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y = A\(h^2*(y.^2 - 1) - b)

It turns out that this iteration converges linearly and provides a robust
method for solving the nonlinear difference equations. Report the value of n
you use and the number of iterations required.
(d) Newton’s method. This is based on writing the difference equation in the
form

F (y) = Ay + b− h2(y2 − 1) = 0.

Newton’s method for solving F (y) = 0 requires a many-variable analogue
of the derivative F ′(y). The analogue is the Jacobian, the matrix of partial
derivatives

J =
∂Fi

∂yj
= A− h2diag(2y).

In Matlab, one step of Newton’s method would be

F = A*y + b - h^2*(y.^2 - 1);
J = A - h^2*spdiags(2*y,0,n,n);
y = y - J\F;

With a good starting guess, Newton’s method converges in a handful of iter-
ations. Report the value of n you use and the number of iterations required.

7.23. The double pendulum is a classical physics model system that exhibits chaotic
motion if the initial angles are large enough. The model, shown in Figure 7.11,
involves two weights, or bobs, attached by weightless, rigid rods to each other
and to a fixed pivot. There is no friction, so once initiated, the motion
continues forever. The motion is fully described by the two angles θ1 and θ2

that the rods make with the negative y-axis.
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Figure 7.11. Double pendulum.

Let m1 and m2 be the masses of the bobs and `1 and `2 be the lengths of the
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rods. The positions of the bobs are

x1 = `1 sin θ1, y1 = −`1 cos θ1,

x2 = `1 sin θ1 + `2 sin θ2, y2 = −`1 cos θ1 − `2 cos θ2.

The only external force is gravity, denoted by g. Analysis based on the
Lagrangian formulation of classical mechanics leads to a pair of coupled,
second-order, nonlinear ordinary differential equations for the two angles θ1(t)
and θ2(t):

(m1 + m2)`1θ̈1 + m2`2θ̈2 cos (θ1 − θ2) = −g(m1 + m2) sin θ1

−m2`2θ̇
2
2 sin (θ1 − θ2),

m2`1θ̈1 cos (θ1 − θ2) + m2`2θ̈2 = −gm2 sin θ2 + m2`1θ̇
2
1 sin (θ1 − θ2).

To rewrite these equations as a first-order system, introduce the 4-by-1 col-
umn vector u(t):

u = [θ1, θ2, θ̇1, θ̇2]T .

With m1 = m2 = `1 = `2 = 1, c = cos (u1 − u2), and s = sin (u1 − u2), the
equations become

u̇1 = u3,

u̇2 = u4,

2u̇3 + cu̇4 = −g sin u1 − su2
4,

cu̇3 + u̇4 = −g sin u2 + su2
3.

Let M = M(u) denote the 4-by-4 mass matrix

M =




1 0 0 0
0 1 0 0
0 0 2 c
0 0 c 1




and let f = f(u) denote the 4-by-1 nonlinear force function

f =




u3

u4

−g sin u1 − su2
4

−g sin u2 + su2
3


 .

In matrix-vector notation, the equations are simply

Mu̇ = f.

This is an implicit system of differential equations involving a nonconstant,
nonlinear mass matrix. The double pendulum problem is usually formulated
without the mass matrix, but larger problems, with more degrees of freedom,
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are frequently in implicit form. In some situations, the mass matrix is singular
and it is not possible to write the equations in explicit form.
The NCM M-file swinger provides an interactive graphical implementation of
these equations. The initial position is determined by specifying the starting
coordinates of the second bob, (x2, y2), either as arguments to swinger or
by using the mouse. In most situations, this does not uniquely determine the
starting position of the first bob, but there are only two possibilities and one
of them is chosen arbitrarily. The initial velocities, θ̇1 and θ̇2, are zero.
The numerical solution is carried out by ode23 because our textbook code,
ode23tx, cannot handle implicit equations. The call to ode23 involves using
odeset to specify the functions that generate the mass matrix and do the
plotting

opts = odeset(’mass’,@swingmass, ...
’outputfcn’,@swingplot);

ode23(@swingrhs,tspan,u0,opts);

The mass matrix function is

function M = swingmass(t,u)
c = cos(u(1)-u(2));
M = [1 0 0 0; 0 1 0 0; 0 0 2 c; 0 0 c 1];

The driving force function is

function f = swingrhs(t,u)
g = 1;
s = sin(u(1)-u(2));
f = [u(3); u(4); -2*g*sin(u(1))-s*u(4)^2;

-g*sin(u(2))+s*u(3)^2];

It would be possible to have just one ordinary differential equation function
that returns M\f, but we want to emphasize the implicit facility.
An internal function swinginit converts a specified starting point (x, y) to
a pair of angles (θ1, θ2). If (x, y) is outside the circle

√
x2 + y2 > `1 + `2,

then the pendulum cannot reach the specified point. In this case, we straighten
out the pendulum with θ1 = θ2 and point it in the given direction. If (x, y) is
inside the circle of radius two, we return one of the two possible configurations
that reach to that point.
Here are some questions to guide your investigation of swinger.
(a) When the initial point is outside the circle of radius two, the two rods
start out as one. If the initial angle is not too large, the double pendulum
continues to act pretty much like a single pendulum. But if the initial angles
are large enough, chaotic motion ensues. Roughly what initial angles lead to
chaotic motion?
(b) The default initial condition is
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swinger(0.862,-0.994)

Why is this orbit interesting? Can you find any similar orbits?
(c) Run swinger for a while, then click on its stop button. Go to the Matlab
command line and type get(gcf,’userdata’). What is returned?
(d) Modify swinginit so that, when the initial point is inside the circle of
radius two, the other possible initial configuration is chosen.
(e) Modify swinger so that masses other than m1 = m2 = 1 are possible.
(f) Modify swinger so that lengths other than `1 = `2 = 1 are possible. This
is trickier than changing the masses because the initial geometry is involved.
(g) What role does gravity play? How would the behavior of a double pendu-
lum change if you could take it to the moon? How does changing the value of
g in swingrhs affect the speed of the graphics display, the step sizes chosen
by the ordinary differential equation solver, and the computed values of t?
(h) Combine swingmass and swingrhs into one function, swingode. Elimi-
nate the mass option and use ode23tx instead of ode23.
(i) Are these equations stiff?
(j) This is a difficult question. The statement swinger(0,2) tries to deli-
cately balance the pendulum above its pivot point. The pendulum does stay
there for a while, but then loses its balance. Observe the value of t displayed
in the title for swinger(0,2). What force knocks the pendulum away from
the vertical position? At what value of t does this force become noticeable?




