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Chapter 10

Notes on the Bicycle
Project

10.1 The Model

This is a recipe for making a full 3D dynamic model of a bicycle.

Figure 10.1: bicycle model

Start with some counting to see the number of degrees of freedom in the coor-
dinate space and in the velocity space. The no-slip conditions are conditions
in the velocities which can not be expressed in terms of the coordinates only.
These type of constraints are called nonholonomic, opposed to the regular or
holonomic constraints.

4 bodies → 4× 6 = 24 coordinates
3 hinges → 3× 5 = 15 constraints on coordinates, holonomic constraints
2 contact → 2× 1 = 2 constraints on coordinates, holonomic constraints

points 2× 2 = 4 constraints on velocities, nonholonomic constraints

So we have in total 24 coordinates, 17 constraints on the coordinates (and the
velocities), and an additional 4 constraints on the velocities only. Which leaves
24 − 17 = 7 degrees of freedom in the coordinates, and 24 − 21 = 3 degrees of
freedom in the velocities, the so-called mobility.
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Figure 10.2: numbering of the bodies of the bicycle model

Look at the different bodies and number them. Pick a space fixed coordinate
system O−xyz located at the rear contact point. Label a number of interesting
points A,B,C, · · · .

Figure 10.3: Unconstrained rigid body

The equations of motion for a single unconstrained rigid body are:

Newton → Σf = mv̇G

Euler → ΣM′
G = J′Gω̇′ + ω′ × (J′Gω′)

where G is the centre of mass of the rigid body.

The state is described by the position and orientation of the centre of mass of
the rigid body (xG,p), where p are either Euler Angles or Cardan Angles or
Euler parameters or · · · , and the velocities of the centre of mass (vG, ω′), where
the angular velocities ω′ are expressed in the body fixed coordinate system.
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For the description of the orientation of the rigid bodies we will use the following
z − x− y or 3-1-2 Euler Angles denoted by p = (φ, θ, ψ), and where the recipe
is given by,
φ rotate about z − axis: heading or yaw
θ rotate about the rotated x− axis: bank or lean
ψ rotate about the rotated y − axis: pitch

but are of course best be depicted by the cans-in-series, see Figure 10.4

Figure 10.4: Definition Euler Angles by cans-in-series

Now why this choice? Look at a wheel, Figure 10.5. The yaw motion can
be large so we put this rotation at the end or the beginning, in this case the
beginning. The singular configuration is at a lean angle of θ = ±90o which we
try to avoid in cycling, so that will be the middle hinge.

Figure 10.5: Definition of the coordinate system of a running wheel

—————————————————————————————————–
First derive the rotation matrices for this definition and the angular velocities.

x = RφRθRψx′
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with: Rφ =




cos (φ) − sin (φ) 0
sin (φ) cos (φ) 0

0 0 1


, Rθ =




1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)0


 and

Rψ =




cos (ψ) 0 sin (ψ)
0 1 0

− sin (ψ) 0 cos (ψ)


.

Figure 10.6: Definition of the rotation matrix and the angular velocities

—————————————————————————————————–
Now the angular velocities in terms of the Euler angles p and their time deriva-
tives ṗ. First for the space fixed angular velocities,

ω = A (p) ṗ

ω =




0
0
φ̇


 + Rφ




θ̇
0
0


 + RφRθ




0
ψ̇
0







ωx

ωy

ωz


 =




0 cos (φ) − sin (φ) cos (θ)
0 sin (φ) cos (φ) cos (θ)
1 0 sin (θ)







φ̇

θ̇

ψ̇




ω = A (p) ṗ

Next the body fixed angular velocities,

ω′ = A′ (p) ṗ

ω′ =




0
ψ̇
0


 + RT

ψ




θ̇
0
0


 + RT

ψRT
θ




0
0
φ̇







ω′x
ω′y
ω′z


 =



− sin (ψ) cos (θ) cos (ψ) 0

sin (θ) 0 1
cos (ψ) cos (θ) sin (ψ) 0







φ̇

θ̇

ψ̇




ω′ = A′ (p) ṗ
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And for the space fixed angular velocities the inverse,

ṗ = (A′ (p))−1
ω′


φ̇

θ̇

ψ̇


 = 1

cos (θ)




− sin (ψ) 0 cos (ψ)
cos (θ) cos (ψ) 0 cos (θ) sin (ψ)
sin (θ) sin (ψ) cos (θ) − sin (θ) cos (ψ)







ω′x
ω′y
ω′z




Note the singularity at θ = π/2± kπ!
—————————————————————————————————–
Recall that the state of the system is described by the coodinates of the cm,
xGi , the Euler angles, pi, the velocities of the cm of the bodies, vGi , and the
angular velocities of the bodies expressed in the body fixed frame, ω′i.
Then the state equations are, first for the coordinates and Euler angles,

ẋGi
= vGi

ṗi = (A′ (pi))
−1

ω′i

}
for each body i = 1 · · · 4 (10.1)

and next for the velocities, that is the constrained Equations of Motion for the
complete system,



m1I3

J ′G1

m2I3 DT

J ′G2

. . .

D







v̇G1

ω̇′1
v̇G2

ω̇′2
...

λ1

λ2

:
λ21




=




Σf1
ΣM′

1 − ω′1 ×
(
J ′G1

ω′1
)

Σf2
ΣM′

2 − ω′2 ×
(
J ′G2

ω′2
)

...
:
:
gi

:




(10.2)
where gi = −D2 (vGi , ω

′
i) (vGi , ω

′
i) ” are the convective terms.

The matrix D is the Jacobian Dh,j from the holonomic constraints εh =
Dh

(
xGj ,pj

)
, and the Jacobian from the additional nonholonomic constraints,

ε̇nh = Dnh

(
ẋGj , ṗj

)
, which are...... wait and see!
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10.2 Constraints

Revolute Joint =

Figure 10.7: Revolute
Joint constraint

2 Points coincide → 3
2 hinge axes parallel → 2
————————————-
Total # of constraints → 5

First look at two points coincide:

Figure 10.8: Two Points Coincide

ε = xA2 − xA1 =




εx

εy

εz




ε = x2 + xA/2 − x1 − xA/1

ε = x2 + R2x′A/2 − x1 −R1x′A/1

with R1 = R(p1), R2 = R(p2) and
where x′A/2,x

′
A/1 are constant vec-

tors.

Velocities:

ε̇ = ẋ2 + ω2 × xA/2 − ẋ1 − ω1 × xA/1

= v2 + ω2 × xA/2 − v1 − ω1 × xA/1

Accelerations:

ε̈ = v̇2 + ω̇2 × xA/2 − v̇1 − ω̇1 × xA/1

+ω2 × (ω2 × xA/2)− ω1 × (ω1 × xA/1)

These last equations are the constraint equations we have to add to the equa-
tions of motion but .... we work in a body fixed ω′ instead of space ω.

Velocities: ε̇ = v2 + R2

(
ω′2 × x′A/2

)
− v1 −R1

(
ω′1 × x′A/1

)

Which we can write in a matrix vector expression by using the tilde matrix for
the cross product.

ε̇ = v2 −R2x̃′A/2ω
′
2 − v1 + R1x̃′A/1ω

′
1

or in matrix-vector form:

ε̇ =
[
−I R1x̃′A/1 I −R2x̃′A/2

]



v1

ω′1
v2

ω′2
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The matrix R1x̃′A/1 is the Jacobian of the constraints, ”D”. The constraint on
the accelerations is now:

ε̈ =
[
−I R1x̃′A/1 I −R2x̃′A/2

]



v̇1

ω̇′1
v̇2

ω̇′2


 + g

where the convective terms g can be calculated from the state as:

g = ω2 × (ω2 × xA/2)− ω1 × (ω1 × xA/1)

Next look at the two hinge axes being parallel constraints. We want the two

Figure 10.9: Hinge axis being parallel (left), and a bending mode of the hinge
(right).

hinge axis êx1 and êx2 to be parallel or in other words: êx2 ⊥ êy1 and êx2 ⊥ êz1 .

ε1 = êT
y1

êx2 ( like bending about êz1)
ε2 = êT

z1
êx2 ( like bending about êy1)

or with R1 = R (p1) and R2 = R (p2) and referring to the body fixed prime
vectors which are constant:

ε1 =
(
R1ê′y1

)T (
R2ê′x2

)
= ê′Ty1

RT
1 R2ê′x2

ε2 =
(
R1ê′z1

)T (
R2ê′x2

)
= ê′Tz1

RT
1 R2ê′x2

Velocities: here we use the rule that the time derivative of a unit vector is omega
cross this unit vector, as in ˙̂ei = ωi × êi, making

ε̇1 = ˙̂eT
y1

êx2 + êT
y1

˙̂ex2

= (ω1 × êy1)
T êx2 + êT

y1
(ω2 × êx2)

But we prefer the body fixed coordinate system with ω′.

ε̇1 =
(
R1

(
ω′1 × ê′y1

))T
êx2 + êT

y1

(
R2

(
ω′2 × ê′x2

))

ε̇1 = −êT
x2

R1
˜̂e′y1

ω′1 − êT
y1

R2
˜̂e′x2

ω′2
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Apparently the Jacobian matrix D is:

∂ε̇1
∂ω′1

= −êT
x2

R1
˜̂e′y1

and
∂ε̇1
∂ω′2

= −êT
y1

R2
˜̂e′x2

Accelerations:

ε̈1 = (ω̇1 × êy1)
T êx2 + êT

y1
(ω̇2 × êx2)+

(ω1 × (ω1 × êy1))
T êx2 + (ω1 × êy1)

T (ω2 × êx2)+
(ω1 × êy1)

T (ω2 × êx2) + êT
y1

(ω2 × (ω2 × êx2))

Be aware that the convective term g1 goes to the right-hand side of the Equa-
tions of motion.

g1 = (ω1 × (ω1 × êy1))
T êx2 + (ω1 × êy1)

T (ω2 × êx2) +
(ω1 × êy1)

T (ω2 × êx2) + êT
y1

(ω2 × (ω2 × êx2))

and of course
∂ε̈1
∂ω̇1

=
∂ε̇1
∂ω1

so this Jacobian of the acceleration constraint is the same as the one for the
velocities constraint, always!
—————————————————————————————————–
Wheel contact constraints

The velocity of contact point c is

Figure 10.10: Definition coordinate sys-
tems for the wheel contact constraint

ẋc = ẋG + ω × r

No slip means: ẋc = 0. Actually we
have one holonomic contact condition

zG = r cos (θ),

and two nonholonomic or no-slip con-
ditions

ẋc = 0
ẏc = 0 .

But ... I like to think in a moving
coordinate system.

ẋ
′′
c 6= 0 zero longitudinal slip

ẏ
′′
c 6= 0 zero lateral slip

ẋ
′′
c = ẋ

′′
G + ω

′′ × r
′′

Now with
ẋ
′′
G = RT

φ ẋG

and (
ω
′′ × r

′′)
= RθRψ (ω′ × r′) .
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Figure 10.11: r,r’

and the radius vector in the local reference frame, see Figure 10.11,

r′ =




r sin(ψ)
0
−r cos(ψ)




we can evaluate ẋ
′′
c (which is tedious so use Matlab symbolic toolbox or Maple!).

We end up with the linear equations for the velocities of the contact point c in
terms of the coordinates and velocities of the wheel,

ẋ ẏ ż ω′x ω′y ω′z


ẋ
′′

ẏ
′′

ż
′′




c

=




cos (φ)
− sin (φ)

0

sin (φ)
cos (φ)

0

0
0
1

0
r cos (θ) cos (ψ)
r sin (θ) cos (ψ)

−r
0
0

0
r cos (θ) sin (ψ)
r sin (θ) sin (ψ)




The last entry, ż
′′
, is the holonomic constraint ż

′′
= ż + r sin (θ)θ̇ = 0 (Check

this with θ̇ from ṗ = (A′ (p))−1
ω′ in terms of ω′ i.e. θ̇ = cos (ψ)ω′x +sin (ψ)ω′z),

which comes from the holonomic contact condition,

ε1 = z − r cos (θ).

The first two ẋ
′′

and ẏ
′′

are the two nonholonomic constraints, or no-slip con-
ditions, in the longitudinal and lateral direction of the wheel,

ε̇2 = cos (φ)ẋ + sin (φ)ẏ − rω′y ( longitudinal slip )
ε̇3 = − sin (φ)ẋ + cos (φ)ẏ + rω′x cos (θ) cos (ψ) + rω′z cos (θ) sin (ψ) ( lateral slip )

Now we only have to find the convective terms for the wheel constraint. First
substitute ω′ in terms of p and ṗ in the ε̇ equations.

ẋ ẏ ż φ̇ θ̇ ψ̇


ε̇1
ε̇2
ε̇3


 =




0
cos (φ)
− sin (φ)

0
sin (φ)
cos (φ)

1
0
0

0
−r sin (θ)

0

r sin (θ)
0

r cos (θ)

0
−r
0




Next differentiate with respect to time, and forget all ¨ terms, this gives us the
convective terms,




g1

g2

g3


 =




r cos (θ)θ̇2

− sin (φ)ẋφ̇ + cos (φ)ẏφ̇− r cos (θ)φ̇θ̇

− cos (φ)ẋφ̇− sin (φ)ẏφ̇− r sin (θ)θ̇2
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Finally we can use numerical integration on the accelerations from the equations
of motion and on the velocities to find the motion in time. You can use any
method, but I prefer RK4 with a fixed stepsize. This is a fast and accurate
method. The only problem is to find a reasonable stepsize which gives fast and
accurate results. Start with h = 0.01 sec and decrease or increase according to
the results. Use the Coordinate Projection Method to minimize the constraint
errors after each numerical integration step. In this scheme we use the Moore-
Penrose pseudo-inverse D+ of the Jacobian of the constraints D, as in D+ =
DT

(
DDT

)−1. Where the Jacobian D = ∂ε
∂(xi,pi)

, is the partial derivatives of
the constraints with respect to the state variables xi and pi. This is not equal
to the D which we have used in the constraint equations of motion, since there
we had the partial derivatives of the velocities with respect to the state variable
vi and ω′i as in D = ∂ε̇

∂(vi,ω′i)
. But given the latter we can easily transform to

the former with the matrices (A′ (pi)) since ∂ω′i
∂ṗi

= (A′ (pi)) and thus get,

∂ε

∂ (xi,pi)
=

∂ε̇

∂ (ẋi, ṗi)
=

[
∂ε̇

∂vi
,

∂ε̇

∂ω′i
A′ (pi)

]

As an example the ”two points coincide” constraint, for the velocity constraint
equations we derived

ε̇ =
[
−I R1x̃′A/1 I −R2x̃′A/2

]



v1

ω′1
v2

ω′2


 .

which then transforms to small changes in the coordinates and Euler angles as

∆ε =
[
−I R1x̃′A/1 (A′

1) I −R2x̃′A/2 (A′
2)

]



∆x1

∆p1

∆x2

∆p2




Note that this Coordinate Projection Method only operates on the holonomic
constraints, in our case the 17 constraints.
Finally we have to find speeds, vi and ω′i which fulfil the velocity constraints.
So now we include our non-holonomic constraints. To minimize the velocity
constraint errors we use the Coordinate Projection Method again but since we
work in this velocity space we can use the Jacobian D as derived for the con-
strained equations of motion. Since the equations are linear in the speeds this
is a one step iteration!

SUCCES!
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