
Lecture Notes

Multibody Dynamics B, wb1413

A. L. Schwab & Guido M.J. Delhaes

Laboratory for Engineering Mechanics

Mechanical Engineering

Delft University of Technolgy

The Netherlands

April 9, 2009

Contents

7 Numerical Integration of Ordinary Differential Equations 2

7.1 Euler step . 3
7.2 Heun step . 8
7.3 Runge Kutta 4 step . 8
7.4 A method for second order differential equations 9
7.5 Global Error Estimate Revisited 10
7.6 Error estimate in practise . 11
7.7 Implicit Methods . 14
7.8 Linear Multi-step Methods . 15

1

Chapter 7

Numerical Integration of

Ordinary Differential

Equations

Up until now solved for q̈ from

M̄q̈ = Q̄(q, q̇, t) (7.1)

or
(

M DT

D 0

) (

ẍ

λ

)

=

(

f

−D2ẋẋ

)

(7.2)

But what we really want to know is q(t).
So given t0, q0 and q̇0 and M̄q̈0 = Q̄(q0, q̇0, t0) we want to know q1 and q̇1 for
time t1 = t0 + h.
A natural, but naive, way would be,

q1 = q0 + hq̇0,

q̇1 = q̇0 + hq̈0.

Which finds its origin in the Taylor expansion of a function f(x).

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + · · ·+

1

n!
hnfn(x) + O(hn+1) (7.3)

Knowing this you could raise the question if it were not better to use,

q1 = q0 + hq̇0 +
1

2
h2q̈0 ?

An ordinary differential equation (ODE) is usually expressed as, y′ = f(x,y)
with initial values y(x0) = y0. We have, ẏ = f(t,y) with the initial values at
t = t0, y(t0) = y0. Well actually we have a set of n second order differential
equations,

M̄q̈ = Q̄(t,q, q̇), (7.4)

2

with, q(t0) = q0 and q̇(t0) = q̇0. Which we can transform into first order
differential equations by substitution of u = q̇ into (7.4),

M̄u̇ = Q̄(t,q,u).

This lead to a set 0f 2n first order differential equations,

q̇ = u q(t0) = q0

u̇ = M̄−1Q̄(t,q,u) u(t0) = u0,
(7.5)

which we can write in the standard first order form

ẏ = f(t,y) y(t0) = y0 with y =

(

q

u

)

. (7.6)

Lets look at a simple example, a mass-spring-damper system. The equation of

Figure 7.1: Sketch of a mass spring damper system

motion for this system with linear spring-damper is,

mẍ = mg − Fs − Fd = mg − kx− cẋ.

Substitute ẋ = u in the previous equation results in,

u̇ = g −
k

m
x−

c

m
u.

And rewritten in the standard first order form ẏ = g(t,y),
(

ẋ
u̇

)

=

(

0 1
− k

m − c
m

) (

x
u

)

+

(

0
g

)

. (7.7)

And finally with initial conditions for example starting from rest, x = 0 and

ẋ = 0, or y0 =

(

0
0

)

.

7.1 Euler step

The first method, yn+1 = yn + hf(tn,yn) ,is known as an Euler step. A some-
what more refined method is,

y∗

n+1 = yn + hf(tn,yn)

yn+1 = yn +
h

2

(

f(tn,yn) + f(tn+1,y
∗

n+1)
)

3

or Heun’s method.
This method takes a sort of average of f(y′) into account. Note that predictor
y∗

n+1 is a normal Euler step. What do we mean by more refined? ⇒ More

Figure 7.2: Sketch of the Heun integration method

accurate results! So lets look at the accuracy of y after one step, the so-called
truncation error. The truncation error ǫ (after one step) for the two methods
follows from the Taylor expansion and are,

Euler ǫ = O
(

h2
)

Heun ǫ = O
(

h3
)

Far more important is the error in final result, or the so-called global error.
This global truncation error E is the result after integration over the time-span
t = 0 · · ·T , which is the sum of (T/h) local true errors,

E =

(

T

h

)

ǫ

So the global truncation error for the two methods are,

Euler E = O (h)
Heun E = O

(

h2
)

These are all order of magnitude things. In practise we usually do not know
the value of this error and sometimes even not know the order of magnitude.
But we can estimate the global error. Lets look at a simple one-dimensional
problem. We assume that the approximate value is

y = ŷ + C1h
p, (7.8)

with the true answer (which we do not know) ŷ and the truncation error C1h
p.

For Euler p = 1 and for Heun p = 2. This equation has two unknows, the true
value ŷ and the coefficients C1. We can determine these values by integration
the system twice with two different stepsizes. We first integrate from t = 0 to
t = T with step size h , call this result yh. Next, we intergate again from t = 0

4

to t = T , but now with half the stepsize h/2 and we call this yh/2. This results
in the following two equations,

yh = ŷ + C1h
p

yh/2 = ŷ + C1

(

h

2

)p

.

From which we can solve ŷ and C1. But since these are error bounds, plus or
minus, we can only give a global truncation error on our best result yh/2,

E = |ŷ − yh/2| =
1

2p − 1
|(y h

2

− yh)| (7.9)

So this was accuracy. Far more important is stability, or how do previ-
ous made errors propagate? To investigate this we need a test equation. We
will again look at a simple one-dimensional case and use the most generic and
archetypal differential equation,

ẏ = λy. (7.10)

The general solution to this equation is y = ceλt and with complex λ = a + bi
and complex c we have the solutions of the form,

y = ce(a+bi)t = ceatebit.

Which we transform with the Euler identities eiφ = cosφ+ i sinφ into sines and
cosines, as

y = ceat (cos (bt) + i sin (bt))

We see that eat gives rise to growing or decaying solutions and that cos (bt) +
i sin (bt) is the oscillating part.

How does this connect to our mechanical systems?
Lets look at the mass-spring-damper system again. The equation of motion is:

mẍ + cẋ + kx = f

Look at the reduced equations for the homogenous solution mẍ + cẋ + kx = 0
and introduce the eigenfrequency ω0, from ω2

0 = k/m, the relative damping β,
from 2βω0 = c/m, which results in

ẍ + 2βω0ẋ + ω2
0x = 0.

Transform this second order ODE into 2 first order equations with v = ẋ

(

ẋ
v̇

)

=

(

0 1
−ω2

0 −2βω0

) (

x
v

)

(7.11)

ẏ = Ay

assume solution of the form y = y0e
λt

λy0e
λt = Ay0e

λt holds for any t

(A− λI)y0 = 0⇒ |A− λI| = 0

5

Figure 7.3: Sketch of a mass spring damper system

∣

∣

∣

∣

−λ 1
−ω2

0 −λ− 2βω0

∣

∣

∣

∣

= λ2 + 2βω0λ + ω2
0 = 0 (7.12)

λ = −β0ω0 ±
√

1− β2iω0

λ = a± bi

Re(λ)→ ”Damping” Im(λ)→ ”Oscillation”
So now we have an idea what type of motions are descirbed by the test equation
ẏ = λy.

After one numerical integration step we have,

y = ŷ + ǫ,

with ŷ as the true solution and ǫ as the truncation error of the method.

˙̂y + ǫ̇ = λ (ŷ + ǫ)

So the true solution ˙̂y = λŷ leads that the error can propagate:

ǫ̇ = λǫ

Re(λ) > 0: Stable only in a fixed interval.
Re(λ) < 0: Unconditionally stable.

Back to the test equation and the Method. Let’s with the Euler method,

yn+1 = yn + hf(tn,yn) with f(tn,yn) = λyn

yn+1 = yn + hλyn

yn+1 = (1 + hλ)yn

yn+1 = C (hλ)yn

6

where C (hλ) is called the amplification factor. For the Euler method we have
C (hλ) = (1 + hλ).
For absolute stability C (hλ) < 1, where λ can be complex, like in hλ = a + bi.
So for stability we have to look at |C (hλ)| < 1, which for the Euler method
results in |1 + a + bi| < 1. Definition stable: local errors do not propagate!

Figure 7.4: Euler stability area in the complex coordinates

Note that hλ = bi is not in the stability region. Euler’s method is unstable for
pure oscillating systems. For example the solution of an undamped pendulum
will become infinity over a period of time.

Figure 7.5: pendulum solution using Euler

7

7.2 Heun step

Let’s look at Heun:

y∗

n+1 = yn + hλyn

yn+1 = yn + h
2 (λyn + λ (yn + hλyn))

yn+1 = yn + hλ
2 yn + hλ

2 yn + h2λ2

2 yn

yn+1 =
(

1 + (hλ) + 1
2 (hλ)

2
)

yn

where C (hλ) =
(

1 + (hλ) + 1
2 (hλ)2

)

.

z = hλ the condition becomes:
∣

∣1 + z + 1/2z2
∣

∣ < 1.
From the figure it is shown that Heun is also unstable for pure oscillating

Figure 7.6: Heun stability area in the complex coordinates

systems.

7.3 Runge Kutta 4 step

A very accurate and efficient method is the so-called Runge Kutta method,

k1 = f (tn,yn)
k2 = f

(

tn + h
2 ,yn + h

2 k1

)

k3 = f
(

tn + h
2 ,yn + h

2 k2

)

k4 = f (tn + h,yn + hk3)
yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)

The local truncation error is ǫ = O
(

h5
)

and the amplification factor for this

method is: C (λh) = 1 + (hλ) + 1/2 (hλ)
2

+ 1/6 (hλ)
3

+ 1/24 (hλ)
4
.

This method is stable for pure oscillating systems.
For stability:
hλ < 2.8 and with λ = ω0

8

Figure 7.7: Runge Kutta stability area in the complex coordinates

h < 2.8/ω0 or with T0 = 2π/ω0 → h < (2.8/2π)T0 → h < 0.4T0

These were all 1-step methods for systems first order differential equations.

Figure 7.8: Runge Kutta maximum time step to guarantee stability

7.4 A method for second order differential equa-

tions

Now if you look at our system of differential equations half of them are pretty
simple.

q̇ = z

ż = f (t,q, z)

We can write this explicit in a very simple one (Euler 2)

k1 = f
(

tn + h
2 ,qn + h

2 zn, zn

)

qn+1 = qn + hzn + 1
2h2k1

zn+1 = zn + hk1

with tn + h/2 is the midpoint and zn not interesting, just pick zn. Note that
only 1 function (k1) calls to the differential equation at the midpoint.

9

The local truncation error is:

ǫ = O
(

h2
)

but if f is weak in z (the velocities)

ǫ = O
(

h3
)

To investigate the stability we use as a test equation the simplest second order
equation that of a linear damped oscillatory system.

q̈ + 2βω0q̇ + ω2
0q = 0

and with q̇ = z:

(

q̇
ż

)

=

(

0 1
−ω2

0 −2βω0

) (

q
z

)

(7.13)

which can be seen as a first order differential equation:ẏ = λy.

λ1,2 = −βω0 ±
√

1− β2ω0i

The stability comes out as:
Stable for pure oscillating systems.

Figure 7.9: Runge Kutta stability detail

An ”arcade” scheme, suitable for the entertainment industry, moderate accuracy
but fast only 1 function call per step. Note that this function call is at the time
increment tn + h/2. So in the end we know the position q and the velocity z at
the discrete points but the acceleration q̈ and all the forces etc. are only known
at the midpoints.

7.5 Global Error Estimate Revisited

To get more accurate results you just decrease the step size h, but · · · we only
looked at local truncation errors of the type ǫ = O

(

hp+1
)

or E = O (hp). Since
we work with finite word lengths in the computer to represent our numbers we
also have round-off errors which re of the type ǫ = C2 ← a very small number
but since we take the n = T/h steps the global or accumulated round-off error
is:

E =
T

h
C2 = O

(

1

h

)

10

In refining our step size we would hit this. So the fatal global error is like:

E = C1h
p +

C2

h

For example Heun’s method we have E = C1h
2+C2/h which is shown in Figure

(7.10), or better on a log-log scale in Figure (7.11).

Figure 7.10: global error versus step size on linear scale

Figure 7.11: global error versus step size on logarithmic scale

7.6 Error estimate in practise

The global error estimate has the term:

y = ŷ + C1h
p + C2

1

h

11

Now we expect to be either in the second term or in the third term to be dom-
inant for the error estimate.
Dominant truncation: y = ŷ + C1h

p

Dominant round-off: y = ŷ + C2/h
Take a number of successive steps with the step sizes h = T/2n and calculate
T =timeperiod (usually start with n = 6 or 8) the differences at two successive
solutions:

Dn = |yn − yn−1|

where yn is
∫ T

0
at step size h = T/2n and plot this on a log-log scale.

Figure 7.12: global error of the truncation and round-off effect versus step size
on logarithmic scale

Figure 7.13: global error of the truncation and round-off effect versus step size
on logarithmic scale

12

Figure 7.14: the truncation and round-off error for different integration methods
versus step size on logarithmic scale

13

7.7 Implicit Methods

These were all explicit methods, recall Forward Euler yn+1 = yn + hf(tn,yn)
in contrast to the Backward Euler yn+1 = yn + hf(tn+1,yn+1).
We call this method implicit, in order to know yn+1 we need to evaluate
f(tn+1,yn+1), so in general we need to solve these usually non-linear equations.

yn+1 = yn + hf(tn+1,yn+1)

Why better? Accuracy and stability.

Accuracy: The local truncation error ǫ = O(h2) is the same as for the for-
ward Euler.

Stability: with the same test equation:

ẏ = λy

We came up with:
yn+1 = yn + hλyn+1

And for the error:

ǫn+1 = ǫn + hλǫn+1

ǫn+1 = 1
1−hλǫn

The amplification factor C (hλ) = 1/ (1− hλ). Stability is expressed by

Figure 7.15: Forward versus Backward Euler following Gear

|C (hλ)| < 1.
And with λ complex we get:
Even high frequency signals are not blown up! There are higher order implicit

solutions which show the same stability behaviour.

14

Figure 7.16: Backward Euler stability area

7.8 Linear Multi-step Methods

Even earlier than Runge-Kutta they were devised by J.C. Adams to solve a
problem of F. Bashfort. The origin of the method has been dated back to
1855 when F. Bashfort made an application to the Royal Society for assistance
from the Government grant. There he wrote:” · · · but I am indebted to Mr.
Adams for a method of rewriting the differential equation · · · which gives the
theoretical form of the drop with an accuracy exceeding that of the most refined
measurements”. Eventually the methods were published by Bashfort in 1883.
What happened in 1855 in the United states of America? In 1855 Whitman
published at his own expense a volume of 12 poems, Leaves of Grass. Smith &
Wesson invents the revolver. It was 6 years before the civil war would started.

ẏ = f (t,y)

This is the idea:

y1 = y0 +

∫ t1

t0

f (t,y) dt

Describe f in a Langrange polynomial as a function of the past and
∫

one step

Figure 7.17: Linear multistep method principle of Bashfort

15

Figure 7.18: Fictive interpolation future value using Lagrange polynomial

in the fictive with the interpolated function value. For instance the Lagrange
polynomial for 3 f ’s.

p (t) = f−2
(t + h) t

(−h) (−2h)
+ f−1

(t + 2h) t

(h) (−h)
+ f0

(t + 2h) (t + h)

(2h) (h)

Approximate
∫ t1

t0
f (t,y) dt by

∫ h

0
p (t) dt which is h (5/12f−2 − 16/12f−1 + 23/12f0). Thus

we get yn+1 = yn + h/12 (23fn − 16fn−1 + 5fn−2) which is the explicit Adams-
Bashfort method. Now you could make an implicit scheme by adding fn+1 in
the polynomial resulting in:

yn+1 = yn +
h

12
(5fn+1 + 8fn − fn−1)

The implicit Adams-Moulton method.
We do not like Implicit schemes because of the necessary iterations.

yn+1 = yn +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2)

Now a very popular scheme is the following PECE (Shampine 1975)

Predict with A−B order k y
p
n+1

Evaluate the differential equation f
p
n+1

(

tn+1,y
p
n+1

)

Correct with A−M order k + 1 yn+1

Evaluate the differential equations fn+1 (tn+1,yn+1)

This scheme uses only 2 future evaluations/step. This is the ode113 solver of
Matlab!
Pro’s:

• Only 2 Function Evaluations/step independent of the order

• Interpolated values of y for ”free”

Con’s:

• Startup is difficult

• Order k > 0 stability decreases

Change of step size h and order k?
Compare this with a carrace in reverse.

16

Figure 7.19: the stability area of the multi step integration method for different
orders

Figure 7.20: sketch of a ”reverse” carrace

A: A smooth ride v >→ h >
look far backward→ k >
B: A sudden break v <→ h <
forget the past → k <

Finally
There are BDF-methods Backward Differentiating made popular by Gear 1971
subscribing DIFSUB. Again we build a Lagrange polynomial but now on
y−3,y−2,y−1,y0 and predict y1. But where is the differential equation? Dif-
ferentiate the polynomial and set the result being f . For instance for a BDF
with constant step size h and order 2 has the form of:

3

2
y1 − 2y0 +

1

2
f−1 = hf (t1yn)

y1 = −
1

3
y−1 +

4

3
y0 +

2

3
hf (t1yn)

Again, thus is an implicit scheme, and think of the startup problem. The meth-
ods are unconditionally stable up to order 6. This is ode15s with option BDF.

Most of you will be using the Matlab ode45 or ode23. There is a nice pa-
per by L.F. Shampine and M.W. Reichelt, ”The Matlab ODE Suite” SIAM J.
Sci. Compt., 18(1): 1-22, 1997. I will put the pdf-file on the website. (Note
some options have changed in time!)

17

Before we start let’s introduce Auckland New Zealand 1987 the J.C. Butcher
for a s-stage Runge-Kutta method:

yn+1 = yn + hΣs
i=1biki

with: ki = f
(

tn + cih,yn + hΣs
j=1aijkj

)

.
The method is characterised by s, the stages and the coefficients aij , bi and ci.
These coefficients are usually written in the following scheme: Butcher arrays.

c1 a11 · · · a1s

...
...

cs as1 · · · ass

b1 · · · bs

or
c A

bT

So RK4 looks like

k1 = f (tn,yn)
k2 = f

(

tn + h
2 ,yn + h

2k1

)

k3 = f
(

tn + h
2 ,yn + h

2k2

)

k4 = f (tn + h,yn + hk3)
yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Now if aij = 0j ≥ i→ Explicit Method
and aij = 0j > i→ Diagonal Implicit
else → Implicit sensostrito
(The number ci have to fulfill by: ci = Σs

j=1aij in order the integrated time
dependent system which we make arbencunicus)

Methods with one stage, s = 1

0 0
1

Forward Euler
1 1

1
Backward Euler

Explicit Methods with second stages, s = 2

0 0 0
1 1 0

1
2

1
2

Heun

 but any
0 0 0
1
2α

1
2α 0

1− α α
ǫ = O

(

h3
)

Basis of the RKs-stage methods
ODE y′ = f (y)
Taylor expansion solution is:

y (t + h) = y (t) + hy′ +
h2

2
y′′ + · · ·+

hp

p!
yp + O

(

hp+1
)

Runge-Kutta 2 stage method explicit (hope for ǫ = O
(

h3
)

)

0 0 0
b2 a21 0

c1 c2

→
0 0 0
a a 0

c1 c2

k1 = f (yn)
k2 = f (yn + ahk1)
yn+1 = yn + h (c1k1 + c2k2)

0 0 0
1
2α

1
2α 0

1− α α

18

Taylor expansion:

k2 = f (yn) + ahk1f
′ (yn) +

(ahk1)
2

2
f ′′ (yn) + · · ·

yn+1 = yn + hc1f (yn) + hc2f (yn) + hc2ahk1f
′ (yn) + O

(

h3
)

yn+1 = yn + h (c1 + c2) f (yn) + h2c2ak1f
′ (yn) + O

(

h3
)

Taylor expansion solution:

yn+1 = yn + hy′

n +
h2

2
y′′

n + O
(

h3
)

y′′ =
∂f

∂y

∂y

∂t
= f ′y′ = f ′f

h (c1 + c2) = h
h2c2a = 1

2h2

}

c1 + c2 = 1
c2a = 1

2

2 equations but 3 constants (c1, c2, a) so 1 equation missing. Is coming from:

0 0 0
1
2α

1
2α 0

1− α α

Now lets try and connect this to ODE23 (print font 10 batch)

Explicit 3-stage methods

b1 + b2 + b3 = 1
b2c2 + b3c3 = 1

2
b2c

2
2 + b3c

2
3 = 1

3
b3a32a21 = 1

6

0 0 0 0
x x 0 0
x x x 0

x x x

ǫ = O
(

h4
)

6 coefficients and 4 equations → 2 free parameters a 3rd order method. Max #
coefficients = 0.

0 0 0 0
1
3

1
3 0 0

2
3 0 2

3 0
1
4 0 3

4

RK3

0 0 0 0
1
2

1
2 0 0

3
4 0 3

4 0
2
9

1
3

4
9

”ODE23”

But when you read closely you see the following Butcher arrays.

0 0 0 0 0

A =

1
2
3
4
1

1
2 0 0 0
0 3

4 0 0
2
9

1
3

4
9 0

 = BT

(

− 5
72

1
12

1
9 − 1

8

)

= ET

hB = h. ∗B

yn+1 = yn + f ∗ hB (:, 3)

f (:,y) = f (yn+1) this fy is used for local error estimate.

19

function varargout = ode(ode,tspan,y0,options,varargin)
% ODE23 Solve non-stiff differential equations, low order method.
% [T,Y] = ODE23(ODEFUN,TSPAN,Y0) with TSPAN = [T0 TFINAL] inte-
grates the
% ... cut ...
% Initialize method parameters.
pow = 1/3;
A = [1/2; 3/4; 1];
B = [
1/2 0 2/9
0 3/4 1/3
0 0 4/9
0 0 0];

E = [-5/72; 1/12; 1/9; -1/8];
f = zeros(neq,4);
hmin = 16*eps*abs(t);
% ... cut ...
% LOOP FOR ADVANCING ONE STEP.
nofailed = true; % no failed attemps
while true
hB = h * B;
f(:,2) = feval(ode,t+h*A(1),y+f*hB(:,1),args:);
f(:,3) = feval(ode,t+h*A(2),y+f*hB(:,2),args:);
tnew = t + h*A(3);
if done
tnew = tfinal; % Hit end point exactly.
end
h = tnew - t; % Purify h.

ynew = y + f*hB(:,3);
f(:,4) = feval(ode,tnew,ynew,args:);
stats.nfevals = stats.nfevals + 3;

% Estimate the error.
if normcontrol
normynew = norm(ynew);
err = absh * (norm(f * E) / max(max(normy,normynew),threshold));
else
err = absh * (norm(f * E) ./ max(max(abs(y),abs(ynew)),threshold),inf);
end

% Accept the solution only if the weighted error is no more than the toler-
ance rtol. Estimate an h that will yield an error of rtol on the next step or the
next try at taking this step, as the case may be, and use 0.8 of this value to
avoid failures.
if err > rtol % Failed step
% ... cut ...

function yinterp = ntrp23(tinterp,t,y,tnew,ynew,h,f)
%NTRP23 Interpolation helper function for ODE23.

20

BI = [
1 −4/3 5/9
0 1 −2/3
0 4/3 −8/9
0 −1 1];

s = ((tinterp - t) / h)’; % may be a row vector
yinterp = y(:,ones(length(tinterp),1)) + f*(h*BI)*cumprod(s(ones(3,1),:));

RK3 (”ODE23”)

k1 = f (tn,yn)
k2 = f

(

tn + h
2 ,yn + h

2k1

)

k3 = f
(

tn + 3h
4 ,yn + 3h

4 k2

)

yn+1 = yn + h
9 (2k1 + k2 + 4k3)

ǫ = absh ∗ norm (f ∗E) abs: back iterative norm: multi distinctive
Local truncation error estimate:

ǫ = h

(

−
5

72
k1 +

1

12
k2 +

1

9
k3 −

1

8
k4

)

If the step is accepted then: ...
f(:,1) = f(:,4) FSAL (First Same As Last)
So apparently 4 stage but actually 3-stage method.

Finally, for dense output or event interpolation we want to interpolate accu-
rately between yn and yn+1 without extra function evaluations to f .

yn+α = yn+ hk1

(

α− 4
3α2 + 5

9α3
)

+
hk2

(

α2 − 2
3α3

)

+
hk3

(

4
3α2 − 8

9α3
)

+
hk4

(

−α2 + α3
) (

+O
(

h4
)

??
)

So we have two extra things here:

• Local truncation error estimate and step size adaption!

• Accurate interpolation results.

Now look for yourself at ode45

function varargout = ode45(ode,tspan,y0,options,varargin)
%ODE45 Solve non-stiff differential equations, medium order method.
% [T,Y] = ODE45(ODEFUN,TSPAN,Y0) with TSPAN = [T0 TFINAL] inte-
grates the
% ... cut ...
% Initialize method parameters.
pow = 1/5;
A = [1/5; 3/10; 4/5; 8/9; 1; 1];
B = [

21

1/5 3/40 44/45 19372/6561 9017/3168 35/384
0 9/40 −56/15 −25360/2187 −355/33 0
0 0 32/9 64448/6561 46732/5247 500/1113
0 0 0 −212/729 49/176 125/192
0 0 0 0 −5103/18656 −2187/6784
0 0 0 0 0 11/84
0 0 0 0 0 0];

E = [71/57600; 0; -71/16695; 71/1920; -17253/339200; 22/525; -1/40];
f = zeros(neq,7);
hmin = 16*eps*abs(t);
% ... cut ...
% LOOP FOR ADVANCING ONE STEP.
nofailed = true; % no failed attemps
while true
hA = h * A;
hB = h * B;
f(:,2) = feval(ode,t+hA(1),y+f*hB(:,1),args:);
f(:,3) = feval(ode,t+hA(2),y+f*hB(:,2),args:);
f(:,4) = feval(ode,t+hA(3),y+f*hB(:,3),args:);
f(:,5) = feval(ode,t+hA(4),y+f*hB(:,4),args:);
f(:,6) = feval(ode,t+hA(5),y+f*hB(:,5),args:);

tnew = t + hA(6);
if done
tnew = tfinal; % Hit end point exactly.
end
h = tnew - t; % Purify h.

ynew = y + f*hB(:,6);
f(:,7) = feval(ode,tnew,ynew,args:);
stats.nfevals = stats.nfevals + 6;

% Estimate the error.
if normcontrol
normynew = norm(ynew)
err = absh * (norm(f * E) / max(max(normy,normynew),threshold));
else
err = absh * norm((f * E) ./ max(max(abs(y),abs(ynew)),threshold),inf); end

% Accept the solution only if the weighted error is no more than the
% tolerance rtol. Estimate an h that will yield an error of rtol on
% the next step or the next try at taking this step, as the case may be,
% and use 0.8 of this value to avoid failures.
if err > rtol % Failed step
% ... cut ...

function yinterp = ntrp45(tinterp,t,y,tnew,ynew,h,f)
%NTRP45 Interpolation helper function for ODE45.
BI = [

22

1 −183/64 37/12 −145/128
0 0 0 0
0 1500/371 −1000/159 −1000/371
0 −125/32 125/12 −375/64
0 9477/3392 −729/106 25515/6784
0 −11/7 11/3 −55/28
0 3/2 −4 5/2];

s = ((tinterp -t) / h)’; % may be a row vector
yinterp = y(:,ones(length(tinterp),1)) + f*(h*BI)*cumprod(s(ones(4,1),1:));

23

Bibliography

[1] P. Henrici. Discrete variable methods in ordinary differential equations. Wiley,
New York, 1962.

[2] Charles William Gear. Numerical initial value problems in ordinary differential

equations. Prentice-Hall, Englewood Cliffs, N.J., 1971.

[3] L. F. Shampine and M. K. Gordon. Computer solution of ordinary differential

equations: the initial value problem. W. H. Freeman, San Francisco, 1975.

[4] John Charles Butcher. The numerical analysis of ordinary differential equations:

Runge-Kutta and general linear methods. J. Wiley, Chichester, New York, 1987.

[5] John H. Hubbard and Beverly H. West. Differential Equations: A Dynamical

System Approach, Part 1, Ordinary Differential Equations. Number 5 in Texts in
Applied Mathematics. Springer, New York, 1991.

[6] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations

I: Nonstiff Problems. Number 8 in Springer Series in Computational Mathematics.
Springer-Verlag, Berlin Heidelberg, second revised edition, 1993.

[7] Lawrence F. Shampine. Numerical solution of ordinary differential equations.
Chapman & Hall, New York, 1994.

[8] Edda Eich-Soellner and Claus Führer. Numerical Methods in Multibody Dynam-

ics. European Consortium for Mathematics in Industry. B.G.Teubner, Stuttgart,
1998.

[9] Reinhold von Schwerin. Multibody System Simulation: Numerical Methods, Algo-

rithms, and Software. Number 7 in Lecture Notes in Computational Science and
Engineering. Springer-Verlag, 1999.

[10] Cleve B. Moler. Numerical Computing with Matlab. SIAM, 2004. (Free at:
http://www.mathworks.com/moler/chapters.html).

24

