—

wbl443 Homework Set #4 Answers

fzerogui ('x"3-2*x-5"',[0,3])

Easy problem. Converges to x = 2.09455148154233 in 7 steps.

fzerogui ('sin(x) ', [1,4])

Easy problem. Converges to x = pi in 7 steps, all secant.

fzerogui ('x*3-.001"', [-1,1])

Moderately diffcult. There is only one real root, but there are two nearby

complex roots. Requires 15 steps to converge to x = 1/10.
fzerogui ('log(x+2/3)"',[0,1])
Easy problem. Converges to x = 1/3 in 6 steps.

fzerogui ('sign (x-2) *sqgrt (abs(x-2)) "', [1,4])

This is the “perverse" example where Newton's method fails. £’ (x) is un-
bounded. fzero uses secant for all its steps. Slow convergence, only about
half a decimal digit per step. Converges to x = 2 in 32 steps.

fzerogui ('atan(x)-pi/3',[0,5]1)

Easy problem. Converges to x = sqrt(3) in 8 steps.
fzerogui('1l/ (x-pi) "', [0,5])

Sign change is a pole, not a zero. Take over 50 steps towards x = pi. Even-
tually divides by zero and generates an error in the plot scaling.

>> syms X

>> f = x*"3 - 2*x - 5;

>> z = solve (f)

<messy symbolic expressions>

>> z (1)

ans =
1/6*(540+12*%19297(1/2))"(1/3)+4/(540+12%1929"(1/2))"(1/3)
>> length (char(z))

ans =

340

>> double (z)

2.09455148154233

-1.04727574077116 + 1.135939889088931
-1.04727574077116 - 1.135939889088931

> p = [10 -2 -5]
p =

10 -2 -5

>> roots (p)

ans =

2.09455148154233

-1.04727574077116 + 1.135939889088931
-1.04727574077116 - 1.135939889088931
>> F = inline(char(f));

>> fzerotx (F, [2,3])

ans =

2.09455148154233

>> Fp = inline(char (diff(f)));

Fp =

Inline function:

Fp(x) = 3.*x.72-2

>> x = 1i;

>> x = x - F(x)/Fp(x)

x =

-1.00000000000000 + 0.400000000000001
>> x = x - F(x)/Fp(x)

x =

-0.56274873971876 + 1.771928893605731
Use uparrow to iterate

>> x = x - F(x)/Fp(x)

x =

-1.04727574077116 + 1.135939889088931

No. There is no notion of sign change or positive/negative for complex numbers.

p(x) = 816*x"3 - 3835*x"2 + 6000*x - 3125
What are the exact roots of p?

>> p = poly2sym([816 -3835 6000 -31257)

p = 816*x"3-3835*x"2+6000*x-3125

>> factor (p)

ans = (16*x-25)* (17*x-25)* (3*x-5)

>> z = solve(p)

7 =

[25/15]

[25/16]

[25/17]

>> p = inline (char (p));

>> ezplot(p,1.43,1.71)

>> hold on, plot(double(z),zeros(3,1),'o")
>> x = 1.5

>> x = x - (816*x73-3835*x"2+6000*x-3125) /(2448*x"2-7670*x+6000)

Use up arrow to iterate. Converges easily to the nearest root, x = 1.47058823529416
Starting with x0 = 1 and x1 = 2, the secant method converges to 1.6666666666666666

4.4

4.9.

a)

The first step reduces the interval to [1,1.5], which contains only one root.

Consequently, converges to x = 1.47. = 25/17.

The initial secant step happens to be to x = 1.69.., which is near the root at 25/15.
fzerotx then takes 10 steps, 7 with IQI, to converge to 25/15. The interval [a,b] always includes
all three roots. (Note that none of these methods found the "middle" root, 25/16.)

The convergence test in fzerotx is
m = 0.5%(a - b);

tol = 2.0*eps*max (abs(b),1.0);

if (abs(m) <= tol) | (fb == 0.0)
break

end

This says that we have luckily found a b for which f(b) 1is exactly zero, or
the length of the interval, abs(b-a) , is roundoff error in b or 1 . Note this is
a relative error test if b is larger than 1, but an absolute error test if b 1is less

than 1.

First ten solutions of: x = tan x.

for k = 1:10

z (k) = fzerotx('tan(x)-x', [k k+1/2-k*eps]*pi);

end

4

= 4.4934 7.7253 10.9041 14.0662 ... 29.8116 32.9564
z/pi

= 1.4303 2.4590 3.4709 4.4774 ... 9.4893 10.4903

What is the speed limit for this wvehicle? 160
x1l =
35.83333333333334
X2 = 120p
36.00066760428985
x3 =
35.98756534518393 “r
x4 =

35.86433220451173
x5 = S
36.00342638805324 2o} =

Freezing water mains.
function T = pipetemp (x)
% Temperature of water main at depth of x meters after 60 days.
Ti = 20;

Ts = -15;

alpha = 0.138e-6;

t = 60*24*60*60; % 60 days * (24*60*60) secs/day

c 2*sqgrt (alpha*t) ;
T = Ts + (Ti - Ts)*erf(x/c); 18
ezplot (@pipetemp, [0 2])
fzerotx (@pipetemp, [0 2])
ans = 14r
0.6770

(a) beta = 4.01269200000000 (d) 10k
0.53264276923077
t(7),y(7) is an outliner

(c) beta = 3.15359848998641
0.58690874100321 4

1.97332105560748

Two orbits, one from original data, one after small random perturbation.
c =-2.2537948175
-0.0063247132 147 ' ' "]
-5.5221834331
1.2898102053
7.3773544034

c =-2.4423051434
1.7739414419
-9.5532799239
1.1162584602
8.0629704039

Plot: use axis equall!

oF]

-0.5 0 0.5 1

See textbook section 5.8 Separable Least Squares.
- FIN -

