wb1413

Multibody Dynamics B

Spring Term 2013, Thu 15:45-17:30, room CT-CZ G, 4 ECTS credits.

Homework assignment 9

Consider the rotary motion of a torque-free satellite in deep space (no gravity, no drag). At a certain instant in time which we call $t=0$ the orientation of the body fixed coordinate system expressed in the global $x y z$ reference system is given by $\mathbf{e}_{x}^{\prime}=(0.192,0.744,0.64), \mathbf{e}_{y}^{\prime}=(-0.856,-0.192,0.48)$, and $\mathbf{e}_{z}^{\prime}=(0.48,-0.64,0.6)$.
a. Determine for $t=0$ the rotation matrix \mathbf{R} which transforms the body fixed coordinates \mathbf{x}^{\prime} into the reference system coordinates \mathbf{x} as in $\mathbf{x}=\mathbf{R} \mathbf{x}^{\prime}$.
b. Determine for $t=0$ from this \mathbf{R} the associated Euler angles (zxz) ϕ, θ, and ψ.

The initial angular velocity at $t=0$ expressed in the global reference coordinate system are given by $\boldsymbol{\omega}=(1.92048,7.43936,6.4006) \mathrm{rad} / \mathrm{s}$.
c. Determine for $t=0$ the angular velocities $\boldsymbol{\omega}^{\prime}$ expressed in the body fixed coordinate system.
d. Determine for $t=0$ the rate of change of the Euler angles: $(\dot{\phi}, \dot{\theta}, \dot{\psi})$.

The satellite is modelled by a rectangular box with mass $m=100 \mathrm{~kg}$ and dimensions $l_{x}=0.4, l_{y}=1.2$ and $l_{z}=0.3$ in the body fixed coordinate system.
e. Determine the mass moment of inertia matrix \mathbf{J}^{\prime} in the body fixed coordinate system.

Next we want to show the motion of the satellite.
f. Write down the equations of motions (Euler equations) and the state equations $\dot{\mathbf{y}}=\mathbf{f}(\mathbf{y})$. Use as state variables \mathbf{y} the Euler angles (ϕ, θ, ψ) together with the angular velocities $\boldsymbol{\omega}^{\prime}$ expressed in the body fixed coordinate system.
g. Show the motion of the satellite as a function of time by numerical integration of state equations for 40 seconds. Plot the Euler angles (ϕ, θ, ψ) as a function of time. Make a 3D plot of the trajectory of point $p=\left(l_{x} / 2,0,0\right)$ of the body. Please discuss your results. What happens around $\theta= \pm k \pi, k=0 \ldots n$?

Redo the items $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$ and g but now use the Cardan angles (α, β, γ) to parameterize the rotation $\operatorname{matrix} \mathbf{R}$. The recipe for Cardan angles is first a rotation about the z-axis by an angle α, next rotate about the rotated y -axis by an angle β, and finally rotate about the rotated x -axis by angle γ. Note, for item g one should read: What happens around $\beta=\pi / 2 \pm k \pi, k=0 \ldots n$?

Bonus Question: What would be an easy check on your time series results?

