wb1443
Matlab in Engineering Mechanics

Fall Term 2014, Thu 15:45-16:45, Mechanical Engineering, 2 ECTS credits.

Final Project 3: Eigenmotions of an Uncontrolled Bicycle.

Everybody knows from experience that a bicycle can be highly unstable at low speed, yet at
moderate to high speed it can be stabilized easily. To study this behaviour we consider one of the
simplest bicycle models. This model involves four rigid bodies, viz. the rear frame with the rider
rigidly attached to it, the front frame being the front fork and handle bar assembly and the two
knife-edge wheels, Figure 1. We assume that the wheels always stay in contact with the flat level
ground and that they will not slip. Furthermore we assume a handsfree uncontrolled operation and
no propulsion. Note that this makes the model energy conservative. The model has three dynamic
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Figure 1: Bicycle model (left) together with the coordinate system, the degrees of freedom, and the
parameters, and sketch (right) of a displaced position.
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degrees of freedom: the roll angle ¢ of the rear frame, the steering angle ¢, and the forward speed
v = —6,R,,, of the rear wheel. In our analysis we will consider only small changes to the upright
steady motion of the bicycle. Then at a given forward speed v, the roll angle and the steering angle
are governed by a pair of coupled second order linear differential equations of the form

M[?}Lm-v[ﬂﬂmjum-v?]{?]:[8} (1)

The conditions of no slip at the wheels are constraints on the system which can only be expressed
in terms of the velocities. These so-called non-holonomic constraints give rise to extra kinematic
variables. In the case of the bicycle they are the displacements z and y of the rear wheel contact
point and the yaw angle ¢ of the rear frame, and are governed by the first order differential equations

T = wvcosy,
y vsiny, (2)
v = A+ Bvd.



Parameter Symbol [ Value

Wheel base w 1.02 m

Trail t 0.08 m
Head angle a arctan(3)
Gravity g 9.81 N/kg
Forward speed v variable m/s

Rear wheel
Radius Rrw 0.3 m

Mass Myw 2 kg

Mass moments of inertia (Agaw, Ayy, Azz) (0.06,0.12,0.06) kgm?
Rear frame

Position centre of mass (@rfsYrfs 2rf) (0.3,0,—0.9) m
Mass Mg 85 kg
Baa 0 Bz 92 0 24
Mass moments of inertia Byy 0 1 0 kgm?
sym. B, 2.8
Front frame
Position centre of mass (@rp,yrfr2ff) (0.9,0,—0.7) m
Mass myy 4 kg
Crx 0 Cyz 0.0546 0 —0.0162
Mass moments of inertia Cyy 0 0.06 0 kgm?
sym. C,. 0.0114
Front wheel
Radius Ry 0.35 m
Mass Mfy 3 kg

Mass moments of inertia (Dga, Dyy, Dy2) (0.14,0.28,0.14) kgm?

Table 1: Parameters for the benchmark bicycle from Figure 1.

Note that the kinematic coordinates do not appear in the equations of motion (1) for the lateral
dynamics of the bicycle. Or, in other words, the lateral dynamics is independent of the position (z
and y) and the orientation () of the bicycle on the plane.
The dimensions and mechanical properties for a typical rider-bicycle combination which were used
in a benchmark are presented in Table 1. With these parameters the coefficients in the equations
of motion (1) can be calculated, resulting in a mass matrix

M — 80.812 100 000 000 02, 2.323 431 426 235 49 (3)
o 2.323 431426 23549, 0.301 265709 34256 |’
a “damping” matrix C1 which depends linearly on the forward speed
C1— 0, 33.773 869475930 10 (4)
| —0.848234478256 93,  1.706 965 397 923 87 | °

a constant stiffness matrix K0 and a stiffness K2 which is proportional to the square of the forward
speed

KO =

—794.119 500 000 000, —25.739 089 291 258 K2 — 0, 76.406 208 759 656 57
—25.739 089 291 258, —8.139414705882 |’ 1 0, 267560553633218 |’

and finally the constant A and B from the kinematic equations (2)
A =0.074 406 533 180 43, and B = 0.930 081 664 755 41. (6)

Throughout the assignment we assume the SI units kg, m, sec, and rad.
To investigate the stability of the lateral motion we assume solutions of the form

[ 0 ] _ { f;g ]exp (\). (7)



Substitution of these solutions in the equations of motion (1) leads to a non-standard eigenvalue
problem. The solution of this eigenvalue problem yields the eigenvalues A; and the corresponding
eigenvectors [¢g; dpl;, where ¢ runs from 1 to 4. Some of these eigenvalues can be a complex
conjugated pair giving rise to an oscillatory motion, where others are real, resulting in an exponential
decaying or increasing motion. The stability of all these eigenmotions is governed by the real part
of the eigenvalue: stable when negative, unstable when positive.

The non-standard eigenvalue problem is unsatisfactory, hence:

a. Rewrite the equations of motion (1) as a set of first order differential equations by introducing
two new variables p and and w, being the time derivatives of ¢ and 4.

b. Now use these first order differential equations to determine, for the standard bicycle, the
stability of the lateral motion in a forward speed range of 0 < v < 10 m/s. Therefore
substitute in these set of equations solutions of the form

P Po
Z = ;g exp (At). (8)
) do

This will lead to a standard eigenvalue problem. Solve the eigenvalue problem for a number
of points (50 or 100) in the desired speed range. Plot the real part of the eigenvalues A as
a function of the forward speed v and mark the forward speed range for which the lateral
dynamics is stable. Plot in the same figure but with another line type the imaginary part of
the eigenvalues A as a function of the forward speed v.

c. Determine the lower and upper bound of this stable forward speed range with at least 3
significant digits.

Below a forward speed of 0.5 m/s we have four real eigenvalues, two positive and two negative ones.
Above 1 m/s we have one complex conjugated pair and two real eigenvalues. The complex pair
corresponds to the so-called weave motion of the bicycle. This initially unstable motion becomes
stable with increasing speed. The moderate negative real eigenvalue belongs to the so-called capsize
motion of the bicycle. The capsize is initially stable but becomes mildly unstable with increasing
speed.

Next we want to visualize these motions. This is no problem for the real eigenvalues. The entries
in the eigenvector determine the amplitude ratios of the degrees of freedom. Unfortunately for the
complex conjugated eigenvalues this is not straight forward. The corresponding eigenvectores are in
general complex. This means that besides the amplitude difference there is also a phase difference
between the degrees of freedom.

d. Investigate the eigenmotions by looking at the eigenvectors and try to find a way to depict the
motion by means of some sort of displaced bicycle figure. This should be done for a number
of forward speeds, preferably for v = [0,1,2,4,5,6,7,10] m/s. Explain the naming ‘weave’
and ‘capsize’.

So far we have only paid attention to the eigenmotion with respect to the lean angle and the

steering angle of the bicycle. Finally we would like to visualize the complete eigenmotion of the
bicycle which involves the inclusion of the kinematic coordinates.

e. Visualize the complete eigenmotions of the bicycle. One could think of making a movie or
generating a number of ‘stills’ were the camera moves with a constant forward speed v. This
should be done for a number of forward speeds, preferably for v = [0,1,2,4,5,6,7,10] m/s
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