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Assignment 1

The model of a physical pendulum consists of a slender rigid bar made out of steel with length
l = 37 cm and a circular cross section with diameter d = 10 mm. At the top the bar has a
hinge joint fixed to the ground. The system moves in a gravitation field with a field strength
of g = 9.81 [N/kg] in the downward direction.

1. Make a pencil-and-paper model for the pendulum and estimate the Period of Vibration
T in [sec] for small oscillations around the equilibrium position.

2. Make a model of the pendulum in ADAMS and simulate the motion of the pendulum for
a couple of periods. Take as initial conditions an initial angle of φ = 10◦ from rest. Plot
the angle as a function of time and measure the Period of Vibration T in [sec]. Compare
this with your estimate from above.

3. Plot the forces that the ground exerts on the pendulum in the upper hinge during one
period of motion. How big is the average, the amplitude and the frequency of the vertical
force? Explain this with your pencil-and-paper model.

4. Now simulate the motion of the pendulum from rest with some larger initial angles,
φ = 30◦, 60◦ and 90◦. Measure from the plot the Period of Vibration T and explain the
difference with the preceding findings.

5. Investigate the influence of the desired integration accuracy by continuing the simulation
for at least 50 Periods of Vibration. Next, decrease for example the Error from 10−3 to
10−6 and compare the results. This parameter is part of the Simulation Settings. (Note:
Click Defaults in order to return to the default values!) What can you say about the
accuracy of the solution?

Assignment 2

In order to examine the steering forces and moments of a bicycle in motion, the front wheel of
a bike is put to a further test. The model of this front wheel consists of a thin hoop with a
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mass of m = 2.7 [kg] and a diameter of d = 700 mm, which can rotate around its own axle, φ.
It is assumed that the mass is concentrated along the perimeter of the wheel. Perpendicular to
this axis of rotation, a second hinge has been attached in order to be able to rotate the φ-axle,
the so-called steering, around an angle ψ.

1. Make an estimate, by means of the Euler equation of motion for a rigid body, M =
Iω̇ + ω × (Iω), of the size and direction of the moment M1 that is exerted on the wheel
in the first hinge at a constant riding speed of v = 20 [km/hour] and a constant steering
angular velocity of ψ̇ = 60 [◦/sec].

2. Make a model of the steering front wheel in ADAMS. Remember that there is a body
between the two hinges, namely the fork. For the sake of simplicity, the fork offset (trail)
and head angle are assumed to be zero. Simulate the motion for some time with the initial
conditions from above. Plot the moments in the hinge of the wheel axle as a function of
time and compare this with your estimate of M1. By generating a Measure you will be
able to follow the rotating hinge moment during simulation.

Assignment 3

In order to examine fast and correct positioning of a container on an Automated Guided Vehicle,
we study the model of an overhead container crane (gantry crane). Here we only consider the
motion of the crab plus container, the hoisting motion will not be considered. The cables in
which the container hangs, are modelled as compliant spring-damper elements. The container
measures 8x8x40 [ft] at a total mass of 30 [metric tons] (dead weight plus load). You may assume
a uniformly distributed mass for the calculation of the mass moment of inertia quantities. The
vertical distance between the bottom of the crab and the top of the container is 25 [m]. The
supporting cables are modelled by 4 cables which are mounted on the container in a purely
vertically centered way, with a distance of 2 [m] in transverse and 6 [m] in longitudinal direction
between them. Each individual cable has a stiffness of 3.0 106 [N/m] and a relative damping
of 5 %. The driving motion of the crab is thought of as: first a constant acceleration, then a
constant speed and finally a constant deceleration. The maximum speed is vmax = 240 [m/min]
and the maximum ac(de)celeration is amax = 0.7 [m/sec2]. A crane expert told us that for the
load to hang still after the crab’s driving motion, we have to accelerate and decelerate in a
multiple of the Period of Vibration T of the load oscillation.

1. Make a pencil-and-paper estimate of the Period of Vibration T of the load oscillation in
the crab’s driving motion.

2. Determine the Period of Vibration of the load oscillation in the crab’s driving motion
of your ADAMS model, for instance by means of an eigenfrequency analysis (Simulation
Control → Linear).

3. Simulate the motion of the container assuming a total displacement in the driving direction
of the crab of 60 [m]. Check the statement of the crane expert, is he right? Plot the speed
of the crab and the speed of the container in the crab’s driving direction as a function of
the displacement of the crab in the driving direction.

The crab motion can generated by using a Translational Joint Motion. First create such
a joint with a random value, after which the function F(time)= can be modified in the
Function Builder. By summation of a number of STEP functions you may obtain the
desired motion.
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4. As a rule, the container will be loaded asymmetrically and we are wondering what the
effect of this will be on the container’s positioning on the A.G.V. Assume the centre
of mass to be 20 % = (1.6, 1.6, 8.0) [ft] off from the geometrical centre (keep the mass
moments of inertia at the centre of mass as is). Change the model and simulate the
same driving motion. Plot the container’s angular rotation around its vertical axle as
a function of time and compare this result with the symmetrical situation. Is there a
significant difference such that positioning of the container on the AGV will give trouble?
Explain!

Assignment 4

In a standard textbook on kinematics and dynamics of mechanical systems [1], the steady state
analysis of a regulator is discussed as an example. A regulator is an instrument that tries to
keep the speed of an engine constant, irrespective of the load. This can be traced back to James
Watt and his steam engines. The literal text of the example is given as an appendix. In this
assignment we will eventually make and simulate the complete model of this system in 5 steps.

1. Make a simplified model of the regulator in ADAMS. Only model the Ground, Spindle,
Ball1, Ball2 for the given geometry of the model.

2. Make an estimate of the equilibrium (steady state) at an angular velocity of ω = 105
[rpm]. Check this by means of a simulation in ADAMS. Think of a way to damp out the
transient response to get to the steady state.

3. Make the complete model of the regulator in ADAMS. Apparently the distance constraint
does not exist in the ADAMS software. Replace this constraint by means of a stiff spring-
damper element between the arm and collar. Make a well considered choice for the value
of the stiffness and the damping (report!). Simulate this regulator at the steady state
angular velocity ω = 105 [rpm]. Check the position of the arms, these should make a 45◦

angle with the vertical, do they?

4. Next only add the feedback of the engine to your model and carry out a simulation which
shows that in the absence of the disturbance the 45◦ equilibrium will be reached again.

5. Finally add the disturbance to your model and simulate the three different types of en-
gines, take for the vertical spring a stiffness of k = 1000 [N/m]. Use another STEP
function, as described in assignment 3, for the description of the external couple. Plot
the angular velocity and the collar’s vertical position and the spindle’s angular velocity
as a function of time and compare these results with those in [1], fig 12.6.5 and 12.6.6.
Discuss this comparison.

Assignment 5

In order to examine the safety of a standard tractor driving along the public road at high speed
(> 30 [km/h]) [2], the vehicle has to be submitted to an ISO dual lane change, also known
as the moose test. This middle range tractor (AS1) has an undamped rear axle fixed to the
body and a rigid front axle attached by a swivel axis to the body at the height of the wheel
axle. The steering is realized by letting both front wheels rotate by the same angle around their
vertical axes. The total mass is 5850 [kg] and the mass moment of inertia around the vertical
or yaw-axis 9255 [kgm2] and around the pitch-axis 7245 [kgm2]. The mass moment of inertia
around the roll-axis has not been given in [2] but is estimated at 5235 [kgm2]. The centre of
mass of the system is situated 1626 [mm] in front of the rear axle and vertically 1095 [mm] in
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relation to the ground (unloaded configuration). The wheel base is 2703 [mm] and the gauge at
the front and the rear is 1900 [mm]. The rear tyres are of the 18.4R38 type with an unloaded
radius of 789 [mm], a width of 467 [mm] and a total mass, tyre plus rim, of 273 [kg]. The front
tyres are of the 16.9R26 type with a 621 [mm] radius, a width of 429 [mm] and a mass of 152
[kg]. The vertical stiffness of both tyres is 2.0 105 [N/m].

1. Make a model of the tractor in ADAMS. Model the front swivel axle as a separate body
with a negligible mass and mass moment of inertia. For the tyres, we will make use of the
Delft-Tyre Model. The Tyre Property Files for front and rear tyres are 16r26_new.tir

and 18r38_new.tir and the Road Data File FlatRoad.rdf describes a flat level road.
These files can be found on the course website. Let this model drive straight ahead at a
low initial speed (< 5 [km/h]) in order to prove that your model is working.

2. Determine the vertical displacement and the pitch angle of the main body in the static
equilibrium state. This static equilibrium can best be simulated by letting the tractor
drive straight ahead at low speed from the initial state. This also gives the tyres a chance
to spin up. Plot this vertical displacement and pitch angle as a function of time. Check
these steady state values by a simple pencil-and-paper calculation.

3. Make a pencil-and-paper estimate of the eigenfrequency of the pitch movement and check
this by means of a Linear analysis on your model.

Subsequently, we would like to submit the tractor to the moose test. This test, com-
prehensively described in ISO/TR 3888 [3], includes an overtaking manoeuvre or a fast
swerving manoeuvre around an obstacle within a track marked by pylons. You can find
the description of the track as an appendix. The easiest way to steer the front wheels
is by letting them rotate sine-like. The amplitude and frequency of this motion for a
desired vehicle track can be estimated by remembering that the vehicle’s yaw-rate α̇ is
approximately proportional to the steering position of the front wheels ϕ and the vehicle’s
forward speed v, and inversely proportional to the wheelbase l, summing up: α̇ ≈ (v/l)ϕ.
In general the tractor will slow down as it moves along, therefore to maintain constant
speed along the track you should construct a first order control system pushing and pulling
the tractor forward. Do not try to drive the wheels, but let the control system work on
the centre of mass of the tractor body.

4. Determine, by iterative analysis, the maximum speed vmax at which the tractor will safely
pass the moose test. For this speed, plot the tractor’s track in the horizontal plane. What
is your advice on the maximal allowing speed of tractors on the public road?

5. Finally plot, as a function of time, the three tyre forces: normal, lateral and longitudinal,
that the right front and rear tires are subjected to during the manoeuvre at maximum
speed and compare this with the (average) tyre forces in the static equilibrium position.

Alternative Assignment 5

In order to examine the lateral stability of a bicycle we make a model in ADAMS. The bicycle
is modelled by four rigid bodies connected by hinges: the rear wheel, the frame with a rigid
rider attached, the fork and the handlebar assembly being the front frame, and the front
wheel. For the geometry and parameter values we follow the bicycle benchmark paper from
Meijaard et al. [4]. This also give us room to compare results. However, in this paper the
contact of the wheels with the level ground is modelled by idealized pure-rolling constraints
(nonholonomic constraints). Unfortunately, these type of constraints are not present in the
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ADAMS software and therefore we will model the wheel contact by compliant tires. For the
tires, we will make use of the Delft-Tyre Model. The Tyre Property Files for front and
rear tires are bicycle700c.tir and bicycle600c.tir and the Road Data File FlatRoad.rdf

describes a flat level road. These files can be found on the course website.

1. Make a model of the bicycle in ADAMS. Let this model drive straight ahead at a low
initial speed (≈ 1 m/s) in order to prove that your model is working.

2. Simulate the motion of the bicycle for 5 seconds. The initial conditions are an upright
position with the steering straight ahead, an initial forward speed of 4.6 m/s, an initial
lean angular velocity, for the whole assembly, of 0.5 rad/s, and zero steering rate. Give a
clear representation of the motion in a number of graphs of your own choose. Compare
your results with those from Figure 4 of the benchmark paper [4].

3. Use your simulation to address one or more of the following questions (or some of your
own):

(1) Below 4.3 m/s and above 6.0 m/s the bicycle is unstable. However, these instabilities
have different characteristic motions. Demonstrate these instabilities by transient
analyses on the ADAMS model and characterize the different motions.

(2) A folklore in bicycle science is that he wheel reaction forces in the contact point are
in the plane of the wheel. True or not?

(3) Does the bicycle have any stable motions besides upright straight ahead?

(4) By changing mass and geometry parameters, what’s the slowest speed for which you
can find a stable bicycle?
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