wb1413
 Multibody Dynamics B

Spring Term 2013, Thu 15:45-17:30, room CT-CZ G, 4 ECTS credits.

Homework assignment 10

A simple mechanical model of the human arm consists of two rigid bodies connected by three hinges. The space fixed coordinate system is, seen from a human perspective looking straight ahead North, the z-axis up, the y-axis North, and the x-axis East. The arm is an open loop structure with, starting from the torso, a hinge with an angle α about the x-axis, a hinge with an angle β about the y-axis, the upper arm with length $d=30 \mathrm{~cm}$ in the minus z-direction, a hinge with an angle γ about the x-axis, and finally the lower arm with length $e=40 \mathrm{~cm}$ in the plus y-direction. The location of the imaginary hand at the endpoint is now $(0, e,-d)$ with all angles α, β, and γ equal to zero. The upper arm has a concentrated mass of $m_{d}=3 \mathrm{~kg}$ at a distance $d / 3$ from the shoulder whereas the lower arm has a concentrated mass of $m_{e}=3 \mathrm{~kg}$ at $e / 2$ from the elbow. We neglect the mass moments of inertia. We assume gravity to work in the minus z-direction with a field strength of $g=9.81 \mathrm{~N} / \mathrm{kg}$.
a. Make a sketch of the model, use cans-in-series to depict the hinges.
b. Derive the equations of motion for the arm in terms of the independent degrees of freedom α, β, and γ, and check your results for some simple configurations where you can predict the resulting accelerations of the degrees of freedom.
c. Picture a ball catch posture given by $(\alpha, \beta, \gamma)=\left(110^{\circ},-20^{\circ},-20^{\circ}\right)$. Determine the three hinge Torques necessary to maintain this posture.
d. Check your result by means of a forward dynamic analysis of the system for a time period of 5 seconds (copy and paste the torques from item (b)). Discuss the accuracy and stability of the solution.

