```
4.1. fzerogui('x^3-2*x-5',[0,3])
      Easy problem. Converges to x = 2.09455148154233 in 7 steps.
      fzeroqui('sin(x)',[1,4])
      Easy problem. Converges to x = pi in 7 steps, all secant.
      fzerogui('x^3-.001',[-1,1])
      Moderately diffcult. There is only one real root, but there are two nearby
      complex roots. Requires 15 steps to converge to x = 1/10.
      fzerogui('log(x+2/3)',[0,1])
      Easy problem. Converges to x = 1/3 in 6 steps.
      fzerogui('sign(x-2)*sqrt(abs(x-2))',[1,4])
      This is the "perverse" example where Newton's method fails. f'(x) is un-
      bounded. fzero uses secant for all its steps. Slow convergence, only about
      half a decimal digit per step. Converges to x = 2 in 32 steps.
      fzerogui('atan(x)-pi/3',[0,5])
      Easy problem. Converges to x = sqrt(3) in 8 steps.
      fzerogui('1/(x-pi)',[0,5])
      Sign change is a pole, not a zero. Take over 50 steps towards x = pi. Even-
      tually divides by zero and generates an error in the plot scaling.
4.2.
     >> syms x
(a)
     \Rightarrow f = x^3 - 2*x - 5;
     >> z = solve(f)
      <messy symbolic expressions>
      >> z(1)
      ans =
      1/6* \left(540+12*1929^{(1/2)}\right)^{(1/3)} + 4/ \left(540+12*1929^{(1/2)}\right)^{(1/3)}
      >> length(char(z))
     ans =
      340
      >> double(z)
      2.09455148154233
      -1.04727574077116 + 1.13593988908893i
      -1.04727574077116 - 1.13593988908893i
(b)
     >> p = [1 0 -2 -5]
     p =
      1 0 -2 -5
     >> roots(p)
      ans =
      2.09455148154233
      -1.04727574077116 + 1.13593988908893i
      -1.04727574077116 - 1.13593988908893i
     >> F = inline(char(f));
(c)
     >> fzerotx(F,[2,3])
     ans =
      2.09455148154233
(d)
     >> Fp = inline(char(diff(f)));
     Fp =
      Inline function:
      Fp(x) = 3.*x.^2-2
     >> x = 1i;
     >> x = x - F(x)/Fp(x)
     × =
      -1.00000000000000 + 0.40000000000000i
      >> x = x - F(x)/Fp(x)
      x =
      -0.56274873971876 + 1.77192889360573i
     Use uparrow to iterate .....
      >> x = x - F(x)/Fp(x)
     x =
      -1.04727574077116 + 1.13593988908893i
(e)
     No. There is no notion of sign change or positive/negative for complex numbers.
4.3. p(x) = 816*x^3 - 3835*x^2 + 6000*x - 3125
     What are the exact roots of p?
(a)
     >> p = poly2sym([816 - 3835 6000 - 3125])
     p = 816*x^3-3835*x^2+6000*x-3125
      >> factor(p)
      ans = (16*x-25)*(17*x-25)*(3*x-5)
     >> z = solve(p)
      z =
      [ 25/15]
      [ 25/16]
      [ 25/17]
(b)
     >> p = inline(char(p));
     >> ezplot(p,1.43,1.71)
     >> hold on, plot(double(z),zeros(3,1),'o')
     >> x = 1.5
(c)
     >> x = x - (816*x^3-3835*x^2+6000*x-3125)/(2448*x^2-7670*x+6000)
      Use up arrow to iterate. Converges easily to the nearest root, x = 1.47058823529416 = 25/17
     Starting with x0 = 1 and x1 = 2, the secant method converges to 1.666666666666666 = 25/15.
```

```
The first step reduces the interval to [1,1.5], which contains only one root.
     Consequently, converges to x = 1.47... = 25/17.
     The initial secant step happens to be to x = 1.69..., which is near the root at 25/15.
(f)
     fzerotx then takes 10 steps, 7 with IQI, to converge to 25/15. The interval [a,b] always includes
     all three roots. (Note that none of these methods found the "middle" root, 25/16.)
4.4 The convergence test in fzerotx is
       m = 0.5*(a - b);
       tol = 2.0*eps*max(abs(b),1.0);
       if (abs(m) \le tol) | (fb == 0.0)
          break
       end
       This says that we have luckily found a b for which f(b) is exactly zero, or
       the length of the interval, abs(b-a) , is roundoff error in b or 1 . Note this is
       a relative error test if b is larger than 1, but an absolute error test if b is less
4.9. First ten solutions of: x = \tan x.
     for k = 1:10
     z(k) = fzerotx('tan(x)-x',[k k+1/2-k*eps]*pi);
     end
     = 4.4934 7.7253 10.9041 14.0662 ... 29.8116 32.9564
     z/pi
     = 1.4303 2.4590 3.4709 4.4774 ... 9.4893 10.4903
4.14. What is the speed limit for this vehicle?
       x1 =
         35.83333333333334
       x2 =
         36.00066760428985
       x3 =
         35.98756534518393
       ×4 =
         35.86433220451173
       x5 =
         36.00342638805324
4.16. Freezing water mains.
     function T = pipetemp(x)
      % Temperature of water main at depth of x meters after 60 days.
     Ti = 20;
     Ts = -15;
     alpha = 0.138e-6;
     t = 60*24*60*60; % 60 days * (24*60*60) secs/day
     c = 2*sqrt(alpha*t);
     T = Ts + (Ti - Ts) * erf(x/c);
     ezplot(@pipetemp,[0 2])
     fzerotx(@pipetemp,[0 2])
     ans =
     0.6770
       (a) beta = 4.01269200000000
5.8
                                                           (d)
                 0.53264276923077
         t(7), y(7) is an outliner
      (c) beta = 3.15359848998641
                 0.58690874100321
                 1.97332105560748
5.12 Two orbits, one from original data, one after small random perturbation.
     c = -2.2537948175
(a)
         -0.0063247132
         -5.5221834331
          1.2898102053
```

5.xx See textbook section 5.8 Separable Least Squares.