. Starting in the mid-1970s, the literature increasingly deviates
from the rigid body treatment that is our present focus.

Over the past 140 years, scores of other people have studied bicycle dynamics,
either for a dissertation, a hobby or sometimes as part of a life’s work on vehicles.
This sparse and varied research on the dynamics of bicycles modelled as linked
rigid bodies was reviewed in Hand (1988). A more general but less critical
historical review, which also includes models with structural compliance and tyre
models, is given in Sharp (1985).

Many bicycle analyses aimed at understanding rider control are based on
qualitative dynamics discussions that are too reduced to capture the ability of an
uncontrolled moving bicycle to balance itself. The paper by Jones (1970) is the
best-known of these. The paper by Maunsell (1946) carefully considers several
effects. Qualitative dynamics discussions can also be found in Lallement (1866),
Rankine (1869), Appell (1896), Sharp (1896), Wallace (1929), Jones (1942), Den
Hartog (1948), Higbie (1974), Kirshner (1980), Le Hénaff (1987), Olsen &
Papadopoulos (1988), Patterson (1993), Cox (1998) and Wilson (2004).

A second class of papers does use analysis to study the dynamics. Some,
appropriately for basic studies of rider control, use models with geometry and/or
mass distribution that are too reduced to allow self-stability. Others, even if
using a bicycle model that is sufficiently general, use rules for the control of the
steer and thus skip the additional equation for uncontrolled steer dynamics. Such
simple and/or steer-controlled approaches are found in Bourlet (1899),
Boussinesq (1899a,b), Routh (1899), Bouasse (1910), Bower (1915), Pearsall
(1922), Loicjanskii & Lur’e (1934), Timoshenko & Young (1948), Haag (1955),
Neimark & Fufaev (1972), Lowell & McKell (1982), Getz & Marsden (1995),
Fajans (2000), Astrom et al. (2005) and Limebeer & Sharp (2006).

Finally, we have found approximately 30 rigid body dynamics models that
have general enough geometry and mass distribution for self-stability to be
possible, and which also allow uncontrolled steer dynamics. These governing
equations are complex and different authors use slightly different modelling
assumptions, different parametrizations and different choices of dynamic
variables, and most authors did not know of most of their predecessors. Thus,
only a small fraction of the 200 or more chronologically possible cross-checks
have been performed in detail. Of these, a large fraction are by Hand and
ourselves. The evaluations below are based on comparison with our own
derivations (Papadopoulos 1987; Meijaard 2004; Schwab et al. 2005), and on
comparisons made by the first six authors below, especially Hand.
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Correct equations for the Whipple model are in Déhring (1955), who built on
the less-general Carvallo model presented in Klein & Sommerfeld (1910), in Weir
(1972), who checked Sharp (1971), in Eaton (1973), who checked Weir (1972)
and Sharp (1971), in Hand (1988), who checked these papers and others, and in
Mears (1988) who checked Weir and Hand. Singh & Goel (1971) use Dohring’s
correct equations, but we were unable to reproduce their eigenvalues. The paper
by Dikarev et al. (1981) corrects an error in Neimark & Fufaev (1972),
independently also corrected later by Hand, and we have found no fault with it,
but we have not confirmed the final equations. Based on graphical agreement of
Psiaki’s (1979) plots against solutions of the equations here, we expect that
Psiaki’s complex equations are correct, but we have not confirmed their formal
equivalence to ours.

Equations of similar models are in Carvallo (1899), which is slightly simplified,
Whipple (1899), which has some typographical errors, Klein & Sommerfeld (1910),
which follows Carvallo and is slightly simplified, and Herfkens (1949), which has
some typographical errors. We recently discovered areport by Manning (1951) that
has no evident flaws but we have not checked it in detail. Sharp (1971) is correct
before he eliminates tyre compliance and is the foundation for much subsequent
tyre-based vehicle modelling. Van Zytveld (1975) is correct when his slightly
incorrect and more general model is simplified to the Whipple model, and Weir &
Zellner (1978) has a sign error. Neimark & Fufaev (1972) has more substantial but
still correctable errors (Dikarev et al. 1981; Hand 1988).

Others who studied complex rigid body bicycle models include Collins (1963),
Singh (1964), Rice & Roland (1970), Roland & Massing (1971), Roland & Lynch
(1972), Roland (1973), Rice (1974, 1976), Singh & Goel (1976), Lobas (1978), Koenen
(1983), Franke et al. (1990), Lennartsson (1999), Astrom et al. (2005) and Limebeer &
Sharp (2006). We continue to discover more promising papers (Kondo et al. 1963; Ge
1966). Despite all these decades of careful good work, as of this writing there is no
standard journal publication in English that we are confident presents complete and
correct equations for the canonical Whipple model. Electronic supplementary
material, appendix 1 expands on the historical review above.

3. The bicycle model

We use the Whipple bicycle consisting of four rigid bodies: a rear wheel R, a rear
frame B with the rider body rigidly attached to it, a front frame H consisting of
the handlebar and fork assembly and a front wheel F (figure 1). Within the
constraint of overall lateral (left—right) and circular symmetry of the wheels, the
shape and mass distributions are general with one caveat. A model that respects
these symmetries allows non-planar (thick) wheels. We allow for such thickness
in our inertial properties but, like Whipple, restrict attention to knife-edge
rolling point contact, thus excluding, for example, contact with toroidal wheels.
We neglect the motion of the rider relative to the frame, structural compliances
and dampers, joint friction and tyre models with compliance and slip.

The model delineation is not by selecting the most important aspects for describing
real bicycle behaviour. For understanding basic features of active rider control, the
model here is undoubtedly unnecessarily and inappropriately complex. For example,
some aspects included here have very small effects, like the non-planarity of the
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Figure 1. Bicycle model parameters. For all four parts (R, B, F and H), centre of mass locations are
expressed relative to the z- and z-coordinates shown (with origin at P and y pointing towards the
reader) and in the reference configuration shown. Other parameters are the body masses and
inertias, the wheel radii, the tilt A of the steer axis, the wheel base w and the trail ¢ as listed in
table 1. The figure is drawn to scale using the distances in table 1. Configuration variables (lean,
steer, etc.) are defined in figure 2.

inertia of the real wheel, and other neglected aspects may be paramount, e.g. the
rider’s flexibility and control reflexes. Even for the study of uncontrolled stability,
tyre deformation and frame compliance seem necessary for understanding wobble
(a rapid steering oscillation). In summary, the model here includes all the sharply
defined rigid body effects, while leaving out a plethora of terms that would require
more subtle and less well-defined modelling.

Our bicycle design is fully characterized by 25 parameters described below.
Table 1 lists the numerical values used for the numerical benchmark. Most
numerical values are representative of real bicycles, but some values (e.g. wheel
inertial thickness as represented by Ir,, > Ir,,/2) are exaggerated to guarantee a
detectable role in the benchmark numerical studies. The bicycle design
parameters are defined in an upright reference configuration with both wheels
on the level flat ground and with zero steer angle. The reference coordinate origin
is at the rear wheel contact point P. We use the conventions of vehicle dynamics
(J670e, SAE 2001) with positive z pointing generally towards the front contact
point, positive z pointing down and the y-axis pointing to the rider’s right.

The radii of the circular wheels are rgs and rz. The wheel masses are my and
myp with their centres of mass at the wheel centres. The moments of inertia of the
rear and front wheels about their axles are Ig,, and I, respectively. The
moments of inertia of the wheels about any diameter in the zz-plane are Iy, and
Ir,,. The wheel mass distribution need not be planar, so any positive inertia is
allowed with Iy,,<2Ig,, and Ip,, <2, All front wheel parameters can be
different from those of the rear so, for example, it is possible to investigate
separately the importance of angular momentum of the front and rear wheels.

Narrow high-pressure, high-friction tyre contact is modelled as non-slipping
rolling point-contact between the ground and the knife-edge wheel perimeters.
The frictionless wheel axles are orthogonal to the wheel symmetry planes and are
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Table 1. Parameters for the benchmark bicycle shown in figure 1 and described in the text. (The
values given are exact (no round-off). The inertia components and angles are such that the
principal inertias (eigenvalues of the inertia matrix) are also exactly described with only a few
digits. The tangents of the angles that the inertia eigenvectors make with the global reference axes
are rational fractions.)

parameter symbol value for benchmark
wheel base w 1.02m

trail c 0.08 m

steer axis tilt (m/2—head angle) A /10 rad (90°—72°)
gravity g 9.81 N kg *

forward speed v various ms~ ' (table 2)

Rear wheel R

radius TR 0.3m
mass mR 2 kg
mass moments of inertia (IRazs IRyy) (0.0603, 0.12) kg m?
rear Body and frame assembly B
position centre of mass (2B, 28) (0.3, —=0.9) m
mass mp 85 kg
mass moments of inertia g, 0 In, 92 0 24
0 Iy, O 0 11 0 | kgm®
I, 0 I, 24 0 28
front Handlebar and fork assembly H
position centre of mass (2m, 21) (0.9, —0.7) m
mass M 4 kg
mass moments of inertia Iiee 0 Iy 0.05892 0 —0.00756
0 Iy, O 0 0.06 0 kg m?
Ly,, 0 Iy, —0.00756 0 0.00708
Front wheel F
radius TR 0.35m
mass mp 3 kg
mass moments of inertia (Iewss Lryy) (0.1405, 0.28) kg m?

located at the wheel centres. In the reference configuration, the front wheel
ground contact Q is located at a distance w (the wheel base) in front of the rear
wheel contact P. The front wheel ground contact point trails a distance ¢ behind
the point where the steer axis intersects the ground. Although ¢>0 for most
bicycles, the equations allow a negative trail (¢<0) with the wheel contact point
in front of the steer axis.

The rear wheel R is connected to the rear frame assembly B (which includes
the rider body) at the rear axle. The centre of mass of B, with mass mg, is located
at (zg, ys=0, 25 <0). The moment of inertia of the rear frame about its centre of
mass is represented by a 3X3 moment of inertia matrix where all mass is
symmetrically distributed relative to the zz-plane, but not necessarily on the
plane. The centre of mass of the front frame assembly (fork and handlebar) H is
at (zy, yu=0, 213 <0) relative to the rear contact P. H has mass my. As for the B
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frame, Iy, can be less than Iy, + Iy... The moment of inertia matrices of the
rear and front assemblies are

IB = 0 IByy 0 and IH = 0 IHyy 0 . (31)
IBzz 0 IBzz IHTZ 0 Isz

To be physical (i.e. no negative mass), the moment-of-inertia matrix must have
all principal values positive and also satisfy the triangle inequalities that no one
principal value is bigger than the sum of the other two. The steer axis tilt angle A
is measured from the upwards vertical, positive when tipped back as on a
conventional bicycle with —a/2<A<w/2 (all angles in radians). The steer tilt is
/2 minus the conventional ‘head angle’; a bicycle with head angle of 72° has A=
18°=m/10. The steer axis location is implicitly defined by the wheel base w, trail
c and steer axis tilt angle A.

T'wo non-design parameters are the downward gravitational acceleration gand the
nominal forward speed v. This model, or slight simplifications of it, is a common
idealization of a bicycle (electronic supplementary material, appendix 1). Motorcycle
modelling is often based on an extension of this model using toroidal wheels, tyre
compliance, tyre slip and frame compliance. Theories of bicycle and motorcycle
control are often based on simplifications of this model or, alternatively, on simple
analogous systems that do not come from reductions of this model.

(a) How many parameters describe the bicycle model?

The bicycle model here is defined completely by the 25 design parameters
above (table 1). This is not a minimal description for dynamic analysis, however.
For example, the inertial properties of the rear wheel R, except for the polar
moment of inertia (i.e. mg and Ig,, but not Iy,,), can be combined with the
inertial properties of the rear frame B, reducing the number of parameters by 2.
The same combination can be used for the front frame, reducing the number of
parameters to 25—2—2=21. The polar inertia of each wheel can be replaced
with a gyrostat constant that gives its spin angular momentum in terms of
forward velocity. This does not reduce the number of parameters in nonlinear
modelling. But in linear modelling, the radius of the wheels is irrelevant for lean
and steer geometry and their effect on angular momentum is embodied in the
gyrostat constants. Eliminating wheel radii reduces the number of parameters
by 2 to 21—2=19. Finally, in the linearized equations of motion, the polar (yy
components) of the moments of inertia of the two frames are irrelevant, reducing
the necessary number of design parameters to 19—2=17.

In their most reduced form, the linearized equations of motion (5.3) have 11
arbitrary independent matrix entries. Each entry is a complex combination of
the 17 parameters just described. Still, further reduction can be obtained by
inspection of the fourth-order characteristic equation (6.5). After scaling by the
leading coefficient det(M), there remain four coefficients, each a polynomial in
the forward speed. There are seven independent coefficients of these velocity
polynomials. By reduction using suitable length and time-scales, two of these
coefficients can be eliminated. Thus, the space of scaled root loci plots is only
five-dimensional. For simpler comparisons, we use all 25 design parameters.
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(b) How many degrees of freedom does the bicycle model have?

Since this system has non-holonomic kinematic constraints, the concept of
‘degree of freedom’ needs clarification. The holonomic (hinges and ground
contacts) and non-holonomic (non-slip rolling) constraints restrict these four
linked three-dimensional objects in space as follows. Start with the 24 degrees of
freedom of the four rigid bodies, each with three translational and three
rotational degrees of freedom in physical space (4X(3+3)=24). Then, subtract
five degrees of freedom for each of the three hinges and one more for each wheel
touching the ground plane: 24—3X5—2=7. Thus, before we consider the
non-slipping wheel contact constraints, the accessible configuration space is
seven-dimensional. The four non-holonomic rolling constraints (two for each
wheel-to-ground contact) do not further restrict this accessible configuration
space: kinematically allowable rolling motions can translate and steer the bicycle
on the plane in arbitrary ways and also can rotate the wheels relative to the
frame with no net change of overall bicycle position or orientation. For example,
even though side-slip is not allowed, a bicycle can move sideways by the same
motions used to parallel-park a car. Thus, the accessible configuration space for
this model is seven-dimensional.

(i) Description of the seven-dimensional configuration space

This seven-dimensional configuration space can be parametrized as follows
(figure 2). The location of the rear wheel contact with the ground is (zp, yp)
relative to a global fixed coordinate system with origin O. The orientation of the
rear frame with respect to the global reference frame O-zyz is given by a sequence
of angular rotations (312 Euler angles). These rotations are shown in figure 2
with fictitious hinges, each represented as a can in the drawing, in series,
mounted at the rear hub: a yaw rotation, ¥, about the z-axis, a lean rotation, ¢,
about the rotated z-axis and a pitch rotation, fp, about the rotated y-axis. Note
that the pitch 3 is not one of the seven configuration variables because it is
determined by a three-dimensional trigonometric relation that keeps the steered
front wheel on the ground. The steering angle ¢ is the rotation of the front
handlebar frame with respect to the rear frame about the steering axis. A right
turn of a forward-moving bicycle has 6> 0. Finally, the rotation of the rear R and
front F wheels with respect to their respective frames B and H are 6y and 0.
In summary, the configuration space is parametrized here with (ap, yp, ¥, @, 0,
Or, 0r). Quantities such as wheel centre coordinates and rear frame pitch are all
determined by these.

(ii) Velocity degrees of freedom

As explained previously, the accessible configuration space is seven-
dimensional. However, the four non-holonomic rolling constraints (one
longitudinal and one lateral for each wheel-to-ground contact) reduce the
seven-dimensional accessible configuration space to 7—4=3 velocity degrees of
freedom. This three-dimensional, kinematically accessible, velocity space can
conveniently be parametrized by the lean rate ¢ of the rear frame, the steering
rate 0 and the rotation rate 6y of the rear wheel R relative to the rear frame B.
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Figure 2. Configuration and dynamic variables. The seven-dimensional accessible configuration
space is parametrized here by the z- and y-coordinates of the rear contact P, measured relative to a
global fixed coordinate system, and five angles represented by a sequence of hinges (gimbals). The
hinges are drawn as a pair of cans which rotate with respect to each other. For a positive rotation,
the can with the arrow rotates in the direction of the arrow relative to its mate as shown on the
enlarged isolated can at the top right. The ¥ can is grounded in orientation but not in location. For
example, a clockwise (looking down) change of heading (yaw) y of the rear frame B, is positive.
The lean (‘roll’ in aircraft terminology) to the right is ¢. The rear wheel rotates with g relative
to the rear frame, with forward motion being negative. The steer angle is 6 with right steer positive.
The front wheel rotates with 6 relative to the front frame. As pictured, ¥, ¢ and ¢ are all positive.
The velocity degrees of freedom are parametrized by ¢, 6 and éR. The sign convention used is the
engineering vehicle dynamics standard J670e (SAE 2001).

4. Basic features of the model, equations and solutions

(a) The system behaviour is unambiguous

The dynamics equations for this model follow from linear and angular
momentum balance applied to each part, along with the assumption that the
kinematic constraint forces follow the rules of action and reaction and do no net
work. These equations may be assembled into a set of ordinary differential
equations, or differential-algebraic equations by various methods. One can
assemble governing differential equations using the Newton—Euler rigid body
equations, Lagrange equations with Lagrange multipliers for the in-ground-plane
rolling-contact forces, or methods based on the principle of virtual velocities (e.g.
Kane’s method), etc. But the subject of mechanics is sufficiently well defined that
we know that all standard methods will yield equivalent sets of governing
differential equations. Therefore, a given consistent-with-the-constraints initial
state (positions and velocities of all points on the frames and wheels) will always
yield the same subsequent motions of the bicycle parts. Thus, while the choice of
variables and the recombination of governing equations may lead to quite
different-looking governing equations, any difference between dynamics predic-
tions can only be due to errors.
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(b) The system is conservative but not Hamiltonian

The only friction forces in this model are the lateral and longitudinal forces at
the ground contact points. But, owing to the no-slip conditions (constraints)
these friction forces are modelled by non-dissipative constraint forces. The hinges
and ground contacts are all workless kinematic constraints. In uncontrolled
bicycle motion, the only external applied forces are the conservative gravity
forces on each part. That is, there are no dissipative forces and the system is
energetically conservative; the sum of the gravitational and kinetic energies is a
constant for any free motion. But the non-holonomic kinematic constraints
preclude writing the governing equations in standard Hamiltonian form, so
theorems of Hamiltonian mechanics do not apply. One result, surprising to some
cultured in Hamiltonian systems, is that the non-dissipative bicycle equations
can have asymptotic (exponential) stability (figure 4). This apparent
contradiction of the stability theorems for Hamiltonian systems is because the
bicycle, while conservative, is, by virtue of the non-holonomic wheel contacts,
not Hamiltonian. A similar system that is conservative but has asymptotic
stability is the uncontrolled skateboard (Hubbard 1979) and simpler still is the
classical Chaplygin sleigh described in e.g. Ruina (1998).

(¢) Symmetries in the solutions

Without explicit use of the governing equations, some features of their
solutions may be inferred by symmetry.

(i) Ignorable coordinates

Some of the configuration variables do not appear in any expression for the
forces, moments, potential energies or kinetic energies of any of the parts. These
so-called cyclic or ignorable coordinates are: the location of the bicycle on the
plane (zp, yp), the heading of the bicycle ¥ and the rotations (g, ) of the two
wheels relative to their respective frames. Thus, one can write a reduced set of
dynamics equations that do not include these ignorable coordinates. The full
configuration as a function of time can be found afterwards by integration of the
kinematic constraint equations, as discussed at the end of appendix B. These
ignorable coordinates cannot have asymptotic stability; a small perturbation of,
say, the heading ¥ will lead to a different ultimate heading.

(ii) Decoupling of lateral dynamics from speed dynamics

The lateral (left-right) symmetry of the bicycle design along with the lateral
symmetry of the equations implies that the straight-ahead unsteered and
untipped (6=0, $=0) rolling motions are necessarily solutions for any forward or
backward speed wv. Moreover, relative to these symmetric solutions, the
longitudinal and the lateral motion must be decoupled from each other to first
order (linearly decoupled) by the following argument. Owing to lateral
symmetry, a perturbation to the right must cause the same change in speed as
a perturbation to the left. But by linearity, the effects must be the negative of
each other. Therefore, there can be no first-order change in speed due to lean.
Similarly, speed change alone cannot cause lean. Thus, the linearized fore—aft
equations of motion are entirely decoupled from the lateral equations of motion
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and a constant speed bicycle has the same linearized equations of lateral motion
as a constant energy bicycle. This argument is given in more detail in the
electronic supplementary material, appendix 4.

(iii) A fore—aft symmetric bicycle cannot be asymptotically self-stable

For any rigid body system with workless kinematic constraints and state-
dependent forces, any solution ¢(t¢) implies a solution g(—t). Thus, any bicycle
motion is also a solution of the equations when moving backwards, with all
particle trajectories being traced at identical speeds in the reverse direction.
Thus, a bicycle that is exponentially stable in balance when moving forwards at
speed v>0 must be exponentially unstable when moving at —v (backwards at
the same speed). Consider a fore-aft symmetric bicycle. Such a bicycle has a
vertical central steering axis (or a horizontal steering axis) and has a handlebar
assembly, front mass distribution and front wheel that mirrors that of the rear
assembly. If such a bicycle has exponentially decaying solutions in one direction,
it must have exponentially growing solutions in the opposite direction owing to
time reversal. By symmetry, it must therefore also have exponentially growing
solutions in the (supposedly stable) original direction. Thus, such a bicycle
cannot have exponentially decaying solutions in one direction without also
having exponentially growing solutions in the same direction, and thus cannot be
asymptotically self-stable. Such a symmetric bicycle might, however, have the
oscillatory (neutral) stability of the type Hamiltonian systems can have.

(d) The nonlinear equations have no simple expression

In contrast with the linear equations we present below, there seems to be no
reasonably compact expression of the full nonlinear equations of motion for this
model. The kinematic loop, from rear wheel contact to front wheel contact,
determines the rear frame pitch through a complicated equation (Psiaki 1979)
which can be expressed as a quartic polynomial equation. Therefore, there is no
simple expression for rear frame pitch for large lean and steer angles. Thus, the
writing of nonlinear governing differential equations in a standard form that
various researchers can check against alternative derivations is a challenge that
is not addressed here, and might never be addressed. However, when viewed as a
collection of equations, one for each part, and a collection of constraint
equations, a large set of separately comprehensible equations may be assembled.
An algorithmic derivation of nonlinear equations using such an assembly,
suitable for numerical calculation and benchmark comparison, is presented in
Basu-Mandal et al. (2007) where a complete set of no-hands circular motions are
also presented.

5. Linearized equations of motion

Here, we present a set of linearized differential equations for the bicycle model,
slightly perturbed from upright straight-ahead motion, in a canonical form. To
aid in organizing the equations, we include applied lean and steer torques which
are later set to zero for study of uncontrolled motion.
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(a) Derivation of governing equations

Mostly correct derivations and presentations of the equations of motion for a
relatively general bicycle model, although not necessarily expressed in the
canonical form of equation (5.3), are found in Carvallo (1899), Whipple (1899),
Klein & Sommerfeld (1910), Herfkens (1949), Déhring (1953, 1955), Sharp (1971),
Weir (1972), Eaton (1973) and Van Zytveld (1975). Dikarev et al. (1981) have a
derivation of equations equivalent to equation (5.3), based on correcting the errors
in Neimark & Fufaev (1972) as does Hand (1988), which just predates Mears (1988).
Papadopoulos (1987) and Meijaard (2004) also have derivations that were
generated in preparation for this paper.

The derivations above are generally long, leading to equations with layers of
nested definitions. This is at least part of the reason for the lack of cross-checking in
the literature. A minimal derivation of the equations using angular momentum
balance about various axes, based on Papadopoulos (1987), is given in appendix B.
Note that this derivation, as well as all of the linearized equations from the
literature, is not based on a systematic linearization of full nonlinear differential
equations. Thus far, systematic linearizations have not achieved analytical
expressions for the linearized equation coefficients in terms of the 25 bicycle
parameters. However, part of the validation process described later includes
numerical comparison with full nonlinear simulations, and also comparison with
numerical values of the linearized equation coefficients as determined by these same
nonlinear programs.

(b) Forcing terms

For numerical benchmark purposes, where eigenvalues are paramount, we
neglect control forces or other forcing (except gravity, which is always included).
However, the forcing terms help to organize the equations. Moreover, forcing
terms are needed for study of disturbances and rider control.

In addition to the gravity forces, consider an arbitrary distribution of forces F;
acting at various points on the bicycle. Their net effect is to contribute to the
forces of constraint (the ground reaction forces, and the action-reaction pairs

between the parts at the hinges) and to contribute to the accelerations (¢, 6, y).
Three generalized forces can be defined by writing the power of the applied
forces, kept at their current values, associated with arbitrary perturbations of the
velocities that are consistent with the hinge assembly and ground wheel contact
constraints. This ‘virtual’ power necessarily factors into a sum of three terms

P=> " F;-Av, = TyAd + T;A0 + Ty Aby, (5.1)

because the perturbations of the velocities Aw; of all material points are
necessarily linear combinations of the perturbations of the generalized velocities

(Ag, A, Afy). The generalized forces (Ty, Ts, Ty,) are thus each linear
combinations of the components of the various applied forces F;.

The generalized forces (T, T;, Ty,) are energetically conjugate to the
generalized velocities. The generalized forces can be visualized by considering
special loadings each of which contributes to only one generalized force when the
bicycle is in the reference configuration. In this way of thinking
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(i) Ty, is the propulsive ‘force’, expressed as an equivalent moment on the
rear wheel. In practice, pedal torques or a forward push on the bicycle
contribute to Ty and not to T, and Ts.

(ii) T, is the right lean torque, summed over all the forces on the bicycle,
about the line between the wheel ground contacts. A force, perpendicular
on the rear frame located directly above the rear contact point contributes
only to Ty. A sideways wind gust, or a parent holding a beginning rider
upright, contributes mainly to T}.

(iii) T, is an action-reaction steering torque. A torque causing a clockwise
(looking down) action to the handlebar assembly H along the steer axis
and an equal and opposite reaction torque on the rear frame contributes
only to Ts. In simple modelling, T5 would be the torque that a rider
applies to the handlebars. Precise description of how general lateral forces
contribute to Ts depends on the projection implicit in equation (5.1).
Some lateral forces make no contribution to 7Ts, namely those acting at
points on either frame which do not move when an at-rest bicycle is
steered but not leaned. Lateral forces applied to the rear frame directly
above the rear contact point make no contribution to 7. Nor do forces
applied to the front frame if applied on the line connecting the front
contact point with the point where the steer axis intersects the vertical
line through the rear contact point. Lateral forces at ground level, but
off the two lines just described, contribute only to 7. Lateral forces
acting at the wheel contact points make no contribution to any of the
generalized forces.

Just as for a pendulum, finite vertical forces (additional to gravity) change
the coefficients in the linearized equations of motion but do not contribute to
the forcing terms (e.g. a magnet under a pendulum changes the effective ¢ in
6+ (g/£)0=0 but not the 0). Similarly, propulsive forces also change the
coefficients but have no first-order effect on the lateral forcing. Thus, the
equations presented here only apply for small (<> mg) propulsive and small
additional vertical forces.

(¢) The first linear equation: with no forcing, forward speed is constant

A solution of both the linearized and the full nonlinear equations is straight-
ahead 6=0 upright ¢ =0 motion at any constant forward speed v=—60rrz. The
governing equations here describe the evolution of small perturbations from this
reference solution. As explained above and in more detail in the electronic
supplementary material, appendix 4, lateral symmetry of the system, combined
with the linearity in the equations, precludes any first-order coupling between
the forward motion and the lean and steer. Therefore, the first linearized
equation of motion is simply obtained from two-dimensional (zz-plane)
mechanics as

2
le .
|:7’1217TLT + IR,yy + (’/’_1;> IFyy:| 0R - THR’ (52)

where mr is total bicycle mass (appendix A). In cases with no propulsive force,
the nominal forward speed v=—rzfy is therefore constant (to first order).
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(d) Lean and steer equations

The linearized equations of motion for the two remaining degrees of freedom,
the lean angle ¢ and the steer angle ¢, are two coupled second-order, constant
coefficient, ordinary differential equations. Any such set of equations can be
linearly combined to get an equivalent set. We define the canonical form below
by insisting that the right-hand sides of the two equations consist only of T and
T5, respectively. The first of these two equations is the lean equation and the
second is the steer equation. Mechanical systems have linearized equations of the
form Mg+ Cq+ Kq= f. For the bicycle model, these equations can be written,
with velocity and gravity explicit, as (Papadopoulos 1987)

Mg +vCiq+ [gK, + v’ K,]q = f, (5.3)

where the time-varying quantities are g=[¢, 6]* and f= [Ty, Ts)*. The constant
entries in matrices M, C;, Kyand K are defined in terms of the 25 design parameters
in appendix A. Briefly, M is a symmetric mass matrix which gives the kinetic energy
of the bicycle system at zero forward speed as ¢* M ¢ /2. The damping-like (there is no
real damping) matrix C=vC} is linear in the forward speed v and captures skew-
symmetric gyroscopic torques due to steer and lean rates. C| also captures inertial
reactions due to steer rate: part from the lateral acceleration due to rear wheel yaw
rate (path curvature) and part from system yaw acceleration. The stiffness matrix K
is the sum of two parts: a velocity-independent symmetric part gK, proportional to
the gravitational acceleration, which can be used to calculate changes in potential
energy with q"[gK,)q/2, and a part v* K, which is quadratic in the forward speed and
is due to gyroscopic and centrifugal effects. The matrix subscripts match the
exponents of the v multipliers.
Equation (5.3), with terms defined in appendix A, is the core of this paper.

6. Benchmark model and solutions

To facilitate comparisons with other formulations we have defined a benchmark
bicycle with all parameter values given in table 1. The parameter values were
chosen to minimize the possibility of fortuitous cancellation that could occur if
used in an incorrect model. We also wanted numbers that could easily be
described precisely. In the benchmark bicycle, the two wheels are different in all
properties and no two angles, masses or distances match. A second simpler
benchmark is in the electronic supplementary material, appendix 5.

(a) Coefficients of the linearized equations of motion

Substitution of the values of the design parameters for the benchmark bicycle
from table 1 in the expressions from appendix A results in the following values
for the entries in the matrices in the equations of motion (5.3):

y 80.817 22 2.319 413 322 087 09 6.1)
| 2.319 413 322 087 09 0.297 841 881 996 86 | '
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_ | —80.95 —2.599 516 852 498 72 (6.2)
"] —2.599 516 852 498 72 —0.803 294 884 586 18 |’ '

0 76.597 345 895 732 22
= (6.3)

710 2.654 315237 946 04

0 33.866 413 914 924 94
"] —0.850 356 414 569 78 1.685 403 973 975 60

] . (6.4)
To serve as a precise benchmark, the coefficients are given with 14 decimal
places (trailing zeros suppressed) above and elsewhere. Many-digit agreement
with results obtained by other means provides near certainty that there is
also an underlying mathematical agreement, even if that agreement is not
apparent analytically.

(b) Linearized stability, eigenvalues for comparison

The characteristic equation eigenvalues are independent of coordinate choice
and equation form; any non-singular change of variables yields equations with
the same eigenvalues. Thus, eigenvalues serve as convenient benchmark results,
permitting comparison between different analyses. The eigenvalues are
calculated by assuming an exponential solution of the form ¢g= gy exp(At) for
the homogeneous equations (f=0 in equation (5.3)). This leads to the
characteristic polynomial equation,

det(M2* +vCiA + gK, + v*K,) =0, (6.5)

which is quartic in A. After substitution of the expressions from appendix A, the
coefficients in this quartic polynomial become complicated expressions of the 25
design parameters, gravity and speed v. The zeros A of the characteristic
polynomial for a range of forward speeds are shown in figure 3. Eigenvalues with
a positive real part correspond to unstable motions, whereas eigenvalues with a
negative real part correspond to asymptotically stable motions for the
corresponding mode. Imaginary eigenvalues correspond to oscillatory motions.
As mentioned in §4c¢, the time reversability of this system leads to a symmetry
evident in the characteristic equation (6.5): if (v, A) is a solution then (—v, —A) is
also a solution. This means that figure 3 is point symmetric about the origin as
revealed in fig. 9 of Astrom et al. (2005).

This fourth-order system has four distinct eigenmodes except at special
parameter values associated with multiple roots. A complex (oscillatory)
eigenvalue pair is associated with a pair of complex eigenmodes. At high enough
speeds, the two modes most significant for stability are traditionally called the
capsize mode and weave mode. The capsize mode corresponds to a real eigenvalue
with eigenvector dominated by lean: when unstable, a capsizing bicycle leans
progressively into a tightening spiral with steer and lean both increasing
proportionally as it falls over. The weave mode is an oscillatory motion in which
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Figure 3. Eigenvalues A from the linearized stability analysis for the benchmark bicycle from figure 1 and
table 1 where the solid lines correspond to the real part of the eigenvalues and the dashed line
corresponds to the imaginary part of the eigenvalues, in the forward speed range of 0< v<10 m s~ *. The
speed range for the asymptotic stability of the benchmark bicycle is v, <v<w.. The zero crossings of
the real part of the eigenvalues are for the weave motion at the weave speed v, =4.3 m s~ * and for the
capsize motion at capsize speed v.=6.0m s~ !, and oscillations emerge at the real double root at
v4=0.7 m s~ . For accurate eigenvalues and transition speeds, see table 2.

the bicycle steers sinuously about the headed direction with a slight phase lag
relative to leaning. The third eigenvalue is large, real and negative. It
corresponds to the castering mode, which is dominated by steer in which the
front ground contact follows a tractrix-like pursuit trajectory, like the
straightening of a swivel wheel under the front of a grocery cart.

At near-zero speeds, typically 0<v<0.5ms ', there are two pairs of real
eigenvalues. Each pair consists of a positive and a negative eigenvalue and
corresponds to an inverted pendulum-like falling of the bicycle. The positive root
in each pair corresponds to falling, whereas the negative root corresponds to the time
reversal of this falling (i.e. rising). For the benchmark bicycle here, when speed is
increased to 13=0.7 m s~ ', two real eigenvalues coalesce and then split to form a
complex conjugate pair; this is where the oscillatory weave motion emerges. At first,
this motion is unstable but at v, =4.3 m s~ ', the weave speed, these eigenvalues cross
the imaginary axis in a Hopf bifurcation (Strogatz 1994) and this mode becomes
stable. At a higher speed, the capsize eigenvalue crosses the origin in a pitchfork
bifurcation at v.=6.0m s~ ', the capsize speed, and the bicycle becomes mildly
unstable (Basu-Mandal et al. 2007). The speed range for which the uncontrolled
bicycle shows asymptotically stable behaviour, with all eigenvalues having negative
real parts, is vy, <wv<w. For comparison by future researchers, benchmark
eigenvalues are presented at various forward speeds in table 2.

Proc. R. Soc. A (2007)



Bicycle dynamics benchmark 1971

Table 2. Some characteristic values for the forward speed v and the eigenvalues A from the
linearized stability analysis for the benchmark bicycle from figure 1 and table 1. (Fourteen-digit
results are presented for benchmark comparisons. (a) v=0, weave speed v, capsize speed v, and
the speed with a double root v,. In the forward speed range of 0<v<10ms™~ ", (b) complex (weave
motion) eigenvalues Ayeave and (c¢) real eigenvalues A.)

(a)

v(ms ) A(s™h
v=0 As1= 13.131 643 247 906 56
v=0 Aso= 15.530 943 717 653 93
1v3=0.684 283 078 892 46 Aq=3.782 904 051 293 20
v, =4.292 382 536 341 11 Aw=0713.435 033 848 661 44 i
1,=6.024 262 015 388 37 0
(0)
v(ms ') Re(Ageave) (571) Im (Aweave) (37 1)
0 _ _
1 3.526 961 709 900 70 0.807 740 275 199 30
2 2.682 345 175 127 45 1.680 662 965 906 75
3 1.706 756 056 639 75 2.315 824 473 843 25
4 0.413 253 315 211 25 3.079 108 186 032 06
5 —0.775 341 882 195 85 4.464 867 713 788 23
6 —1.526 444 865 841 42 5.876 730 605 987 09
7 —2.138 756 442 583 62 7.195 259 133 298 05
8 —2.693 486 835 810 97 8.460 379 713 969 31
9 —3.216 754 022 524 85 9.693 773 515 317 91
10 —3.720 168 404 372 87 10.906 811 394 762 87
(¢)
v (m Sil) Acapsizc (Sil) Acastr‘,ring (Sil)
0 —3.131 643 247 906 56 —5.530 943 717 653 93
1 —3.134 231 250 665 78 —7.110 080 146 374 42
2 —3.071 586 456 415 14 —8.673 879 848 317 35
3 —2.633 661 372 536 67 —10.351 014 672 459 20
4 —1.429 444 273 613 26 —12.158 614 265 764 47
5 —0.322 866 429 004 09 —14.078 389 692 798 22
6 —0.004 066 900 769 70 —16.085 371 230 980 26
7 0.102 681 705 747 66 —18.157 884 661 252 62
8 0.143 278 797 657 13 —20.279 408 943 945 69
9 0.157 901 840 309 17 —22.437 885 590 408 58
10 0.161 053 386 531 72 —24.624 596 350 174 04

7. Validation of the linearized equations of motion

The linearized equations of motion here, equation (5.3) with the coefficients as
presented in appendix A, have been derived by pencil and paper in two ways
(Papadopoulos 1987; Meijaard 2004), and agree exactly with some of the past
literature (§2). We have also checked equation coefficients via the linearization
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capability of two general nonlinear dynamics simulation programs described below.
Comparisons with the work here using nonlinear simulations have also been
performed by A. Lennartsson (2006, personal communication, based on Lennartsson
1999) and Basu-Mandal et al. (2007). Finally, in the self-stable speed range, steering
and lean transients can be measured on a physical bicycle with narrow high-pressure
tyres. Kooijman et al. (2007) measured the mass and geometry parameters on a
riderless bicycle and found good comparison between the experimentally measured
eigenvalues and the eigenvalues predicted by the formulae here.

(a) FEquations of motion derived with the numeric program SPACAR

SPACAR is a program system for dynamic simulation of multibody systems
developed by Van der Werff (1977), Jonker (1988), Jonker & Meijaard (1990),
Meijaard (1991), Schwab (2002) and Schwab & Meijaard (2003). SPACAR is based
on finite element principles laid out by Besseling (1964). SPAcAR handles systems
of rigid and flexible bodies connected by various joints in both open and closed
kinematic loops, and where parts may have rolling contact. SPACAR generates
numerically, and solves, full nonlinear dynamics equations using minimal
coordinates (constraints are eliminated). The SpacArR model used in this paper
uses the rigid body, point mass, hinge and rolling wheel contact features of the
program (Schwab & Meijaard 1999, 2003). SPACAR can also find the numeric
coefficients for the linearized equations of motion based on a semi-analytic
linearization of the nonlinear equations. As determined by SPACAR, the entries in
the matrices of the linearized equations of motion (5.3) agree to 14 digits with the
values presented in §6a (see electronic supplementary material, appendix 2 for
more about the SPACAR model).

(b) Equations of motion derived with the symbolic program AuToSmM

We also derived the nonlinear governing equations using the multibody
dynamics program AutoSiv, v. 2.80 (Sayers 1991a,b). AutoSv is a Lisp (Steele
1990) program mostly based on Kane’s (1968) approach. It consists of function
definitions and data structures allowing the generation of symbolic equations of
motion of rigid body systems. AuroSim works best for systems of objects
connected with prismatic and revolute joints arranged with the topology of a tree
(no loops). AuToSIM generates equations in the form

qg=S(g.t)u, u=[M(q1)] Qg u,t). (7.1)

Here, g are the generalized coordinates; u are the generalized velocities; S is the
kinematic matrix that relates the rates of the generalized coordinates to the
generalized speeds; M is the system mass matrix; and @ contains all force terms
and velocity-dependent inertia terms. Additional constraints are added for closed
kinematic loops, special joints and non-holonomic constraints. For example, the
closed loop holonomic constraint for both bicycle wheels touching the ground
cannot be solved simply in symbolic form for the dependent coordinates,
requiring the solution of a quartic polynomial equation. An iterative numerical
solution for this constraint was used, destroying the purely symbolic nature of
the equations.

Proc. R. Soc. A (2007)



Bicycle dynamics benchmark 1973

In general, the standard linearization procedure of AuTOSIM is not applicable for
systems with closed loops. However, in the present case, the dependent pitch angle is
zero to first order and no difficulties arise. The final AuToSiv-based linearization
output consists of a MATLAB script file that numerically calculates the matrices of
the linearized equations. The entries in the matrices of the linearized equations of
motion (5.3) as determined by the program AutoSiv agree to 14 digits with the values
presented in §6a. More details about the AuToSmm verification are given in the
electronic supplementary material, appendix 3.

8. Energy conservation and asymptotic stability

When an uncontrolled bicycle is within its stable speed range, lean and steer
perturbations die away in a seemingly damped fashion. However, the system has
no true damping and conserves energy. The energy in the lean and steer
oscillations is transferred to the forward speed rather than being dissipated. As the
forward speed is affected only to second order, linearized equations do not capture
this energy conservation. Therefore, a nonlinear dynamic analysis with SPACAR was
performed on the benchmark bicycle model to demonstrate the flow of energy from
lateral perturbations into forward speed. The initial conditions at t=0 are the
upright reference position (¢, 6, fg)=(0, 0, 0) at a forward speed of v=4.6 ms™ ",
which is within the stable speed range of the linearized analysis, and a lean rate of
$=0.5rad s !. In the full nonlinear equations, the final upright forward speed is
augmented from the initial speed by an amount determined by the energy in the
lateral perturbation. In this case, the speed-up was approximately 0.022m s~ '.
Figure 4 shows this small increase in the forward speed v, while the lateral motions
die out, as expected. Figure 4 also shows that the period for the lean and steer
oscillations is approximately T;=1.60s, which compares well with the 1.622 s
from the linearized stability analysis. The lack of agreement in the second decimal
place is from finite amplitude effects, not numerical accuracy issues. When the
initial lateral velocity is decreased by a factor of 10, the period of motion matches
the linear prediction to four digits. The steering motion 6 has a small phase lag
relative to the lean motion ¢, visible in the solution in figure 4.

9. Conclusions, discussion and future work

We have presented reliable equations for a well-delineated model for more deeply
studying controlled and uncontrolled stability of a bicycle. The equations of motion,
equation (5.3) with appendix A, are buttressed by a variety of historical and modern
simulation comparisons and, we feel, can be used with confidence. They can also be
used as a check for those who derive their own equations by comparison to

(i) the analytic form of the coefficients in equation (5.3) with terms defined in
appendix A, or
(ii) thenumerical value of the coefficients in equation (5.3) using either the general
benchmark bicycle parameters of table 1, or the simpler set in the electronic
supplementary material, appendix 5, or
(iii) the tabulated eigenvalues, or
(iv) the speed range of self-stability for the benchmark parameters.
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Figure 4. Nonlinear c}ynamic response of the benchmark bicycle from figure 1 and table 1, with the
angular lean velocity ¢, the angular steering velocity 6, and the forward speed v= —0g ry, for the initial
conditions: (¢, 8, 0g)=(0, 0, 0) and (¢, d, v) = (0.5 rad s, 0,4.6 m s 1) for a time period of 5 5.

This paper firms up Carvallo’s discovery in 1897 that asymptotic self-stability of
an uncontrolled bicycle is explicable with a sufficiently complex conservative rigid
body dynamics model. It only narrowly answers the question ‘how does an
uncontrolled bicycle stay up?’ by showing that it follows from the equations. A
simple explanation does not seem possible because the lean and steer are coupled
by a combination of several effects including gyroscopic precession, lateral ground
reaction forces at the front wheel ground contact point trailing behind the steering
axis, gravity and inertial reactions from the front assembly having centre-of-mass
offset from the steer axis, and from effects associated with the moment of inertia
matrix of the front assembly.

The equations here can be the basis for future work addressing how bicycle self-
stability does and does not depend on the bicycle design parameters. For example,
we hope to dispel some bicycle mythology about the need for mechanical trail or
gyroscopic wheels for bicycle self-stability.

Technical and editorial comments from Karl Astré')m, Anindya Chatterjee, Andrew Dressel, Neil
Getz, Richard Klein, Anders Lennartsson, David Limebeer, Mark Psiaki, Keith Seffen, Alessandro
Saccon, Manoj Srinivasan and five anonymous reviewers have improved the paper. Claudine Pouret
at the French Academy of Sciences provided information about the Prix Fourneyron. J.P.M. was
supported by the Engineering and Physical Sciences research Council (EPSRC) of UK A.R. and
J.M.P. were supported by an NSF presidential Young Investigator Award and A.R. further partially
supported by NSF biomechanics and robotics grants.

Appendix A. Coefficients of the linearized equations

Here, we define the coefficients in equation (5.3). These coefficients and various
intermediate variables are expressed in terms of the 25 design parameters (as well
as v and g) of table 1 and figure 1. Some intermediate terms defined here are also
used in the derivation of the equations of motion in appendix B. We use the
subscript R for the rear wheel, B for the rear frame incorporating the rider body, H
for the front frame including the handlebar, F for the front wheel, T for the total
system and A for the front assembly which is the front frame plus the front wheel.
The total mass and the corresponding centre of mass location (with respect to the
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rear contact point P) are

mT=mR+mB+mH+mF, (A].)
- +
op = rgmpg Tgmyg wmpg ’ (A 2)
mr

—TRMR + Zgmp + ZHmyg — Tp My

(A3)

ZT =
mr

For the system as a whole, the relevant mass moments and products of inertia with
respect to the rear contact point P along the global axes are

ITJXK = IRm + IBT’L‘ + IHTT + [Fm + mRTIQK + mBZ]23 + mHZ%I + mFr%\ (A 4)
It,, = Igy, + Iy, — M2 — My T2y + MpwWip. (A5)

The dependent moments of inertia for the axisymmetric rear wheel and front
wheel are

]Rzz = IRm‘v IFzz = IFJJ (A 6)

Then the moment of inertia for the whole bicycle along the z-axis is
ITzz = [Rzz + IBzz + [sz + IFzz + me]% + meI?I + mg w2' (A 7)

The same properties are similarly defined for the front assembly A.
my = my + mp, (A8)
Trrmy + wm; 2y — TR
xAZHH F7 ZA:HH GG (A 9)
ma ma

The relevant mass moments and products of inertia for the front assembly with
respect to the centre of mass of the front assembly along the global axes are

IAzz = ]Hm + -[Fn + mH(ZH - ZA)2 + mF(TF + ZA)27 (A 10)
IAzz = Ile - mH(‘TH - xA)(ZH - zA) + mF(w_ ‘TA)(rF + ZA)7 (A 11)
IAZZ = Isz + IFzz + mH(IH - JJA)2 + mF(w_ IA)2‘ (A 12)

Let A=(sin A, 0, cos A)" be a unit vector pointing down along the steer axis, where
A is the angle in the zz-plane between the downward steering axis and the +z
direction. The centre of mass of the front assembly is ahead of the steering axis by
perpendicular distance

up = (zpy —w—rc)cos A— z, sin A. (A 13)

For the front assembly, three special inertia quantities are needed: the moment of
inertia about the steer axis and the products of inertia relative to crossed, skew
axes, taken about the points where they intersect. The latter give the torque about
one axis due to angular acceleration about the other. For example, the Az
component is taken about the point where the steer axis intersects the ground
plane. It includes a part from I, operating on unit vectors along the steer axis and
along z, and also a parallel axis term based on the distance of m, from each of
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those axes.
Ly = mpui + Ly, sin®A 4+ 21, sin A cos A + I, cos®2, (A 14)
IAAz = —MAUARA + IAm SiIl /1 + IA?nz COS /1, (A 15)
IAAz = TNAUATA + IA:Ez SiIl A + IAzz COS A (A 16)

The ratio of the mechanical trail (i.e. the perpendicular distance that the front
wheel contact point is behind the steering axis) to the wheel base is

u = %COS A (A 17)

The rear and front wheel angular momenta along the y-axis, divided by the
forward speed, together with their sum form the gyrostatic coefficients:

Iz, Iy,
Sp=—"  G="TW G =G + 5. (A 18)
R Tr
We define a frequently appearing static moment term as

SpA = mpup +umozy. (A 19)

The entries in the linearized equations of motion can now be formed. The mass
moments of inertia

qud) = ITm‘v Md)é = IAAz + IU“IT(L‘Z7

) (A 20)
Msy = Mys, Mss = Inpp + 2pdpp, + p” It
are elements of the symmetric mass matrix
M,, M,
M= 77 (A 21)
Msy Mo
The gravity-dependent stiffness terms (to be multiplied by g) are
Kopp = mrzr, Kops = =5, ' (A 22)
Kosy = Kogs, Koss = — 54 sin 4,
which form the stiffness matrix
K Kogs
K, = 090 000 (A 23)
Kosy  Koss
The velocity-dependent stiffness terms (to be multiplied by +*) are
S —
Kypy =0, szwc()M
) (A 24)
Sy + Spsin A
K25¢ = O, K255 = ¢COS A,
w
which form the stiffness matrix
K. Koy
K, = 200 200 (A 25)
Kasy  Kass
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In the equations, we use K = gK,+ v*K,. Finally, the ‘damping’ terms are

It,
Cipp = 0, Cipo = wSp + Sp cos A + L cos A—umyzr,
w
C _ _ IA/\z ITzz
169 = — (St + SpcosA), Ciss = =, o8 A+ ul Sa +—w cos A |,
(A 26)

which form C| = where weuse C = vC. (A 27)

Appendix B. Derivation of the linearized equations of motion

The following brief derivation of the linearized equations of motion is based on
Papadopoulos (1987). All derivations to date, including this one, involve ad hoc
linearization as opposed to linearization of full nonlinear equations. No one has
linearized the full implicit nonlinear equations (implicit because there is no
reasonably simple closed form expression for the closed kinematic chain) into an
explicit analytical form by either hand or computer algebra.

For a bicycle freely rolling forward on a plane, slightly perturbed from upright
straight-ahead motion, we wish to find the linear equations of motion governing
the two lateral degrees of freedom: rightward lean ¢ of the rear frame, and
rightward steer ¢ of the handlebars. The linearized equation of motion for forward
motion is simple planar mechanics and has already been given in equation (5.2).

We take the bicycle to be near to and approximately parallel to the global
xz-axis. The bicycle’s position and configuration, with respect to lateral linearized
dynamics, are defined by the variables yp, ¥, ¢ and 6. In this derivation, we assume
not only ¢ and ¢ but also yp/v =4y small, such that only first-order consequences
of the configuration variables need be kept.

Forces of importance to lateral linearized dynamics include: gravity at each
body’s mass centre, positive in z; vertical ground reaction force at the front
wheel: —mygor/w; horizontal ground reaction force Fy, at the front wheel,
approximately in the y-direction; a lean moment T4 applied to the rear frame and
tending to lean the bicycle to the right about the line connecting the wheel
contacts; a steer torque pair T4, applied positively to the handlebars so as to urge
them rightward, and also applied negatively to the rear frame.

Initially, we replace the non-holonomic rolling constraints with to-be-
determined horizontal forces at the front and rear contacts that are perpendicular
to the wheel headings. We apply angular momentum balance to various sub-
systems, each about some fixed axis wu,

Z [TZXaZmZ+IZ&)Z+&)Z><(IZ&)Z)]'U: Z ['I"]XFi]"U,
i€{bodies} j€{applied forces}
The left side of each equation is the rate of change of angular momentum about the

given axis. The right side is the torque of the external forces (gravity, loads and
ground reactions). The positions 7; and r; of the bodies’ centres of mass and of
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applied forces, respectively, are relative to any point on the axis. The bodies’
angular velocmes and accelerations w;, @; and a; are expressed in terms of first
and second derivatives of lateral dlsplacement yaw, lean and steer.

Lean angular momentum balance for the whole bicycle about a fixed axis in the
ground plane that is instantaneously aligned with the line where the rear frame
plane intersects the ground (this axis does not generally go through the front
ground contact point) gives:

—mTypzT + IT:M(]S + _[szl./} + IAlzg + ¢UST + 67)51: cos A = TB¢ _ngZT¢ + gSA(S

(B1)
In addition to the applied Ty, the right-hand side has a lean moment from
gravitational forces due to lateral lean- and steer-induced sideways displacement of
the bicycle parts, and a term due to steer-induced lateral displacement of the front
contact vertical ground reaction relative to the axis. Next, yaw angular

momentum balance for the whole bicycle about a fixed vertical axis that
instantaneously passes through the rear wheel contact gives

mTypr + ITZZ¢ + ITZZW + IAAZ ¢UST - 6'USF sin A = 'LUFFU (B 2)

The only external yaw torque is from the yet-to-be-eliminated lateral ground
force at the front contact. Lastly, steer angular momentum balance for the front
assembly about a fixed axis that is instantaneously aligned with the steering
axis gives

maipus + Iaawd + LW + Insud + vSE(—¢ cos A + ¢ sin A)
= Tys— cFp, cos A+ g(¢p + 0sin 2)Sy. (B 3)

In addition to the applied steering torque Ty, there are torques from lateral (yet
to be determined) constraint force and from vertical forces (downward gravity
force and upward reaction force) on the front assembly leaned by angle ¢+ sin A.
Combining equations (B 2) and (B 3) eliminates the unknown front wheel lateral
reaction force Fp,, leaving two equations. Then, using the rolling constraints
(given below) eliminates ¥ and yp and their time derivatives, leaving just the lean
and steer and their time derivatives as the unknown variables.

Each rolling-contact lateral constraint is expressed as a rate of change of lateral
position due to velocity and heading (yaw). For the rear,

yp = vy. (B4)

Equivalently for the front, where yqo=yp + wy —cd cos A, and the front frame
heading is the rear frame yaw augmented by the true (ground) steer angle:

d(yp + wy — o cos A)
dt
We subtract equation (B 4) from equation (B 5) to get an expression for i in terms

of 0 and 6 and then differentiate to reveal the dependence of ¥ and  on steer (o, b
and 6):

v(y + 6 cos A). (B5)

. v+ b o wb+ch
\pzv e cos/\:Mp:ucosA. (B6)
w w
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Finally, we differentiate equation (B 4) and use equation (B 6) to get an expression
for yPa

20 + ved
ip = votuveo s (B7)
w

Substituting equations (B 6) and (B 7) into equation (B 1), we get an expression in
¢, ¢ and 0, 0 and 0, with a right-hand side equal to Tpg. This is called the lean
equation. Ehmmatlng Fy, from equations (B 2) and (B 3), then again substituting
equations (B 6) and (B 7), we will have another expression in ¢ and ¢ and their
derivatives, where the right-hand side is Ty, (the steer torque). This is called the
steer equation. These two equations are presented in matrix form in equation (5.3).

Note that from general dynamics principles, we know that the forcing terms can
be defined by virtual power. Thus, we may assume that the torques used in these
angular momentum equations may be replaced with those defined by the virtual
power equation (5.1). Therefore, where this derivation uses the torques Tg, and
Tts the generalized forces Ty and T actually apply.

Since ¥ and yp do not appear in the final equations, there is no need for the
bicycle to be aligned with the global coordinate system used in figure 2. Thus, z, y
and Y can be arbitrarily large and the bicycle can be at any position on the plane
at any heading. For simulation and visualization purposes, we can calculate the
ignorable coordinates zp, yp and ¥ by integration. The equation for the yaw angle
¥ is the first of equation (B 6). Then, the rear contact point is described by

Ip = v Cos Y, Up = vsin Y. (B8)

Note the large-angle form for §p here as opposed to the small angle form (B 4) used to
derive the equations of motion. (This situation is somewhat analogous to, say, the
classical elastica where the displacements and angles used in the strain calculation are
small yet the displacements and angles of the elastica overall can be arbitrarily large. )

Intermediate results may be used to calculate horizontal lateral contact forces,
where equation (B 2) determines the horizontal lateral force at the front contact,
and lateral linear momentum balance in terms of §p, ¢, ¥ and 6 can be added to
find the horizontal lateral force at the rear wheel contact.
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