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Chapter 8

Closed Loop Systems

Finding xi = Fi (qj) for closed loops is not easy. Lets look at for instance at a
four-bar linkage. xi = (x1, y1, φ1, x2, y2, φ2, x3, y3, φ3) and qi = (α).

Figure 8.1: Four-bar linkage system

Why four-bar?
So we have to write down xi = Fi (qj).
Lets start,look at the figure above:

x1 = a/2 cos (α)
y1 = a/2 sin (α)
φ1 = α
x2 = a cos (α) + · · ·

I do not know! Look at the paper by Talbourdet from 1941 [1].
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But I do know how to do a triple-pendulum. This is a double pendulum with
an extra pendulum at the end and the I just add two constraints to get back to
the original 1 dof system.

Figure 8.2: four-bar linkage generalized coordinate definition

So cut the loop at D and add two generalized coordinates β and γ. Next
write down the positions and orientations of the rigid bodies in terms of the
generalized coordinates, x = F(q), where q = (α, β, γ):

x2 = a cos (α) + b
2
cos (β)

y2 = a sin (α) + b
2
sin (β)

φ2 = β
x3 = a cos (α) + b cos (β) + c

2
cos (γ)

y3 = a sin (α) + b sin (β) + c
2
sin (γ)

φ3 = γ

Now add two constraints to close the loop again at D,

ε1 = ∆xD = 0
ε2 = ∆yD = 0

⇒
ε1 = a cos (α) + b cos (β)c cos (γ)− d = 0
ε2 = a sin (α) + b sin (β)c sin (γ) = 0

And finally we can form the DAE for this problem as,

3{
2{

[

Fi,lMij Dc,l

Dc,k 0

] [

q̈k

λc

]

=

[

QL + Fi,l (fi −Mijgj)
−Dc,klq̇kq̇l

]

From this we solve for q̈k and λc and then we integrate the state

[

qk

q̇k

]

like

in:
[

q̃k

˜̇qk

]

=

[

qk

q̇k

]

+

∫ h

0

[

q̇k

q̈k

]

dt

The approximate values at t+ h q̃n+1 and ˜̇qn+1 will in general NOT fulfill the
constraints. Remember the results from the 2nd lecture things fly apart, see
Figure 8.3. One can picture the constraints as a sort of surface in a higher
dimensional space, where a state q is represented by points in that space, see
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Figure 8.3: flying apart of the two bars of the pendulum

Figure 8.4: constraint surface

Figure 8.4. The constraint surface has the form D (q) = 0. Now a predicted
solution q̃n+1 will in general not be on the constraint surface. We have to find
a way to get back on the surface with minimal effort. Lets formulate this as a
minimization problem such that the distance from the predicted solution q̃n+1

to the solution which is on the constraint surface is minimal: ||q̃n+1 − qn+1| |2
is minimal where all qn+1 have to fulfill the constraints D (qn+1) = 0

This is what we call a non-linear constrained least-square problem,

||q̃n+1 − qn+1| |2 = minqn+1

D (qn+1) = 0

We solve this by a Gauss-Newton method: First linearize about q̃n+1.

qn+1 = q̃n+1 +∆qn+1

Which leads to:

||∆qn+1| |2 = min Σi

(

∆q2i
)

n+1
= min

D (q̃n+1) +D,n (q̃n+1)∆qn+1 = 0

This constrained least square problem can be solved by introducing the so-
called Lagrange multipliers µ for the constraints leading to the linear system of
equations,

[

I DT
,q

D,q 0

] [

∆qn+1

µ

]

=

[

0

−D (q̃n+1)

]

Or in a shorthand form, where we use ∆ = ∆qn+1, D = D,q, and e =
−D (q̃n+1),

[

I DT

D 0

] [

∆

µ

]

=

[

0

e

]
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We have to solve for the vectors ∆ and µ.

Start with ∆ = −DTµ, and substitute this in the second equation, D∆ = e,
as,

−DDTµ = e

Note the dimension of the matrix D (m× n) where m < n and the product
DDT (m×m) which is now square in the smallest dimension m. If this matrix
has full rank, which it usually will have, then we can solve for µ and e,

µ = −
(

DDT
)

−1
e

∆ = DT
(

DDT
)

−1
e

For an undetermined linear system of equations with full rank matrix D, the
matrix,

D+ = DT
(

DDT
)

−1

is called the Moove-Penrose pseudo inverse and gives us the least square solution
of the problem.

Example:

x2 − x1 = 0
x2 − x3 = 0

with values
x1 = 0.9
x2 = 1
x3 = 1

The equations are linear so the Jacobian, D,x is simply the matrix,

D =

[

−1 1 0
0 −1 1

]

x̃ =





0.9
1
1





Dx̃ =

[

0.1
0

]

”errors”

x = x̃+∆x → Dx̃+D∆x = 0
D∆x = −Dx̃ → ∆x = D+ (−Dx̃)

D+ = DT
(

DDT
)

−1

DDT =

[

−1 1 0
0 −1 1

]





−1 0
1 −1
0 1



 =

[

2 −1
−1 2

]

(

DDT
)

−1
= 1

3

[

2 1
1 2

]

D+ = DT
(

DDT
)

−1
= 1

3





−2 −1
1 −1
1 2





∆x = D+ (−Dx̃) = 1

3





−2 −1
1 −1
1 2





[

−0.1
0

]

=





0.0666
−0.0333
−0.0333





||∆x| | = 0.0816
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x =





0.9
1
1



+





0.0666
−0.0333
−0.0333



 =





0.9666
0.9666
0.9666





Note that this solution (which is on teh constraint surface) is really at the short-
est distance from the approximate solution (0.9, 1, 1). You can easily come up
with other solutions which are on the surface, like (1, 1, 1), but they are always
farther away (check this).

The Gauss-Newton iteration scheme is now,

set iterat = 0

set tol = 1e-12

set x_n+1 x_n

set maxiterat = 10

evaluate eps=D(x_n+1)

repeat

dx_n+1 = -D,x^T(D,x D,x^T) eps

x_n+1 = x_n+1 + dx_n+1

eps = D(x_n+1)

iterat = iterat+1

until max(abs(eps))<tol or iterat>maxiterat

Next we determine the speeds which fulfill the constraints, these are linear
equations so we have a linear least square problem which we can solve in one
step:

epsdot=D,x xdot_n+1

dxdot_n+1 = -D,x^T(D,x D,x^T) epsdot

xdot_n+1 = xdot_n+1 + dxdot_n+1

Now take a look at the Hrones & Nelson [2] four-bar linkage atlas. A 700 page
folio book from 1951, which shows 500.000 solutions of the coupler curve for a
general four-bar linkage. And how are these constructed? with a mechanism!
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