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ABSTRACT
This article presents a way to draw Euler angles such that

the proper operation and application becomes immediately clear.
Furthermore, Euler parameters, which allow a singularity-free
description of rotational motion, are discussed within the frame-
work of quaternion algebra and are applied to the kinematics
and dynamics of a rigid body.

1 Euler Angles
In rigid body mechanics we need to keep track of points for

each body. The motion of such a body can be decomposed into
a translation and a rotation. Here we focus on the rotational part.
One way to describe the rotation (the change in orientation) of
a rigid body is by means of Euler angles. Or more precisely: a
way to parametrize the rotation matrix is to use the three Euler
angles [1]. For a rotation about a fixed origin, the rotation matrix
R is the orthogonal matrix which transforms the coordinates of a
point r from the body fixed coordinate system to the space fixed
coordinate system, as in

r = Rr ′, (1)

with space fixed coordinatesr and body fixed coordinatesr ′.
Since for a rigid body these body fixed coordinates are constant,
Euler angles are a way to keep track of a point of the body in
space.

So how do we find the coordinates of a point? We start with
the position of a pointr in the body given by the vector~r . Of
course, this vector stays the same, whatever coordinate system
we use. Now let us assume that the space fixed coordinate system
is spanned by the three orthogonal unit vectors(~ex,~ey,~ez), also
called the base vectors. To find the coordinates of the vector
~r expressed in the space fixed coordinate system we write,~r =
x~ex + y~ey + z~ez. The coordinates are the three scalarsx,y andz
and a handy way to describe them is to group them in a list. This
list is then called the coordinate vectorr = (x,y,z). Note the
difference: the vector is~r whereas the coordinates of this vector
expressed in some coordinate system arer . Eventually, if we
want to make calculations, which means to get away from the
formal description and to do actually something with numbers, it
is r , the coordinate vector, which we use. These are the numbers
that go into the calculating program.

The distinction is not necessary if we use only one coordi-
nate system, but in the case of a rotating rigid body we clearly
identify two coordinate systems: a coordinate system glued on
the body, which we call the body fixed coordinate system and
denote by primed symbols(~ex′ ,~ey′ ,~ez′), and the space fixed coor-
dinate system(~ex,~ey,~ez) which is our reference system. Next we
express the position ofr in the body fixed coordinate system as
in~r = x′~ex′ +y′~ey′ +z′~ez′ and this defines the body fixed coordi-
natesr ′ = (x′,y′,z′) of point r. As already said, for a rigid body
these are constant.

Now we can get back to the rotation matrix and the Euler
angles. Most textbooks (e.g. Goldstein [1], Hamel [2], Witten-
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burg [3], Lurie [4], Papastavridis [5], Shabana [6]) introduce Eu-
ler angles (3–1–3) as follows. The body or body fixed coordinate
system can be oriented with respect to the space fixed coordinate
system by means of three successive rotations. The sequence
starts by rotating the body fixed coordinate system, which is ini-
tially aligned with the space fixed coordinate system, by an angle
φ about the~ez axis. The resulting coordinate system is then la-
belled(~eξ,~eη,~eζ). In a second step the intermediate coordinate
system(~eξ,~eη,~eζ) is rotated about the~eξ axis by an angleθ to
produce yet another intermediate coordinate system denoted by
(~eξ′ ,~eη′ ,~eζ′). Finally this (~eξ′ ,~eη′ ,~eζ′) coordinate system is ro-
tated about the~eζ′ axis by an angleψ to produce the body fixed
coordinate system labelled(~ex′ ,~ey′ ,~ez′). The various stages of
this sequence are then illustrated by figure 1.
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Figure 1. The three stages of rotation for Euler angles.

Most modern first-time readers are now totally lost. The
process of successive rotation is complex and the drawing even
more. Therefore we propose to illustrate this sequence of rota-
tions about different axes by means of the so-called cans in series,
figure 2. Each rotation about an axis is represented by a pair of
cans rotating with respect to one another. Of course, the draw-

Figure 2. Euler angles as ‘cans’ in series.

ing is not entirely correct, the origins of the various coordinate
systems do not coincide. This drawback is yet the power of the
picture. The drawing of the cans in series can be looked upon as
an exploded view of the materialization of the Euler angles and
by such demonstrates the proper operation of the process. The

non-coinciding origins are now immaterial and the role of the
two intermediate coordinate systems becomes clearer. They are
positioned at the the end of the first two pairs of cans.

The rotation matrixR is obtained by looking at the rotations
of the individual pairs of cans, figure 3. The first pair of cans

Figure 3. Euler angle sequence with ‘cans’ in series.

describe the rotation about the~ez axis by an angleφ as in

r = Rφρ, with Rφ =




cosφ −sinφ 0
sinφ cosφ 0

0 0 1


 , (2)

and the coordinatesρ = (ξ,η,ζ) of pointr in the(~eξ,~eη,~eζ) coor-
dinate system. The rotation matrixRφ has a simple form, because
the rotation is about a coordinate axis. The second pair of cans
describe the rotation about the~eξ axis by an angleθ:

ρ = Rθρ′, with Rθ =




1 0 0
0 cosθ −sinθ
0 sinθ cosθ


 , (3)

and the coordinatesρ′ = (ξ′,η′,ζ′) of point r in the(~eξ′ ,~eη′ ,~eζ′)
coordinate system. Finally, the last pair of cans describe the ro-
tation about the~eζ′ axis by an angleψ:

ρ′ = Rψr ′, with Rψ =




cosψ −sinψ 0
sinψ cosψ 0

0 0 1


 . (4)

Substitution of (4) in (3) and (3) in (2) leads to the complete
transformation of the body fixed coordinates to the space fixed
coordinates,r = Rr ′, where the rotation matrixR in terms of the
three Euler angles(φ,θ,ψ) is the product of the three successive
rotation matrices, as in

R = RφRθRψ. (5)
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Note the order in which the matrices are multiplied.
The inverse transformation of the space fixed coordinates to

the body fixed coordinates

r ′ = R−1r (6)

is then given immediately by its transpose

R−1 = RT = RT
ψRT

θ RT
φ (7)

sinceR is an orthogonal matrix. This result can also be found
by doing the successive rotations in reverse direction(angle→
−angle) and in reverse order.

The expressions for the components of the angular velocities
vector~ωωω in terms of the Euler angles and their time derivatives
are usually found by taking the time derivatives of (1), substitu-
tion of (6) and cancellation oḟr ′, because the body fixed coordi-
nates are constant, leading to

ṙ = ṘRT r . (8)

The matrixṘRT is identified as an antisymmetric matrix because
differentiation of the orthogonality conditionsRRT = I leads to
ṘRT +(ṘRT)T = O. This antisymmetric matrix is then called̃ωωω
and represents the cross product of the components(ωx,ωy,ωz)
of the angular velocity vector~ωωω expressed in the body fixed co-
ordinate system such that

ṙ = ω̃ωωr = ωωω× r . (9)

Here we have used the tilde notation for the antisymmetric ma-
trix ω̃ωω from the vectorωωω, which is defined by the matrix–vector
notation for the vector cross productωωω×x = ω̃ωωx. This antisym-
metric matrix is

ω̃ωω =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (10)

The components of the angular velocity expressed in the space
fixed coordinate system can now be found by equating the matrix
ω̃ωω with the expanded partial derivatives from (8) as in

ω̃ωω =
∂R
∂φ

RT φ̇+
∂R
∂θ

RT θ̇+
∂R
∂ψ

RT ψ̇. (11)

This is a long an tedious road. A shortcut is given by inspection
of figure 4. The rates of the Euler angles are drawn as angular

Figure 4. Euler angles and angular velocities.

velocity vectors at the corresponding pair of cans, with

~ωωωφ = φ̇~ez, ~ωωωθ = θ̇~eξ, and ~ωωωψ = ψ̇~eζ′ . (12)

The angular velocity of the body is the sum of these successive
angular velocities,~ωωω = ~ωωωφ +~ωωωθ +~ωωωψ. Then the components
of the angular velocity expressed in the space fixed coordinate
system(ωx,ωy,ωz) are found by transforming the three angular
velocity vectors to the space fixed coordinate system and adding
them up, as in




ωx

ωy

ωz


 =




0
0
φ̇


+Rφ




θ̇
0
0


+RφRθ




0
0
ψ̇


 (13)

Next after expansion of terms we find




ωx

ωy

ωz


 =




0 cosφ sinφsinθ
0 sinφ −cosφsinθ
1 0 cosθ







φ̇
θ̇
ψ̇


 , ωωω = Au̇, (14)

where we have introduced the velocity transformation matrixA
and the list of Euler anglesu = (φ,θ,ψ). We say list, because
it is not useful to consider them as a three-dimensional vector:
the standard vector addition and multiplication by a scalar do not
correspond to the composition of rotations. The components of
the angular velocity of the body expressed in the body fixed co-
ordinate systemωωω′ = (ω′x,ω′y,ω′z) can be found by transforming
the angular velocities from (14) according toωωω′ = RTAu̇. An-
other approach is to look at the series of cans from figure 4, and
to transform the individual angular velocities from (12) to the
body fixed coordinate system as in




ω′x
ω′y
ω′z


 =




0
0
ψ̇


+RT

ψ




θ̇
0
0


+RT

ψRT
θ




0
0
φ̇


 (15)
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which after expansion of terms gives us




ω′x
ω′y
ω′z


 =




sinψsinθ cosψ 0
cosψsinθ −sinψ 0

cosθ 0 1







φ̇
θ̇
ψ̇


 , ωωω′ = Bu̇. (16)

The velocity transformation matricesA andB = RTA both have
a determinant of−sinθ and therefore show a singularity at
θ = 0±π. In this configuration it is not possible to uniquely de-
termine the rate of the Euler angles from the angular velocities.
This is usually referred to as ‘gimbal lock’. The gimbal lock
becomes apparent if one looks at the pair of cans in the singular
configuration, for example the initial configuration from figure 4.
In this case all rotation axes of the cans are in one plane. No out-
of-plane angular velocity, in this caseωy, can be resolved by the
rate of the Euler angles.

With the Euler angles as generalized coordinates we are able
to derive the equations of motion of a rigid body in terms of Euler
angles and their time derivatives. We start with the equations of
motion for the rotation of a rigid body in space with the compo-
nents of the inertia tensor as matrixJ′ and the vector of applied
torquesM ′, all at the centre of mass expressed in the body fixed
frame, being

J′ω̇ωω′ = M ′−ωωω′× (J′ωωω′). (17)

Next we apply the principle of virtual power

(M ′−J′ω̇ωω′−ωωω′× (J′ωωω′))Tδωωω′ = 0 ∀ {δωωω′ = Bδu̇}, (18)

and substitute the angular velocities (16) and accelerationsω̇ωω′ =
Bü+Ḃu̇. The equations of motion for the rotation of a rigid body
in terms of the Euler angles and their time derivatives are now

BTJ′Bü = BT [M ′− (Bu̇)× (J′Bu̇)−J′Ḃu̇]. (19)

Note that these equations show the same singularity at gimbal
lock as the velocities (16).

A computationally far more efficient way to calculate the
motion of a rigid body is not to transform the equations of motion
to the generalized coordinates but instead to use the angular ve-
locitiesωωω′ together with the Euler anglesu as state variables [8].
The state equations then become

ω̇ωω′ = J′−1[M ′−ωωω′× (J′ωωω′)], (20)

u̇ = B−1ωωω′, (21)

where the presence of gimbal lock becomes evident through the
set of equations (21).

(a) (b)

Figure 5. Two examples of the usage of cans in series for depicting ro-

tational motion: (a) an arm-like manipulator, and (b) a bicycle model [9].

Finally, the pair of cans are successful not only for depicting
Euler angles but also for illustrating relative rotation in general.
In figure 5 on the left a model is shown of an arm-like manipu-
lator, the cans drawn at the base show the proper direction and
order of rotationsα andβ. The same figure on the right shows
a bicycle model from [9] where the pair of cans at the rear hub
are used in an Euler angle manner(ψ,φ,θB) but where the other
pair of cans are used to illustrate the rear wheel rotationθR, the
steering angleδ, and the front wheel rotationθF .

2 Quaternions, Finite Rotation, and Euler Parameters
The problem of gimbal lock can be resolved by using Euler

parameters to parametrize the rotation matrixR. Euler parame-
ters are unit quaternions [7, 10]. A quaternion is a collection of
four real parameters, of which the first is considered as a scalar
and the other three as a vector in three-dimensional space. The
following operations are defined. Ifq = (q0,q) = (q0,q1,q2,q3)
andp = (p0,p) = (p0, p1, p2, p3) are two quaternions, their sum
is defined as

q+ p = (q0 + p0,q+p), (22)

and their product (non-commutative) as

q◦ p = (q0p0−q ·p,q0p+ p0q+q×p). (23)

Although non-commutative, the quaternion product is associa-
tive and satisfiesr ◦ (p◦ q) = (r ◦ p) ◦ q. The adjoint quater-
nion of q is defined asq = (q0,−q) and the length or norm as

|q| =
√

(q◦q)0 =
√

q2
0 +q ·q. Note that|q◦ p| = |q||p|. There

are two special quaternions, the unit element1 = (1,0) and the
zero element0 = (0,0). The reciprocal of a quaternionq 6= 0 is
q−1 = q/|q|2. The quaternion with a norm of one,|q| = 1, is a
unit quaternion.
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If a quaternion is considered as a four-dimensional vector,
the quaternion product can be described by a matrix–vector prod-
uct as

q◦ p =
(

q0 −qT

q q0I3 + q̃

)(
p0

p

)
= Q

(
p0

p

)
,

p◦q =
(

q0 −qT

q q0I3− q̃

)(
p0

p

)
= Q

(
p0

p

)
.

(24)

Any pair of quaternion matricesQ andP commute,QP = PQ.

The matrices of the adjoint quaternionq areQT andQ
T
.

If we associate the quaternionx′ = (0,x′) with the three-
dimensional vectorx′ and define the operation, with the unit
quaternionq, as

x = q◦x′ ◦q−1 = q◦x′ ◦q, (25)

then this transformation, fromx′ to x, represents a rotation. The
resulting quaternionx is a vectorial quaternion with the same
length asx′. The case of reflection, the other possibility, can be
excluded. The rotation matrixR in terms of the unit quaternions
q can be derived from equation (25) as

x = (q2
0−q ·q)x′+2q0(q×x′)+2(q ·x′)q = Rx′ (26)

with

R =




q2
0 +q2

1−q2
2−q2

3 2(q1q2−q0q3) 2(q1q3 +q0q2)
2(q2q1 +q0q3) q2

0−q2
1 +q2

2−q2
3 2(q2q3−q0q1)

2(q3q1−q0q2) 2(q3q2 +q0q1) q2
0−q2

1−q2
2 +q2

3


 .

(27)
This rotation matrix can also be written with the help of the
quaternion matrix representation according to

(
1 0T

0 R

)
= QQ

T = Q
T
Q. (28)

The quaternionq in the rotation matrixR according to equation
(27), is identified as the set of Euler parameters for the descrip-
tion of finite rotation. According to Euler’s theorem on finite
rotation, a rotation in space can always be described by a rota-
tion along a certain axis over a certain angle. With the unit vector
eµ representing the axis and the angle of rotationµ, right-handed
positive, the Euler parametersq can be interpreted as

q0 = cos(µ/2) and q = sin(µ/2)eµ. (29)

Since the Euler parameters are unit quaternions the subsidiary
condition,

q2
0 +q2

1 +q2
2 +q2

3 = 1, (30)

must always be satisfied. The quaternionx′ in (25) can now be
associated with the algebraic components of a vector in a body
fixed frame and the quaternionx as the corresponding compo-
nents expressed in a space fixed frame.

The Euler parametersq for successive rotations, where the
sequence of rotations are described by the Euler parametersr and
p, are given by their quaternion productq = p◦ r. This property
can successfully be used if one knows the initial rotationp and
the final configurationq and needs to calculate the relative rota-
tion r. Simple quaternion calculus gives usr = p◦q.

Before we derive the rotational equations of motion for a
spatial rigid body in terms of Euler parameters we have to ex-
press the angular velocities and accelerations in terms of the Eu-
ler parameters and its time derivatives. By differentiation of the
rotational transformation (25) as in

ẋ = q̇◦x′ ◦q+q◦x′ ◦ q̇, (31)

and substitution of the body fixed coordinates according tox′ =
q◦x◦q, realizing thatq◦q is the unit element(1,0), the velocity
reads

ẋ = q̇◦q◦x+x◦q◦ q̇. (32)

The scalar part of the productṡq◦ q andq◦ q̇ are zero, sinceq
is a unit quaternion, and the vector parts are opposite so we may
write: q̇◦q = (0,w) andq◦ q̇ = (0,−w). The velocityẋ now has
a zero scalar part, as expected, and a vectorial part,ẋ = 2w×x,
so ωωω = 2w. We conclude that the angular velocityωωω expressed
in the space fixed reference in terms of the Euler parametersq
and its time derivatives is given by

ω = 2q̇◦q or

(
0
ωωω

)
= 2Q

T
(

q̇0

q̇

)
. (33)

The inverse, the time derivativeṡq of the Euler parameters for
givenq andω, can be found as

q̇ =
1
2

ω◦q or

(
q̇0

q̇

)
=

1
2

Q
(

0
ωωω

)
. (34)

Note that these time derivatives are always uniquely defined, op-
posed to Euler angles or any other classical combination of 3
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parameters for describing spatial rotation like for example Ro-
drigues parameters or Cardan angles. The angular velocitiesωωω′
expressed in a body fixed reference frame can be derived in the
same manner, or by application of the rotational transformation
(28), as

ω′ = 2q◦ q̇ or

(
0
ωωω′

)
= 2QT

(
q̇0

q̇

)
, (35)

and with the inverse

q̇ =
1
2

q◦ω′ or

(
q̇0

q̇

)
=

1
2

Q
(

0
ωωω′

)
. (36)

The angular accelarations are found by differentiation of the ex-
pressions forω andω′, resulting in

(
0
ω̇ωω

)
= 2Q

T
(

q̈0

q̈

)
+2

( |q̇|2
0

)
, (37)

and expressed in the body fixed reference frame

(
0
ω̇ωω′

)
= 2QT

(
q̈0

q̈

)
+2

( |q̇|2
0

)
. (38)

The inverse, the second order time derivativesq̈ of the Euler pa-
rameters in terms ofq, q̇ andω̇, goes without saying.

The equations of motion for the rotation of a rigid body in a
space (17) can be expressed in terms of Euler parameters and its
time derivatives by application of the principle of virtual power
and introduction of the Lagrangian multiplierλ for the norm con-
straint (30) written as

Φ = q2
0 +q2

1 +q2
2 +q2

3−1 = 0, (39)

resulting in the virtual power equation for a rigid body as

(M ′−J′ω̇ωω′−ωωω′× (J′ωωω′))Tδωωω′ = λδΦ̇. (40)

The virtual constraint rate can be derived from (39) as

δΦ̇ = 2q0δq̇0 +2qTδq̇. (41)

The equations of motion can be obtained by substitution of the
virtual constraint rates (41) and the angular velocities (35) and
accelerations (38) in the virtual power equation (40). Assuming

arbitrary virtual Euler parameter velocities(δq̇0,δq̇) and adding
the constraints on the accelerations of the Euler parameters from
(37) or (38) yields


4Q

(
0 0T

0 J′

)
QT 2

(
q0

q

)

2(q0,qT) 0







q̈0

q̈
λ


 =


2Q

(
0

M ′

)
+8Q̇

(
0 0T

0 J′

)
Q̇T

(
q0

q

)

−2|q̇|2


 . (42)

These are the constrained equations of motion for a single rigid
body expressed in terms of Euler parameters. The multiplierλ
can for this single body be obtained by premultiplying the first
four equations by(q0,q)T and is indentified as twice the rota-
tional kinetic energy of the body

λ = 4

(
q0

q

)T

Q̇
(

0 0T

0 J′

)
Q̇T

(
q0

q

)
= ωωω′TJ′ωωω′. (43)

The transformations of an applied torque, body fixedM ′ or space
fixed M , to the torque parameters( f0, f), which are dual to the
Euler parameters, are apparently

(
f0
f

)
= 2Q

(
0

M ′

)
, and

(
f0
f

)
= 2Q

(
0
M

)
. (44)

Again, as in the case of the Euler angles, the equations of motion
need not always be transformed into Euler parameters and their
time derivatives. It is computationally far more efficient to cal-
culate the motion of a rigid body using the angular velocitiesωωω′
together with the Euler parametersq = (q0,q) as the state vari-
ables. The state equations then become

ω̇ωω′ = J′−1[M ′−ωωω′× (J′ωωω′)], (45)(
q̇0

q̇

)
=

1
2

Q
(

0
ωωω′

)
. (46)

Numerical integration of these equations will lead to errors in the
constraint equation (39) which can be resolved by renormalising
the Euler parameters, as inq = q/|q|. This is known as the coor-
dinate projection method and if preformed after each numerical
integration step proves to be accurate and stable [11].

The use of Euler parameters within the general purpose
multibody dynamics software package SPACAR [12] has, over
the years, proved to be a success mainly due to the singularity-
free and fast calculation of rotational motion.
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3 Conclusions
Drawing rotational motion by a pair of cans in series leads

to unambiguous interpretation of the rational motion. Euler pa-
rameters lead to singularity-free and fast calculation of rotational
motion. Application of quaternion algebra eases the derivation
of the necessary expressions.

REFERENCES
[1] Goldstein, H., Classical Mechanics, Addison Wesley,

Reading, MA, 1950.
[2] Hamel, G., Theoretische Mechanik, Springer-Verlag,

Berlin, 1949.
[3] Wittenburg, J.,Dynamics of Systems of Rigid Bodies, Teub-

ner, Stuttgart, 1977.
[4] Lurie, A. I., Analytical Mechanics, Springer-Verlag, Berlin,

2002.
[5] Papastavridis, J. G.,Analytical Mechanics, Oxford Univer-

sity Press, New York, 2002.
[6] Shabana, A. A.,Dynamics of Multibody Sytems, 3rd edn.

Cambridge University Press, Cambridge, 2005.
[7] Bottema, O., and Roth, B.,Theoretical Kinematics, North-

Holland, Amsterdam, 1979.
[8] Koppens, W. P., The dynamics of systems of deformable

bodies, PhD thesis, Eindhoven University of Technology,
1989.

[9] Schwab, A. L., Meijaard, J. P., and J. M. Papadopoulos,
“A Multibody Dynamics Benchmark on the Equations of
Motion of an Uncontrolled Bicycle”. InProceedings of
the Fifth EUROMECH Nonlinear Dynamics Conference,
ENOC-2005, August 7-12, 2005, Eindhoven University of
Technology, The Netherlands, 2005, pp. 511–521.

[10] Kuipers, J. B.,Quaternions and Rotation Sequences : A
Primer with Applications to Orbits, Aerospace and Virtual
Reality, Princeton University Press, 2002.

[11] Eich-Soellner, E., and F̈uhrer, C.,Numerical Methods in
Multibody Dynamics, European Consortium for Mathemat-
ics in Industry, B.G.Teubner, Stuttgart, 1998.

[12] Jonker, J. B. and Meijaard, J. P., “SPACAR—Computer
program for dynamic analysis of flexible spatial mecha-
nisms and manipulators”. InMultibody Systems Handbook
(ed. W. Schiehlen). Springer-Verlag, Berlin, 1990, pp. 123–
143.

7 Copyright c© 2006 by ASME


