Answers to HW Set \#2
2.1. Buying fruit.
2.2. Reduced row echelon form of the magic square of order six.

0.89
2.3 I would and vulenewn surest forces at (1) and (8) plus rode equilibuin at (1) and (d)
(1)

$$
\begin{aligned}
& \text { (1) } H_{1}+\alpha f_{1}+f_{2}=0 \\
& V_{1}+\alpha f_{1}=0 \\
& \text { (s) } V_{8}+\alpha f_{12}=0
\end{aligned}
$$

2.5 a) magic (n)
$n_{i}{ }^{i b}(n)$
pascal (n)
eye (n,n) YES $\quad R^{\top} * R=A \rightarrow$
$\operatorname{rand}(n, n)$
No
YES 1 b) note:
$R=\operatorname{rand}(n, n) ; A=R^{\prime} * R$ YES
$R=\operatorname{rand}(n, k) ; A=A^{\prime}+R \quad$ MAYBE
$R=\operatorname{randu}(u, n) ; A=R^{\prime}+R+\cdots e y P(u, n) \operatorname{MAYBE}$;
function $R=$ mychol (A)
sMYCHOL My own version of Cholesky factorization.
$\mathrm{R}=$ mychol (A), for a positive definite matrix A,
of \quad is an upper triangular matrix R so that $R^{\prime *} R=A$.
if ~isequal(A^{\prime}, A)
end error('Matrix must be symmetric or Hermitian') end
$[\mathrm{n}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
$R=z e r o s(n, n)$;
for $k=1: n$
$k=(1: k-1)^{\prime} ;$
$1=k+1: n)^{\prime}$
$j=k+1: n ;$
$s=A(k, k)-R(i, k)^{* *} R(i, k) ;$
if $s>0$
$\mathrm{R}_{\mathrm{R}}(\mathrm{k}, \mathrm{k})=\operatorname{sqrt}(\mathrm{s})$;
else
end error('Matrix must be positive definite')
$R(k, j)=\left(A(k, j)-R(i, k)^{\prime *} R(i, j)\right) / R(k, k) ;$
end
2.9 as $x=p+t \cdot z$ with $A P=\frac{1}{} \quad$ mod $A z=0$ ponticalur sol $P=(1 / 31 / 30)^{\top}$ and noil space $z=(1-21)^{\top}$
b) finally you end up at $U(3,3)=0$ and $c(3)=0 \rightarrow$ $x(3)=\frac{0}{0}$ ar arbiturny value, which is the free parameter.
c) $\underline{x}=(13 / 3-23 / 34)^{T}$ Good, because' residual $r=b-A * x$ is small Bal becurse $s a l$ is hat unique!
Dee to finite precision we end up with $x(3)=\frac{2 * e p s}{e p s / 2}=4$
d) uses column-oriented dyorithm $\rightarrow x(s)=\frac{5 / 4 * e p s}{\text { ens } / 2}=\frac{5}{2}$! bslashte uses vow-arienten aljuitm
2.19 a) $n=100 ; \quad e=\operatorname{coses}(n .1) ; b=(1: n) ;$

$$
\begin{aligned}
& A=2 * \operatorname{diag}(e)-\operatorname{diay}(e(1: n-1),-1)-\operatorname{diay}(e(1: n-1), 1) ; \\
& x a=b \text { slash } x(A, b)
\end{aligned}
$$

b) $A=\operatorname{spdiay} s\left([-e 2 * e-e],\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right], n, n\right) j$

$$
x b=A \backslash b ;
$$

c) $\quad x c=$ tridisclve $(-e, 2 * e,-c, b)$;
d) condos (A) $\rightarrow 5.110^{3}$
2.21
$\mathrm{U}\{\mathrm{k}\}$ is a string, the $\mathrm{k}^{\text {th }} \mathrm{URL}$.
$U(k)$ is a 1-by-1 cell array containing the string of the $k^{\text {th }}$ URL.
$G(k,:)$ is nonzero for incoming nodes to the $k^{\text {th }}$ URL.
$G(:, k)$ is nonzero for outgoing nodes from the $k^{\text {th }}$ URL.
$\mathrm{U}(\mathrm{G}(\mathrm{k},:))$ is a list of incoming URL's to the the $\mathrm{k}^{\text {th }} \mathrm{URL}^{*}$.
$U(G(:, k))$ is a list of outgoing URL's from the the $k^{\text {th }}$ URL.
*Note that this only works if G is logical.
2.22. Cliques in the harvard500 Web connectivity matrix.

U(168:180): Harvard Divinity School
U(229:248) : Radcliffe Institute
U(261:281): Dana-Farber Cancer Institute
U(315:335): "Go Crimson", Harvard's athletic program
2.23. (a) For $p>=8$, $n n z\left(G^{\wedge} p\right)=167985$.
(b) $\mathrm{nnz}\left(\mathrm{G}^{\wedge} 8\right) / \operatorname{prod}(\operatorname{size}(\mathrm{G}))=0.6719$.
(c) for $p=1: 9$, subplot $(3,3, p)$, $\operatorname{spy}\left(G^{\wedge} p\right)$, end
(d) The "Go Crimson" athletic program, nodes 46 and 315:335, has no links to the other pages in the data set.
2.25. Disconnected miniweb.
$\mathrm{G}=0001100$
10000000
$\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0\end{array}$
$0 \begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array} 1$
$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0$
pagerank1 (G, .85) $=0.1981$
0.1092
0.1556
0.2037
0.1667
0.1667

What happens to page rank as $p->1$? Two possible answers here. The intuitive answer is that the graph has two disconnected subgraphs and consequently the Markov stationary probabilities are not unique. The direct solution algorithm used in pagerank certainly breaks down if $p=1$. However, a second answer is that pageranksym, a symbolic version of pageranki, produces
p = sym('p');
pagerank1 $(G, p)=$
$\left[1 / 3 *\left(p^{\wedge} 3+3 * p^{\wedge} 2+2 * p+2\right) /\left(p^{\wedge} 3+4 * p^{\wedge} 2+4 * p+4\right)\right]$
$\left[1 / 3^{*}\left(p^{\wedge} 2+p+2\right) /\left(p^{\wedge} 3+4 * p^{\wedge} 2+4 * p+4\right)\right]$
$\left[1 / 6 *\left(p^{\wedge} 3+3 * p^{\wedge} 2+4 * p+4\right) /\left(p^{\wedge} 3+4 * p^{\wedge} 2+4 * p+4\right)\right]$
$\left[1 / 6^{*}\left(p^{\wedge} 3+5 * p^{\wedge} 2+6 * p+4\right) /\left(p^{\wedge} 3+4 * p^{\wedge} 2+4 * p+4\right)\right]$
[1/6]
[1/6]
and
limit(ans,p,1) =
[8/39]
[4/39]
[6/39]
[8/39]
[1/6]
[1/6]
These values are $2 / 3$ times the limiting values for the $4-b y-4$ subgraph and $1 / 3$ times the values for the 2 -by-2 subgraph.

