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(a) Reproduce Figure 7.10. Use pchiptx to interpolate the fuel table and
ode23tx with the default tolerances to solve the differential equations.
(b) How do the amounts of carbon in the three regimes at year 5000 compare
with the amounts at year 1000?
(c) When does the atmospheric carbon dioxide reach its maximum?
(d) These equations are mildly stiff, because the various chemical reactions
take place on very different time scales. If you zoom in on some portions of
the graphs, you should see a characteristic sawtooth behavior caused by the
small time steps required by ode23tx. Find such a region.
(e) Experiment with other Matlab ordinary differential equation solvers,
including ode23, ode45, ode113, ode23s, and ode15s. Try various tolerances
and report computational costs by using something like

odeset(’RelTol’,1.e-6,’AbsTol’,1.e-6,’stats’,’on’);

Which method is preferable for this problem?
7.22. This problem makes use of quadrature, ordinary differential equations, and

zero finding to study a nonlinear boundary value problem. The function y(x)
is defined on the interval 0 ≤ x ≤ 1 by

y′′ = y2 − 1,
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Figure 7.10. Carbon in the atmosphere and ocean.
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y(0) = 0,

y(1) = 1.

This problem can be solved four different ways. Plot the four solutions ob-
tained on a single figure, using subplot(2,2,1),..., subplot(2,2,4).
(a) Shooting method. Suppose we know the value of η = y′(0). Then we
could use an ordinary differential equation solver like ode23tx or ode45 to
solve the initial value problem

y′′ = y2 − 1,

y(0) = 0,

y′(0) = η.

on the interval 0 ≤ x ≤ 1. Each value of η determines a different solution
y(x; η) and corresponding value for y(1; η). The desired boundary condition
y(1) = 1 leads to the definition of a function of η:

f(η) = y(1; η)− 1.

Write a Matlab function whose argument is η. This function should solve
the ordinary differential equation initial problem and return f(η). Then use
fzero or fzerotx to find a value η∗ so that f(η∗) = 0. Finally, use this η∗
in the initial value problem to get the desired y(x). Report the value of η∗
you obtain.
(b) Quadrature. Observe that y′′ = y2 − 1 can be written

d
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(
(y′)2

2
− y3

3
+ y

)
= 0.

This means that the expression

κ =
(y′)2

2
− y3

3
+ y

is actually constant. Because y(0) = 0, we have y′(0) =
√

2κ. So, if we could
find the constant κ, the boundary value problem would be converted into an
initial value problem. Integrating the equation

dx

dy
=

1√
2(κ + y3/3− y)

gives

x =
∫ y

0

h(y, κ) dy,

where
h(y, κ) =

1√
2(κ + y3/3− y)

.
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This, together with the boundary condition y(1) = 1, leads to the definition
of a function g(κ):

g(κ) =
∫ 1

0

h(y, κ) dy − 1.

You need two Matlab functions, one that computes h(y, κ) and one that
computes g(κ). They can be two separate M-files, but a better idea is to
make h(y, κ) an inline function within g(κ). The function g(κ) should use
quadtx to evaluate the integral of h(y, κ). The parameter κ is passed as an
extra argument from g, through quadtx, to h. Then fzerotx can be used to
find a value κ∗ so that g(κ∗) = 0. Finally, this κ∗ provides the second initial
value necessary for an ordinary differential equation solver to compute y(x).
Report the value of κ∗ you obtain.
(c and d) Nonlinear finite differences. Partition the interval into n + 1 equal
subintervals with spacing h = 1/(n + 1):

xi = ih, i = 0, . . . , n + 1.

Replace the differential equation with a nonlinear system of difference equa-
tions involving n unknowns, y1, y2, . . . , yn:

yi+1 − 2yi + yi−1 = h2(y2
i − 1), i = 1, . . . , n.

The boundary conditions are y0 = 0 and yn+1 = 1.
A convenient way to compute the vector of second differences involves the
n-by-n tridiagonal matrix A with −2’s on the diagonal, 1’s on the super-
and subdiagonals, and 0’s elsewhere. You can generate a sparse form of this
matrix with

e = ones(n,1);
A = spdiags([e -2*e e],[-1 0 1],n,n);

The boundary conditions y0 = 0 and yn+1 = 1 can be represented by the
n-vector b, with bi = 0, i = 1, . . . , n− 1, and bn = 1. The vector formulation
of the nonlinear difference equation is

Ay + b = h2(y2 − 1),

where y2 is the vector containing the squares of the elements of y, that is,
the Matlab element-by-element power y.^2. There are at least two ways to
solve this system.
(c) Linear iteration. This is based on writing the difference equation in the
form

Ay = h2(y2 − 1)− b.

Start with an initial guess for the solution vector y. The iteration consists
of plugging the current y into the right-hand side of this equation and then
solving the resulting linear system for a new y. This makes repeated use of
the sparse backslash operator with the iterated assignment statement
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y = A\(h^2*(y.^2 - 1) - b)

It turns out that this iteration converges linearly and provides a robust
method for solving the nonlinear difference equations. Report the value of n
you use and the number of iterations required.
(d) Newton’s method. This is based on writing the difference equation in the
form

F (y) = Ay + b− h2(y2 − 1) = 0.

Newton’s method for solving F (y) = 0 requires a many-variable analogue
of the derivative F ′(y). The analogue is the Jacobian, the matrix of partial
derivatives

J =
∂Fi

∂yj
= A− h2diag(2y).

In Matlab, one step of Newton’s method would be

F = A*y + b - h^2*(y.^2 - 1);
J = A - h^2*spdiags(2*y,0,n,n);
y = y - J\F;

With a good starting guess, Newton’s method converges in a handful of iter-
ations. Report the value of n you use and the number of iterations required.

7.23. The double pendulum is a classical physics model system that exhibits chaotic
motion if the initial angles are large enough. The model, shown in Figure 7.11,
involves two weights, or bobs, attached by weightless, rigid rods to each other
and to a fixed pivot. There is no friction, so once initiated, the motion
continues forever. The motion is fully described by the two angles θ1 and θ2

that the rods make with the negative y-axis.

x

y

θ
1

θ
2

Figure 7.11. Double pendulum.

Let m1 and m2 be the masses of the bobs and `1 and `2 be the lengths of the
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