46 Chapter 7. Ordinary Differential Equations

Which method is preferable for this problem?

7.22. This problem makes use of quadrature, ordinary differential equations, and
zero finding to study a nonlinear boundary value problem. The function y(z)
is defined on the interval 0 < x <1 by

Carbon in the atmosphere and ocean

10

fuel

— fossil fuel

0 L
1000 1500 2000 2500 3000 3500 4000 4500 5000

AN

2 \ *

— at phere ||
1 — shallo
— deep
T

1 T

carbon

O 1 1
100 1500 2000 2500 3000 3500 4000 4500 500
time (yr)

schwab
Cross-Out

schwab
Line

schwab
Line

schwab
Cross-Out

Exercises 47

y(0) =0,
y(1) = 1.

This problem can be solved four different ways. Plot the four solutions ob-
tained on a single figure, using subplot(2,2,1),..., subplot(2,2,4).
(a) Shooting method. Suppose we know the value of n = ¢/(0). Then we
could use an ordinary differential equation solver like ode23tx or ode45 to
solve the initial value problem

yl/ — y2 _ 1,
y(0) =0,
y'(0) = .

on the interval 0 < z < 1. Each value of 1 determines a different solution
y(x;n) and corresponding value for y(1;n). The desired boundary condition
y(1) = 1 leads to the definition of a function of :

fm) =y(ln) -1

Write a MATLAB function whose argument is 7. This function should solve
the ordinary differential equation initial problem and return f(n). Then use
fzero or fzerotx to find a value 7, so that f(n.) = 0. Finally, use this 7,
in the initial value problem to get the desired y(z). Report the value of 7,
you obtain.

(b) Quadrature. Observe that 4" = y? — 1 can be written

d ((y)? v _
dx(s 3 tv)=0

This means that the expression

ty

,\
@\

=

[\
S,

is actually constant. Because y(0) = 0, we have 3'(0) = v/2k. So, if we could
find the constant k, the boundary value problem would be converted into an
initial value problem. Integrating the equation

dx 1

dy 2k +y3/3—y)

gives
y
x:/ h(y, k) dy,
0

where
1

V2 +y3/3—y)

h(yv H) =

48

Chapter 7. Ordinary Differential Equations

This, together with the boundary condition y(1) = 1, leads to the definition
of a function g(k):

1
g(ﬁ):/o h(y, k) dy — 1.

You need two MATLAB functions, one that computes h(y,) and one that
computes ¢g(x). They can be two separate M-files, but a better idea is to
make h(y,x) an inline function within g(x). The function g(x) should use
quadtx to evaluate the integral of h(y, k). The parameter k is passed as an
extra argument from g, through quadtx, to h. Then fzerotx can be used to
find a value k, so that g(k.) = 0. Finally, this k. provides the second initial
value necessary for an ordinary differential equation solver to compute y(x).
Report the value of k, you obtain.

(c and d) Nonlinear finite differences. Partition the interval into n + 1 equal
subintervals with spacing h = 1/(n + 1):

zi=ih, i=0,...,n+1.

Replace the differential equation with a nonlinear system of difference equa-
tions involving n unknowns, y1,ys2, ..., Yn:

yi+1 72@/1 +yi—1 = hz(yz2 — 1), Z: 1,...771.

The boundary conditions are yp = 0 and y,4+1 = 1.

A convenient way to compute the vector of second differences involves the
n-by-n tridiagonal matrix A with —2’s on the diagonal, 1’s on the super-
and subdiagonals, and 0’s elsewhere. You can generate a sparse form of this
matrix with

ones(n,1);
spdiags([e -2%e e],[-1 0 1],n,n);

e
A

The boundary conditions yg = 0 and y,4+1 = 1 can be represented by the
n-vector b, with b; =0,i=1,...,n — 1, and b, = 1. The vector formulation
of the nonlinear difference equation is

Ay+b= hQ(y2 - 1),

where y? is the vector containing the squares of the elements of y, that is,
the MATLAB element-by-element power y. 2. There are at least two ways to
solve this system.

(c) Linear iteration. This is based on writing the difference equation in the

form
Ay =h*(y* —1) —b.

Start with an initial guess for the solution vector y. The iteration consists
of plugging the current y into the right-hand side of this equation and then
solving the resulting linear system for a new y. This makes repeated use of
the sparse backslash operator with the iterated assignment statement

Exercises 49

y = A\(h"2%(y."2 - 1) - b)

It turns out that this iteration converges linearly and provides a robust
method for solving the nonlinear difference equations. Report the value of n
you use and the number of iterations required.

(d) Newton’s method. This is based on writing the difference equation in the
form

F(y)=Ay+b—h*@y*—1)=0.

Newton’s method for solving F(y) = 0 requires a many-variable analogue
of the derivative F’(y). The analogue is the Jacobian, the matrix of partial
derivatives

_OF,
83/]'

In MATLAB, one step of Newton’s method would be

J

= A — hdiag(2y).

F=Ay +Db - h™2%(y."2 - 1);
J = A - h™2*spdiags(2*y,0,n,n);
y =y - J\F;

With a good starting guess, Newton’s method converges in a handful of iter-
ations. Report the value of n you use and the number of iterations required.

Let my and mo bethemassesof-the bobs-and £, and £ be-thelengthsofthe

schwab
Cross-Out

schwab
Line

schwab
Line

