Lecture Notes Multibody Dynamics B, wb1413

A. L. Schwab \& Guido M.J. Delhaes
Laboratory for Engineering Mechanics
Mechanical Engineering
Delft University of Technolgy
The Netherlands

April 28, 2011

Contents

8 Closed Loop Systems 2

Chapter 8

Closed Loop Systems

Finding $\mathbf{x}_{i}=\mathbf{F}_{i}\left(\mathbf{q}_{j}\right)$ for closed loops is not easy. Lets look at for instance at a four-bar linkage. $\mathbf{x}_{i}=\left(x_{1}, y_{1}, \phi_{1}, x_{2}, y_{2}, \phi_{2}, x_{3}, y_{3}, \phi_{3}\right)$ and $\mathbf{q}_{i}=(\alpha)$.

Figure 8.1: Four-bar linkage system
Why four-bar?
So we have to write down $\mathbf{x}_{i}=\mathbf{F}_{i}\left(\mathbf{q}_{j}\right)$.
Lets start,look at the figure above:

$$
\begin{aligned}
& x_{1}=a / 2 \cos (\alpha) \\
& y_{1}=a / 2 \sin (\alpha) \\
& \phi_{1}=\alpha \\
& x_{2}=a \cos (\alpha)+\cdots
\end{aligned}
$$

I do not know! Look at the paper by Talbourdet from 1941 [1].

Part I-Analysis of Single 4-Bar Linkage

By Guy J. Talbourdet
Research Division
United Shoe Machinery Corporation

Calculate the values of the following factors from the geometry of the linkage:

$$
\begin{aligned}
& K=a^{2}+b^{2}-c^{2}+d^{2} \\
& A=a \operatorname{Sin} \theta \\
& B=a^{2}+b^{2}-2 a b \operatorname{Cos} \theta \\
& D=K-2 a b \operatorname{Cos} \theta \\
& S=\sqrt{4 d^{2} B-D^{2}}
\end{aligned}
$$

$\theta=$ Angular displacement of driving crank.
$\phi=$ Angular displacement of driven crank.
$\frac{d \theta}{d t}$ and $\frac{d^{2} \theta}{d t^{a}}=$ Angular velocity and acceleration respectively of the driving crank.
$\frac{d \phi}{d \bar{t}}$ and $\frac{d^{2} \phi}{d t^{2}}=$ Angular velocity and acceleration respectively of the driven crank.
Then:

$$
\phi=\operatorname{Tan}^{-1} \frac{A}{b-a \operatorname{Cos}^{\theta} \theta}+\operatorname{Cos}^{-1} \frac{D}{2 a \sqrt{B}}
$$

And:

$$
\frac{d \phi}{d t}=\frac{d \theta}{d t}\left[\frac{a}{B}(b \operatorname{Cos} \theta-a)-\frac{A b}{S}\left(2-\frac{D}{B}\right)\right]
$$

And:

$$
\begin{aligned}
\frac{a^{2} \phi}{d t^{2}}= & \frac{d^{2} \theta}{d t^{2}}\left[\frac{a}{B}(b \cos \theta-a)-\frac{A b}{S}\left(2-\frac{D}{B}\right)\right] \\
+ & \left(\frac{d \theta}{d t}\right)^{2}\left[\frac{2 A^{2} b^{2}}{B S}\left(1-\frac{D}{B}\right)+\left(2-\frac{D}{B}\right)\left(\frac{2 A^{2} b^{2}\left(2 d^{2}-D\right)}{S^{3}}-\frac{a b \cos \theta}{S}\right)\right. \\
& \left.-\frac{A b}{B}\left(1+\frac{2 a(b \cos \theta-a)}{B}\right)\right]
\end{aligned}
$$

When the motion of the driving crank is uniform, $\frac{d \theta}{d t}=\omega$, and $\frac{d^{2} \theta}{d t^{2}}=0$, in which case we have:

$$
\frac{d \phi}{d t}=\omega\left[\frac{a}{b}(b \cos \theta-a)-\frac{A b}{S}\left(2-\frac{D}{B}\right)\right]
$$

And:

$$
\begin{aligned}
& \frac{d^{2} \phi}{d t^{2}}=w^{2}\left[\frac{2 A^{2} b^{2}}{B S}\left(1-\frac{D}{B}\right)+\left(2-\frac{D}{B}\right)\left(\frac{2 A^{2} b^{2}\left(2 d^{2}-D\right)}{S^{3}}-\frac{a b \cos \theta}{S}\right)\right. \\
& \left.\quad-\frac{A b}{B}\left(1+\frac{2 a(b \operatorname{Cos} \theta-a)}{B}\right)\right]
\end{aligned}
$$

But I do know how to do a triple-pendulum. This is a double pendulum with an extra pendulum at the end and the I just add two constraints to get back to the original 1 dof system.

Figure 8.2: four-bar linkage generalized coordinate definition
So cut the loop at D and add two generalized coordinates β and γ. Next write down the positions and orientations of the rigid bodies in terms of the generalized coordinates, $\mathbf{x}=\mathbf{F}(\mathbf{q})$, where $\mathbf{q}=(\alpha, \beta, \gamma)$:

$$
\begin{aligned}
& x_{2}=a \cos (\alpha)+\frac{b}{2} \cos (\beta) \\
& y_{2}=a \sin (\alpha)+\frac{b}{2} \sin (\beta) \\
& \phi_{2}=\beta \\
& x_{3}=a \cos (\alpha)+b \cos (\beta)+\frac{c}{2} \cos (\gamma) \\
& y_{3}=a \sin (\alpha)+b \sin (\beta)+\frac{c}{2} \sin (\gamma) \\
& \phi_{3}=\gamma
\end{aligned}
$$

Now add two constraints to close the loop again at D,

$$
\begin{aligned}
& \epsilon_{1}=\Delta x_{D}=0 \\
& \epsilon_{2}=\Delta y_{D}=0
\end{aligned} \Rightarrow \begin{array}{lll}
\epsilon_{1}=a \cos (\alpha)+b \cos (\beta) c \cos (\gamma)-d & =0 \\
\epsilon_{2}=a \sin (\alpha)+b \sin (\beta) c \sin (\gamma) & =0
\end{array}
$$

And finally we can form the DAE for this problem as,

$$
\left.\begin{array}{l}
3\left\{\left[\begin{array}{ll}
\mathbf{F}_{i, l} \mathbf{M}_{i j} & \mathbf{D}_{c, l} \\
2\{ & \mathbf{D}_{c, k}
\end{array} \mathbf{0}^{2}\right.\right.
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathbf{q}}_{k} \\
\boldsymbol{\lambda}_{c}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{Q}_{L}+\mathbf{F}_{i, l}\left(\mathbf{f}_{i}-\mathbf{M}_{i j} \mathbf{g}_{j}\right) \\
-\mathbf{D}_{c, k l} \dot{\mathbf{q}}_{k} \dot{\mathbf{q}}_{l}
\end{array}\right]
$$

From this we solve for $\ddot{\mathbf{q}}_{k}$ and $\boldsymbol{\lambda}_{c}$ and then we integrate the state $\left[\begin{array}{l}\mathbf{q}_{k} \\ \dot{\mathbf{q}}_{k}\end{array}\right]$ like in:

$$
\left[\begin{array}{c}
\tilde{\mathbf{q}}_{k} \\
\tilde{\mathbf{q}}_{k}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{q}_{k} \\
\dot{\mathbf{q}}_{k}
\end{array}\right]+\int_{0}^{h}\left[\begin{array}{c}
\dot{\mathbf{q}}_{k} \\
\ddot{\mathbf{q}}_{k}
\end{array}\right] \mathrm{d} t
$$

The approximate values at $t+h \tilde{\mathbf{q}}_{n+1}$ and $\tilde{\mathbf{q}}_{n+1}$ will in general NOT fulfill the constraints. Remember the results from the $2^{\text {nd }}$ lecture things fly apart, see Figure 8.3. One can picture the constraints as a sort of surface in a higher dimensional space, where a state \mathbf{q} is represented by points in that space, see

Figure 8.3: flying apart of the two bars of the pendulum

Figure 8.4: constraint surface

Figure 8.4. The constraint surface has the form $\mathbf{D}(\mathbf{q})=\mathbf{0}$. Now a predicted solution $\tilde{\mathbf{q}}_{n+1}$ will in general not be on the constraint surface. We have to find a way to get back on the surface with minimal effort. Lets formulate this as a minimization problem such that the distance from the predicted solution $\tilde{\mathbf{q}}_{n+1}$ to the solution which is on the constraint surface is minimal: $\left\|\tilde{\mathbf{q}}_{n+1}-\mathbf{q}_{n+1}\right\|_{2}$ is minimal where all \mathbf{q}_{n+1} have to fulfill the constraints $\mathbf{D}\left(\mathbf{q}_{n+1}\right)=\mathbf{0}$

This is what we call a non-linear constrained least-square problem,

$$
\begin{aligned}
& \| \tilde{\mathbf{q}}_{n+1}-\mathbf{q}_{n+1}| |_{2}=\min _{\mathbf{q}_{n+1}} \\
& \mathbf{D}\left(\mathbf{q}_{n+1}\right)=\mathbf{0}
\end{aligned}
$$

We solve this by a Gauss-Newton method: First linearize about $\tilde{\mathbf{q}}_{n+1}$.

$$
\mathrm{q}_{n+1}=\tilde{\mathrm{q}}_{n+1}+\Delta \mathbf{q}_{n+1}
$$

Which leads to:

$$
\begin{array}{ll}
\left\|\Delta \mathbf{q}_{n+1}\right\|_{2}=\min & \Sigma_{i}\left(\Delta q_{i}^{2}\right)_{n+1}=\min \\
\mathbf{D}\left(\tilde{\mathbf{q}}_{n+1}\right)+\mathbf{D}_{, \mathbf{n}}\left(\tilde{\mathbf{q}}_{n+1}\right) \Delta \mathbf{q}_{n+1}=\mathbf{0} &
\end{array}
$$

This constrained least square problem can be solved by introducing the socalled Lagrange multipliers $\boldsymbol{\mu}$ for the constraints leading to the linear system of equations,

$$
\left[\begin{array}{ll}
\mathbf{I} & \mathbf{D}_{, \mathbf{q}}^{T} \\
\mathbf{D}_{, \mathbf{q}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\Delta \mathbf{q}_{n+1} \\
\boldsymbol{\mu}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
-\mathbf{D}\left(\tilde{\mathbf{q}}_{n+1}\right)
\end{array}\right]
$$

Or in a shorthand form, where we use $\boldsymbol{\Delta}=\Delta \mathbf{q}_{n+1}, \mathbf{D}=\mathbf{D}_{, \mathbf{q}}$, and $\mathbf{e}=$ $-\mathbf{D}\left(\tilde{\mathbf{q}}_{n+1}\right)$,

$$
\left[\begin{array}{ll}
\mathbf{I} & \mathbf{D}^{T} \\
\mathbf{D} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\Delta} \\
\boldsymbol{\mu}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{e}
\end{array}\right]
$$

We have to solve for the vectors $\boldsymbol{\Delta}$ and $\boldsymbol{\mu}$.
Start with $\boldsymbol{\Delta}=-\mathbf{D}^{T} \boldsymbol{\mu}$, and substitute this in the second equation, $\mathbf{D} \boldsymbol{\Delta}=\mathbf{e}$, as,

$$
-\mathbf{D} \mathbf{D}^{T} \boldsymbol{\mu}=\mathbf{e}
$$

Note the dimension of the matrix $\mathbf{D}(m \times n)$ where $m<n$ and the product $\mathbf{D} \mathbf{D}^{T}(m \times m)$ which is now square in the smallest dimension m. If this matrix has full rank, which it usually will have, then we can solve for $\boldsymbol{\mu}$ and \mathbf{e},

$$
\begin{array}{r}
\boldsymbol{\mu}=-\left(\mathbf{D D}^{T}\right)^{-1} \mathbf{e} \\
\boldsymbol{\Delta}=\mathbf{D}^{T}\left(\mathbf{D D}^{T}\right)^{-1} \mathbf{e}
\end{array}
$$

For an undetermined linear system of equations with full rank matrix \mathbf{D}, the matrix,

$$
\mathbf{D}^{+}=\mathbf{D}^{T}\left(\mathbf{D} \mathbf{D}^{T}\right)^{-1}
$$

is called the Moove-Penrose pseudo inverse and gives us the least square solution of the problem.

Example:

$$
\begin{array}{r}
x_{2}-x_{1}=0 \\
x_{2}-x_{3}=0
\end{array} \quad \text { with values } \begin{aligned}
& x_{1}=0.9 \\
& x_{2}=1 \\
& x_{3}=1
\end{aligned}
$$

The equations are linear so the Jacobian, \mathbf{D}, \mathbf{x} is simply the matrix,

$$
\begin{gathered}
\mathbf{D}=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \quad \tilde{\mathbf{x}}=\left[\begin{array}{c}
0.9 \\
1 \\
1
\end{array}\right] \\
\mathbf{D} \tilde{\mathbf{x}}=\left[\begin{array}{c}
0.1 \\
0
\end{array}\right] \\
\mathbf{x}=\tilde{\mathbf{x}}+\mathbf{\Delta} \mathbf{x} \quad \rightarrow \mathbf{D} \tilde{\mathbf{x}}+\mathbf{D} \boldsymbol{\Delta} \mathbf{x}=0 \\
\mathbf{D} \boldsymbol{\mathbf { x } = - \mathbf { D } \tilde { \mathbf { x } }} \rightarrow \mathbf{\Delta} \mathbf{x}=\mathbf{D}^{+}(-\mathbf{D} \tilde{\mathbf{x}}) \\
\mathbf{D}^{+}=\mathbf{D}^{T}\left(\mathbf{D} \mathbf{D}^{T}\right)^{-1} \\
\mathbf{D D}^{T}=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] \\
\left(\mathbf{D} \mathbf{D}^{T}\right)^{-1}=\frac{1}{3}\left[\begin{array}{rr}
1 \\
1 & 2
\end{array}\right] \\
\mathbf{D}^{+}=\mathbf{D}^{T}\left(\mathbf{D} \mathbf{D}^{T}\right)^{-1}=\frac{1}{3}\left[\begin{array}{rr}
-2 & -1 \\
1 & -1 \\
1 & 2
\end{array}\right] \\
\Delta \mathbf{x}=\mathbf{D}^{+}(-\mathbf{D} \tilde{\mathbf{x}})=\frac{1}{3}\left[\begin{array}{r}
1 \\
1 \\
1
\end{array}\right] \\
\|\Delta \mathbf{x}\|=0.0816
\end{gathered}
$$

$$
\mathbf{x}=\left[\begin{array}{r}
0.9 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{r}
0.0666 \\
-0.0333 \\
-0.0333
\end{array}\right]=\left[\begin{array}{l}
0.9666 \\
0.9666 \\
0.9666
\end{array}\right]
$$

Note that this solution (which is on teh constraint surface) is really at the shortest distance from the approximate solution $(0.9,1,1)$. You can easily come up with other solutions which are on the surface, like $(1,1,1)$, but they are always farther away (check this).

The Gauss-Newton iteration scheme is now,

```
set iterat = 0
set tol = 1e-12
set x_n+1 x_n
set maxiterat = 10
evaluate eps=D(x_n+1)
repeat
    dx_n+1 = -D, x^T(D,x D, x^T) eps
    x_n+1 = x_n+1 + dx_n+1
    eps = D(x_n+1)
    iterat = iterat+1
until max(abs(eps))<tol or iterat>maxiterat
```

Next we determine the speeds which fulfill the constraints, these are linear equations so we have a linear least square problem which we can solve in one step:

```
epsdot=D,x xdot_n+1
dxdot_n+1 = -D,x^T(D,x D, x^T) epsdot
xdot_n+1 = xdot_n+1 + dxdot_n+1
```

Now take a look at the Hrones \& Nelson [2] four-bar linkage atlas. A 700 page folio book from 1951, which shows 500.000 solutions of the coupler curve for a general four-bar linkage. And how are these constructed? with a mechanism!

Bibliography

[1] G. J. Talbourdet. Mathematiscal Solutions of Four-Bar Linkages; part I - Analysis of Single 4-Bar Linkage. Machine Design, May 1941.
[2] J. A. Hrones and G. L. Nelson. Analysis of the four bar linkage. MIT press and John Wiley \& Son, New York, 1951.

