wb1413
 Multibody Dynamics B

Spring Term 2013, Thu 15:45-17:30, room CT-CZ G, 4 ECTS credits.

Homework assignment 7

Consider the quick-return mechanism from Figure 1 . The crank 2 drives via a slider 3 the rocker 4 , and finally the connecting bar 5 moves the slider 6. The centre of mass of link i is denoted by G_{i}. The specification of the mechanism is as follows: $O_{2} A=0.2 \mathrm{~m}, O_{4} B=0.7 \mathrm{~m}, B C=0.6 \mathrm{~m}, O_{4} O_{2}=$ $0.3 \mathrm{~m}, O_{4} G_{4}=0.4 \mathrm{~m}, B G_{5}=0.3 \mathrm{~m}, y_{c}=0.9 \mathrm{~m}$, $m_{3}=0.5 \mathrm{~kg}, m_{4}=6 \mathrm{~kg}, m_{5}=4 \mathrm{~kg}, m_{6}=1$ $\mathrm{kg}, J_{4}=10 \mathrm{kgm}^{2}, J_{5}=6 \mathrm{kgm}^{2}, F=1 \mathrm{kN}$, $T=0$. The reduced mass moment of inertia at the balanced crank $\left(G_{2}=O_{2}\right)$ is $J_{2}=200 \mathrm{kgm}^{2}$. The initial angular velocity of the crank is $\omega_{2}=$ 150 rpm CCW at $\theta_{2}=0$ deg. We assume no friction and zero gravity.

Determine the motion of the mechanism by numerical integration of the equations of motion. Derive these equations in a DAE form and stabilize the constraints by means of the Coordinate Projection Method [1]. Try not to derive the equations of motion in an explicit form but evaluate your equations in a step-by-step manner.

Please address the following questions:
a. Describe your algorithm in words and formula's.

Show for two revolutions of the crank as a function of time:
b. - The angular speed of crank 2 , rocker 4 and connecting bar 5 .
c. - The sliding speed of slider 3 with respect to rocker 4 .

- The horizontal position, speed and acceleration of slider 6.
d. - The normal force exerted by the slider 3 on the rocker 4 .
- The normal force exerted by slider 6 on the ground.

Finally,
e. Which checks did you use in order to be sure that you have the correct answers?

Briefly discuss your results.
Bonus Question: The motion of this mechanism is clearly periodic, what is the period T in seconds $\pm 0.25 \%$.

References

[1] Edda Eich-Soellner and Claus Führer. Numerical Methods in Multibody Dynamics. European Consortium for Mathematics in Industry. B.G.Teubner, Stuttgart, 1998.

